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Abstract: This paper essentially presents the last and important steps in the study of (practical)
solvability of two-dimensional product-type systems of difference equations of the following form
Zy = zxzﬁikwftil, w, = ﬁwﬁ_mzﬁ_s, n € No, where k,I,m,s € N, a,b,c,d € Z, and where «, 5 and
the initial values are complex numbers. It is devoted to the most complex case which has not been
considered so far (the case k = = s = 1 and m = 3). Closed form formulas for solutions to the
system are found in all possible cases. The structure of the solutions to the system is considered
in detail. The following five cases: (1) b = 0; 2)c =0; (3)d = 0; (4) ac # 0; (5) a = 0, bed # 0,
are considered separately. Some of the situations appear for the first time in the literature.
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1. Introduction

There has been a growing interest in difference equations and systems of difference equations
(see, for example, [1-43]). Among several subfields of recent interest we mention here two, on whose
intersection is the study in this paper. The first one is the classical subfield of finding solutions
to the equations and systems in closed form. Books [6,12-16] contain some old information in the
subfield. Some recent ones can be found, for example, in the following papers: [5,27,31-43] (see
also numerous references therein). For some related results and applications of solvable difference
equations and systems, see also [1-4]. The recent interest has been considerably motivated by the fact
that some new interesting classes of nonlinear difference equations and systems have been solved
by transforming them to known solvable ones. One of our transformations has had some impact
in the recent interest. For more information, see, for example, [5,27,34], and the related references
therein. Beside the line of investigation, there have been some other several ones which also use some
related ideas. The reader can consult the representative paper [34] and find many other related ones
in its list of references. Generally speaking, above mentioned lines of investigations use the method
of transformation in solving the equations and systems therein. In many of these papers obtained
formulas for the solutions to the equations and systems studied therein are used in describing their
long-term behavior (for example, in [5,39]).

The second one is the subfield on concrete systems of difference equations. Some of the papers
which have had some impact on the growing interest in the subfield are [19-21] by Papaschinopoulos
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and Schinas. One of their main ideas is to consider symmetric systems of difference equations obtained
from the following scalar one

Xn = f(xnfk/ Xn,l), ne NO/
where k,I € N, k # 1, for concrete values of function f, that is, to study some concrete systems of
difference equations of one of the following forms

Xn = f(xnfk/ ynfl)/ Yn = f(ynfk/ xnfl)r
Xn = f(]/nfkr xnfl>/ Yn = f(xnfkr]/nfﬂr
Xn = f(]/n—k/yn—l)/ Yn = f(xn_k, xn—l)/ ne N().

This, among other things, has motivated us to study the solvability of some concrete systems
of the form, such as the ones in [5,39,40] (see also the related references therein). The idea naturally
evolved into the investigation of more general symmetric systems of difference equations. For example,
a few symmetric systems with three variables were studied in [23], while in [22] were studied,
among others, the invariants of the following system of nonlinear difference equations

a—+ b(yn +xXp 1+ Ykt xnfk)

Xpt1 =
i Yn—k—1
Ca+b(xXntYur o+ Xk + Ynk)
Yn+1 = Xn—k—1

where k is an odd number and a,b € (0, ), which means that more complex symmetric systems were
studied therein. In fact, the study of the invariants of some equations and systems can be regarded
as a kind of the study of their solvability, so that paper [22], as well as [21] essentially belong to
both subfields.

It is highly expected that the methods and ideas used in the study of symmetric systems of
difference equations can produce the same or related results for the systems which are not symmetric,
but are close to them. For example, the following max-type system of difference equations

max{a,yn, by } max{cnXn, dn}
Xnt+1 = T yte1 Ynt1 = T x| n € Ny,
where a,,, by, ¢y, d, are sequences of positive numbers and x_1,xg,y_1,yo are positive numbers,
is such one, and was studied in [25] (for another max-type system see also [28]). Such system
are called close-to-symmetric systems of difference equations and are frequently studied
(see, for example, [8,17,24,29,31,33] and the related references therein). In paper [11] was initiated
study of cyclic systems of difference equations, which naturally evolved into the study of some close
to cyclic systems of difference equations (see, for example, [7,18]).
Studying positive solutions to some classes of equations and systems, such as the ones of the
special cases of the following equation
Xy

[7 7
n—I

Xn =&+ n € Ny,

X

where o, p,q € (0,00), k,I € N, k # I (see, for example, [30], as well as [9,10,26] and the related
references therein), as well as of the corresponding two-dimensional symmetric systems of difference
equations, such as

vh k x) k
Xp =0+ ’;7, Yn=a+ Zf, n € Ny,
xnfl :‘/n,]

we came across some product-type equations and systems.
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The solvability of the product-type equations and systems in this case is something which should
be known to any expert. Namely, if all the initial values are positive a simple inductive argument shows
that all other terms are also positive, so that by using the logarithm the equation/system is transformed
to a linear one with constant coefficients, which is one of the most known solvable equation/system. If
the domain is changed, then several problems occur which prevent using the standard method for
solving the equations and systems for the case of positive solutions. Our study of the systems on the
complex plane was set off in [39]. It turned out that finding solutions to some related systems is not so
simple problem. The next product-type system was solved in [40], but without detailed analysis of the
structure of its solutions. The forms of the systems studied in [39,40] are similar, which suggested an
investigation of the extensions which include both of them. On the other hand, the occurrence of some
multipliers in some cases of the one-dimensional equation in [34] has suggested an investigation of the
related systems with additional constant multipliers, which has been done for the first time in [31].

Somewhat later, a detailed analysis has shown that complete lists of formulas can be given for
some of concrete systems of difference equations of the following form

w, = pus,_,z%_, neN, 1)

Zn = “ZZ—sz—l/
with “small" values of delays k, [, m and s, which means that they are solvable. Since we have studied
so far a number of the systems of type (1), to facilitate classification and terminology, from now on we
will say that the system is of delay-type (k,m,1,s).

The corresponding lists of formulas for solutions are given first for the systems in [33,43],
unlike the systems in above mentioned paper [40] and for the system in [42]. For some systems
such as the ones in [35,41] the solutions were obtained more easily, so the analysis was simpler and
it was of a different character. Some technical problems in dealing with the systems of the sort
in (1) lead us to devising another method for solving them in [32], which has been recently also
used in [37]. Recently, we have done, for the first time a detailed analysis of the structure of solutions
to a class of product-type systems with an associated polynomial (to the system) of the fourth order
in [38], and quite recently in [36].

The main goal of the whole project is to classify solvable product-type systems of difference
equations of the form in (1) and present their solutions in closed form in terms of the involved
parameters and initial values. Here we continue the project. This paper is a natural continuation of
our research in [31-33,35-43], and essentially presents the last and important steps in the finishing of
the project.

Our task here is to show the solvability of system (1) of delay-type (1,3,1,1) (the casek =1 =5 =1
and m = 3), that is, of

b d
Zp+1 = “Zflwnr Wp4+1 = /3“7;—22;1/ n € Ny, )

where a,b,c,d € Z, ,B,z0,w_p,w_1,wy € C\ {0}. The case when some of the quantities «, B, z,
w_o, w_1, Wy is zero we do not take into consideration because in the case are obtained solutions which
are either not defined or trivial, so of not special interest.

The following five cases are considered separately in this paper: (1) b =0; (2)c =0; (3)d = 0;
(4) ac #0; (5) a = 0, bed # 0. We would like to point out that the fifth case is not covered with the
fourth one, since the condition 4 = 0 changes the order of an associated polynomial appearing in the
study. If k,I € Z, then the notation k, 1, denotes the set of all j € Z such that k < j < I, whereas we
regard that Z;;ll cj=0foreach! € Z.

2. Auxiliary Results

The following three lemmas are useful tools in our investigation and have been already used
in some of our previous papers devoted to the project on product-type systems. The first one



Symmetry 2017, 9, 200 4 of 31

is a consequence of the Langrage formula applied to the functions fs(t) = t, s € N (see, for
example, [13] or [44], as well as [40] for a proof based on complex analysis).

Lemma 1. Let

pe(t) = ce [ [t —t7),
j=1
ck #0and t; # tj, i # j. Then
k s
Y /-=0, 0<s<k-2,
=1 Pk(t])
and 1
A
=R ACICY

Further, we need several closed form formulas for some sums which can be found in numerous
books (see, for example, [13] or [16]). For a general method for calculating this type of sums consult
our recent paper [33] where a recurrent formula for this type of sums is presented, and by using it the
sums can be calculated.

Lemma 2. Let

s n . .
si(z) =) /771, men, 3)
=1
wherei € Nyand z € C.
Then
(0) 1= z"
Sn (Z)_l_zf (4)
1), 1—(n+1)z"+nz"t!
sn'(z) = e , ©)
14+z—(n4+1)2%2" + (21 4 2n — 1)z" 1 — p2z"+2
512) (Z) _ ( ) El — 2)3 ) , (6)
3.1~ _ 1\3 _ 2.1n(H _ 1)\2 n(,2 _ (N 2
51(13) (2) = n°z"(z —1)° —3n°z"(z — 1) —:13izz)(f 1) —(z"=-1)(z +4z—|—1), @)

foreveryz € C\ {1} and n € N.

The following lemma describes the nature/type of the zeros of an arbitrary fourth order
polynomial equation. The results in the lemma are certainly folklore and were essentially obtained,
for example, in [45] (the lemma formulates the results appearing therein in a unified way, although the
notation and some quantities are different).

Lemma 3. Let
Py(t) = t* + bt 4 ct? + dt +e,
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where b, ¢, d, e are real numbers,

Ay =c*—3bd+12¢, Ay =2 —9bcd + 27b%e + 27d% — 72ce,

1
A= 5(4/;3 — A,  P=8—-3b,

Q = b + 84 — 4bc, D = 64e — 16¢ + 16b*c — 16bd — 3b*.

Then, the following statements hold.

(a)
(b)

(c)

If A <0, then two zeros of Py are real and different, and two are complex conjugate.
If A > 0O, then all the zeros of Py are real or none is. More precisely,

10
20

if P < 0and D < O, then all four zeros of Py are real and different;
if P> Qor D > 0, then there are two pairs of complex conjugate zeros of Py.

If A = 0, then and only then Py has a multiple zero. The following cases can occur:

10
20

30
40

if P<0,D < 0and Ay # 0, then two zeros of Py are real and equal and two are real and simple;
if D> 0or (P> 0and (D # 0or Q # 0)), then two zeros of Py are real and equal and two are

complex conjugate;
if Ag = 0and D # 0, there is a triple zero of Py and one simple, all real;
if D=0, then

4.1°  if P < 0 there are two double real zeros of Py; )
42° if P> 0and Q = Q there are two doublé complex conjugate zeros of Py;
4.3° if Ay = 0, then all four zeros of Py are real and equal to —b/4.

3. Main Results

In this section we state and prove our main results and by using them and some further analysis
we get several corollaries. Before this we give a list of first several members of the sequences z, and
wy, whose values will be used in the proofs of some of the results.

We have

21 = azdw},

wy = Bt ,z8,

22 = alazfo)" (Bt 520)" = !Bz Py,

wp = Pt 2] = puty (azfwp)’ = a’pzfiws juwp! ®)
23 = azlwt = a(“1+aﬁbzgz+hdwb_czwgb)u(adﬁzgdwilw(b)d)b

2 3 b(a?+bd
_ gltata +bdﬁb+abzg +2ahdwbll;2cwb_clw0(ﬂ +bd)

As we have already mentioned we will consider the following five cases separately: (1) b = 0;
(2)c=0;(3)d=0; (4)ac #0;(5) a =0, bed # 0. Hence, we will prove five results on the solvability
and by further analysis we will get several consequences from them.

Theorem 1. Assume thata,c,d € Z,b =0, a, B, z0, w_p, w_1,wy € C\ {0}. Then system (2) is solvable in
closed form.

Proof. Since b = 0, we have

a c d
Zpyl = 0Zy, Wyl = :Bwnfzzn' n € Ny, )
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from which it follows that

n—1 j
f a n
Zy = a0 zq ,

forn € N.
From (10) we have that

l'l 1‘l

1—
zp=waTazy, neN,
when a # 1, and
Zn:anZO, nEN,

whena = 1.
Using (10) in the second equation in (9), is obtained

Ayn=24 n—1
Wp =& Lj=o ¢ ,Bzga w$173/ n=>2,

which is equivalent to

. dz@ggﬂ?Z a dgdm+i-1_ .
Wapi = Bz W3(m—1)+ir

forme Nandi = —-1,0,1.
From (13) and by induction it is proved that

+i-2 i _ k=1 1 3(m—1)+i—1
dZ = al vkl dy“gca c*
Wam4i = ] 0 :BZI:O Z)

form > kand i = —1,0,1, from which for k = m is obtained

dzm 1CIZ m—1)+i— Zaj Zm 1. dzm 1 1 ,3(m=1)+i-1 o
W3m+i = ﬁ wl s

form e Nandi = —-1,0,1.
From (8) and (14), we have

Zm 1C1Z m—1—1) ]' Zm*lcl dZ;’LBlclae’(m_l)_z o
=K Z -

W3m—-1 = BHi=0 w1,
Wam dzm 1. ?i’gil) ﬁzm 1.l d):m 1l gdtm=1)= ZU(C)m’
— :adzgﬂ 01 12 m—I)— ‘Bzm 1, dZ; O1 1 z3(m— U(ﬁwizzg)c
_ dzlm 1 IZ] ’g - ﬁZ;H:O Clzgzl=ﬂc u3(m—l)wc_mz+1,

form € N.
Now we use the formulas in (15)—(17) in five subcases separately.
Casea # 1 # ¢ # a°. From (15)—(17) and by Lemma 2, we obtain

3
dzm 1. l1-a 3(m—1)-2 1 m ad” e
1-a ﬁ I—c ZO w—l

W3m—1 =K

d 1—cm a3nzfcm
:am( T— 4 B¢ )‘B T » a3—c wc

d(a3 —c+(1—a) (a+a?+c)c" 4(c—1)adm+1) Lam ad03m_cm
=K (1*”)(1*5)(543*@ ‘B ¢ ZO 3—c wc

wS(m—k)+i’

m

6 of 31

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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3m_ m
m—1 11-g3m=D-1 1 m da2%-=¢ m
W3y = dzl:o ¢ T—a ‘B T—c ZO aZ—c w(c)
3m _m
d (lfcm u2a3m76m) 1—cm dllzn —c n
T—a\ T—c 3_ — ad—c C
o a°—c 'B 1—c ZO wO
d(a®—c+(1—a)(c+cata®)c™+(c—1)a3M+2) 1—cn da? a3’gfcm -
—u (1-a)(1-0)(a3—0) Brez, ¢ wf, (19)
3m+3 _ m+1
Zm 1.11= a 3(m—1) 1 _gm+1 d% oMl
W3p41 =K o B z, W,
3m+3_ m+1
d 1—cm 3 g3m _cm _.m+1 42 —c
_Ixﬂ( lfc —a aa?),i )‘Bl f,c z B—c wc'n+1
- 0 -2
d(u3—c+(17a3)cm+1+(c—1)a3m+3) Lt du3m+f;7cm+l _—
= (1-a)(1-e)(a3~0) B i< zyz “° w, (20)

form € N.
Casea # 1 # ¢ = a®. From (15)~(17) and by Lemma 2, we obtain

m—1 3l mll‘ 1 m1313ml)
dzl 0 4 Z] 'BZm a3 dz a3m

W31 = W_q
m-1 311-a3(m=1)-2 1-a S 3
*[xdzloﬂ 7’31 - 4 dma wa_;”
d (1=a3" 32 - 3
— 1—a ( 1-a3 ma ):B 1—a3 dma wﬂ_{ﬂ
d(mu3’"+1 —a3”17n1u3m72+1) 1_g3m .
=u (1-a)(1-a%) B i gmu 2 1 (21)
_ 3(m—1)— m— 1 31 g3(m=1)-1
dym-1 g3y U m— 1 23l dz 3
Wy = 1=0 =0 ‘BZ wh
(m -1 1— 3m _
- dzm 1 3]1 a 3 dma:im 1 ,3m
= p iz wo
d (1= 31 1-g3M 3m—1 3
=1 ( 1-a3 ma )’8 1-a3 7 mda " wg "
d(ma3m+2_g3m _yg3m—141) 1_g3m
3m—1 3m
= (1-a)(1-a3) B1- a3 dmﬂ ws", (22)
3(m—=1)-1 731 g3(m—1)
dZm 1 312,7 a m 31 de 3m+3
W31 = 7=0 pri=o” wl,

1,3 1=3(m=)  1-a3"43 3 3m4s
_adZ’" alTﬁ 1-a3 Zg(m""l)a wa;”*

:[xl a\ 1-43 1-a

% (17113"1 7ma3m) ‘B 17,13"1;3 Zd(m+1)“3m wa3m+3
0 2

d(ma3"M+3 — (m41)ad" 41) 1_g3m+3
== " g 1)g3m 3m+3
B (1-a)(1-a3) ﬁ 1-a3 ZO(WH_ Ja wliz ’ (23)

for m € N.
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Case a # 1 = c. From (15)—(17) and by Lemma 2, we obtain

1-1) i m—1 ,3(m—1)-2
Zm lz m— m— ]1 dz
W3m—1 = ﬁz w_q

3m
m—1 1-a3(m=-1)-2 diz=1
:pcdzl:() T=a ’Bmzo 71 w_q
23m_q

_aldu(m Ha?; 1)’51’1’! da—

d(@m 1l ym(1—a3)—a)
=q (1-0)01-a) ﬁm e

(24)

m—1 «3(m—1)-2 m—1 3(m—I)—1
W3y = ): EJ 0 ﬁzl o1 dzl 01

wo

3m
et 1A 4
_adz T—a 'BmZO a’—1 wo

d 3m_q
:“m (mfuZ lla371 )ﬁmzo 31

d(@M+2 4 m(1-a3)—a?) 5
— —a)(1—a3 m -1
= (1=a)(1-a®) B Z a

(25)

(m—1)—1 d )
W3my1 = o0 ) 5% /321 o'z ZZ o

w2

3m+3
m—1 1—a3(m=1) a 5 —1
Déd): e ﬁm+lzo a3-1 w_y

d (m 3 a3m71) 1 a3"13+3—1
T\ 5 ) et PER]
=a w1/ BTz,

w2

d(@3M+3 — (m+1)a3 +m) 1 a3m3+3—1
_ 1—a)(1—a3 m-+ a’—1
= (1—a)(1-a%) B Z

w2,

(26)
form € N.

Case a =1 # c. From (15)—(17) and by Lemma 2, we obtain

):mll):mll 111

n— 1 J dz m
W3m—1 = ,8): = wc

_m 1—cM
A6 (m7171)+1)c1511_fc ngc "
d((Sm—Z) 1—¢ 1=me" L4 (m—1)c™
1

(1-c)2 )ﬁlfcm dlficm

d(3m—2—(Bm+1)c+2cM M1
=N (1*5)2

1 o dl c .
Bi<zy Cwy,

(27)

d 3(m— 1)721 m—1 1 d "‘771 dom
wa —a T T g AT

1 1_gm 1—c"

— B Bl g T e
1-cM 1=me" =14 (m—1)cM

:lxd((Sl’l’I71) 1fc 73CT)

d(3m—1—(3m+2)c+cM4+2cM+1 1o gl=c"
=K (1-¢)? 1

(28)
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form € N.

"m— 1 l m - m Al
a1 = Nvia Z IBZ{":() clzd):lzoc wC_’”+1
_ 1 m+1 1+l
:lxd):lmzol?a(mfl)clﬁ " Zg = wc_mz+1
1™ 1=mc" 1+ (m—1)c™ m+1 g1=cMtl
d( 1=c (1=0c) )l[-jl = Zg 1-c C:”H
3d(m—(m+1)c+cMt1) 1-cgmtl gl= cm+l
e A +1
—u (1—c? B iz, _'”2 , (29)
Case a = ¢ = 1. From (15)—(17), we obtain
m—1 (m—1-1) -1 aym 11
Way—1 = Ez 0 ):] -0 ﬁ): 1, Z: w_q
m—1
_Dcdz (3(m—1-1) +l),BmZO w_q
m(3m—1)
=% 2 ﬁngmw_1, (30)
1 -3(m—1)-2
Wy = szo ):] =0 ﬁZm 11 dzl 0 wO
:adz L(3(m—1)— ‘Bm dm., wo
dm(3m+1) d
=a" 7 Bz wy, (31)
m—1 (m—1)—
Wyl =0 dy,= Z, -0 ﬁerlZg(m"rl)w_
m— 1
— 3L, mfl)ﬁm+1zg(m+1)w_2
m(m+1) d(m+1
3 ﬁm+120("hL )wizr (32)

for m € N.

From (11), (12), (18)—(32) the theorem follows. [

The following corollary follows from Theorem 1.

Corollary 1. Assume thata,c,d € Z,b =0, a, B,zo, w_p, w_1,wy € C\ {0}. Then the following statements

are true.

(@) Ifa# 1+ c# a> then the general solution to system (2) is given by formulas (11), (18)—(20).
(b)  Ifa #1+# c=ad, then the general solution to system (2) is given by formulas (11), (21)—(23).
(c) Ifa # 1 =c, then the general solution to system (2) is given by formulas (11), (24)—(26).

(d) Ifa =1+ c, then the general solution to system (2) is given by formulas (12), (27)—(29).

(e) Ifa = c =1, then the general solution to system (2) is given by formulas (12), (30)—(32).

Theorem 2. Assume thata,b,c € Z,d =0, a, B,zg, w_p, w_1,wy € C\ {0}. Then system (2) is solvable in
closed form.

Proof. In this case we have

a,_.b c
Zptl = AZpW,, Wp1 = PWs,_,, 1 € Np. (33)
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Hence

— C
Wanti = PW5,_1y4ir

forn € Nand i = —2,0, and consequently

forn e Nandi = —2,0.

When ¢ # 1 relation (35) implies

forne Nandi = —2,0,and

forn e Nandi= —2,0, whenc = 1.
Further, we have

Zy =

for n > 3, which can be written as

Z3y — K
Z3p41 = &

Z3n42 = &

forn € N.

):77’:_ ol on
Wan4i = B0 wi,

1-c" o
W3y = PTcwy,

n
w3n+i = ﬁ wi,

b b
a(azy_ oty o) "Wy, 4

l+a a ba b
Zp2Wy oWy 1

1+a a b a2 ba b

a1 (azy Wy, _3)" Wy oWy,

14-a-+a? ha bu b a3

& Wy 3Wy oWy _1Zp 3,

1+a+a?_ ba? ba b
W3y 3W3p W3y 123(71 1)

14-a+a? ba ba b
3n—2W3n— lw3nz3(n 1)+1

14-a+a? ba ba b
W3y, lw3nw3n+123(n 1)+27

Employing the method of induction we get

N
@
=
I
N
o
§3

NI
w
B
+
—_

N
=S

W
=

231
Z3n+42 = Zp

for n € Ny.

—.

= w2 pe oy N

+11+ﬂ a
("‘ w3; w3;+1w3]+2)

j=0

n—1 . b . b 3(n—j-1)
“+a+a a a

I1 ("‘ w3]+1w3]+2w3]+3>

j=0

n—1 3(n—j-1)

14+a+a~_ ba ba b
("‘ w3]+2w3]+3w3]+4>

(e}
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(35)

(36)

(37)

(38)
(39)
(40)

(41)

(42)

(43)
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Using formula (35), along with the first equation in (33) with n = 0,1, into (41)—(43), we get

j= 1 c i1 j PN G )
Zan _ZO H ( 1+a+a? IBbu Y ba C]‘Bb“):l 0w bacl ’81;2 le )
j=0

ZSV! 1, ﬁb” Zn 1 3(n—j— 1)2} 1 l+bazn 1 3(n—j-1) Z] 0C+bzn 1 3(n—j— 1)2; 0CI

3n bucﬂ‘jl o g3(n—j-1) bcz(l:l ol g3(n—j-1) baZ):r‘l:l ol g3(n—j-1)
a =0 w =0 w j=0

Xzy W_, 1 0 , (44)

— . . . . . . 3(n—j—1)
Trata? gba? Y pa2ci 1 pbayd o pacitl pbyd ol peit1)?
Zany1 =(azbwg)” | | (oc BP0 € P gha ko€ gpbac gh i € g

o g 2?;& PO ]yl bba e @0 ]yl g a0 5

Bl bach]’.‘;Olc/‘f(”*f’l) bacZ]’.’:’O]cfﬁ("*j*l) bZ" cla3(n=j)
w

Zy  W_, 1 W, , (45)

2 3n
Zanta =(a! B0z w'uwg’)"

n_l 14+-a+a2 ob sz L pa2+1 Lp Z] I bacit1 b):]""l I peit2 a3n=j=1)
a-ra a _nC a“c a _nC ac: _nC C:
X | | (0( B =0 WX © BT E=0" Wy B =0 W’ )

:azjza'l ajIBbaZ Z]’.’:_Ol 23=j-1) Z{ZO ' +ba Z}.L_Ol a3n=j-1) 25:0 b ):]’.’=0 a3(=)) 25:0 c!

B2 hc):” cla3(n=i) buch’.’:’Olcff("*f*l) ahZ” dJad(n=))
Xz 0 -2 w_4q ! Wy ’ (46)

for n € Ny.

As in the proof of the previous theorem, there are five subcases, depending on the values of
parameters a and c, for which we get closed form formulas for solutions to system (2).

Casea # 1 # ¢ # a°. From (44)—(46) and by Lemma 2, we have

- i B o B o

23 ):]3”0 aJ‘Bba Z]’.’Zol a3n=j=1) Z{ZOCI—G-ba):]T’:O] a3(n=j-1) ZLO cl-&-bZ]’.’:O1 adn=j-1) Z{ZOCI
on bac Z}:ol dad=i-1)  pe ):;:01 dad3(n=i-1)  pg2 2}1:—01 o gd3n=j=1)

Xzy W_, w71 wy

—1)1=d*1 c]+1+b):n 1 43(n—j-1) 1=d 1 c/+1

1-a3"  pa? Z" 1 3(n—j— 1)

= T-a ‘B

3n_.n 3n_n 3n_.n

n bact c bcl c ba 2a c

a a3—c B—c a3—c

Xzy W_, w_, w,
B blatat1) 1203 ba®tacte) o bacg="  peii=c"  pa2a>i=c"
172 T—c 3 T—c 3 a’" a3—c a3—c B—c
= I-a ‘B 1-a ®c zg W_, w_, wy

n_ 1 3n_.n 3n_n

Lpn @t e=1)a¥ 2 (P tac+e) (a-1)c") 3n  bac &
—a T B A-0@—0)(-a) 2w, T w T w, U, (47)
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1 1 -1 —j— j
2ot 7IXZ oﬂlﬁb“ Zn g3(n—j-1) Zl 0C+b{l):n 3(n—j-1) Z Ocl+szr'l:0 23(n—j-1) Z;:OCI
Bt buch;’;[)l cg3n=j-1) bacz;’;ol dgdn=j-1) hZ” dadn=))
Xzy w_, w_y
1—g3n+1 n— 1 Bn—j=1) 1=t c]+1 n=1 3(n—j—1) 1=/ ** c]'H n=1  3(n—j-1)1 11
:D(fiﬂ ba? Z +ba2 +hZ -
3n_.n 3n_.n 3n+3_ n+1
Bl bazc“asii bac”a37§ b ”3;
X Z w w
0 -2 -1 0
_ Bl b(aP4a+1) 1-g30 _ be(a®+a+1) g3 _ch 2= pgeai=d Tt
L T—c 3 I 3 A%+l rz3—c a3—c B—c
= 1-a 'B 1-a @ z3 w_, w_, w,
1ot b(@—ct(c 1>a3"+3+3(1 D) r batesly= pcei=el et
=x 1= B (1=c)(1-a)(a®—c) zg w_, TTCw_ "Cwy, T, (48)
3n+1 n— 1 Sn 1) n— 1 3n 1) n (n—
Zinin = Z ‘Bbu ): i= Zl of +ba2 —i- ):l o€ +bZ 0” i) ):l o€
a3n+2 ch” cla3(n=J) haZC):]y-’:_O1 dgdn=j-1) abz” cla3(n=j)
20 W_q Wo
_al i13n+2 ba? Zn 1 ;3(n—j— 1)¢+bﬂzn 1,3(n—j-1)1=c ™% c]+1 +bzn 3(n— ])@
bcﬂ3n+3,cn+1 bazcaa _ch ba3"+37cﬂ+1
Z(ﬂ)3n+2w B—c B—c B—c
-2 -1 0
L2 ba?4a) 12031 | b(1=a®"3)  be(a?+a) g3t pe 313l
:“ﬁ‘g T=c 1243 ' (1-0)(1-aB) T-c - I-c a3—c
nin bcu3n+g,cn+1 bazcu&;’,cn aba3n+§,cn+l
a a°—c a’—c a’—c
Zy w_o w_q wy
1_g3n+2 b(n3—c+(c—l)a3”+4+(1—a)(a2+tz+c)c”+1) B2
= 1-a :B (1—=c)(1—-a)(a3—c) ZO
bca3n+333,cn+1 ba 2 a3’; o aba3n+§,cn+1
ad—c ad—c a3 —c
XW_, w_q wy , (49)
for n € Ny.

Casea # 1 # ¢ = a°. From (44)—(46) and by Lemma 2, we have

Zn 1, leu Zn 1 3(n—j— 1)ZJ 1 3l+bazn 1 3(n—j— 1)2 31+bzn 1,3(n—j— 1)25201131

Z3n
2 bﬂ4£7;01 231 g3(n—j-1) buSz;i;Ol 231 g3(n—j-1) buZz}i;Ol 231 g3(n—j-1)
Xzy W_, w_q w,
1-a3"  pa2yn—1 3(n7]>1)1 a] n-1 g3n—j=1) 17 12 a3!+3 n-1 3(n=j=1) 1=/ 12 3
—a — 'Bbu Z]:O a +ba2 - +b2 3

hna n+1 bna3” bna3n—1
><Zo wop Wy Wy

ba2 231 3n 3n
1 B ba (1 nu3n—3) (1—11 _na?m) b (17a _man)
= 1-a IB 1-a3 + 1- a3 3 + 1-a3 \ 1-43

B bna 3n+1 bnad" _ bngdn-1
><zO w3 w wy

3n+2_ 3n 3n—1
pra ™ —na”TT 4l 4 3n+1 3n 3n-1
—a 17 ,B (-a)(1=a®) 0% gpbna™ g bna™ g bna™ =" (50)
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Zanit 7“): Oajﬁbu an 3n1121 0a31+ba2n13n]1)2 ﬂ31+bznl 3njlz] el
n

Pl ba Z}Zol a%g3n=i=1)

ba4z;.1;(]1a3ja3("_j_l) bzn 431 g3(n—j)
X z{) w_, w_q
1_g3n+1 11 3(n—j-1) 1= a3/+3 n-1 3(n—j-1) 1=a¥ 13 a31+3 n=1 ;3(n—j-1) 1=a%+3
— La ﬁha E - +baZ +h): 3
3n+1 3n+2 3+l p(n+1)ad"
z{ W™ wli”f wo( +1)
1_g3n+1 ba? (1-a3" ba 1-a3" 3y b 1-a3" 3y
=u f a ‘Bl a3 (1—113 )+ 3(1 a3 na )+1—u3(1—u3 na )
3n+1 3n-+2 3n+1 b 1)a3"
a bna bna (n+1)
0 W w3 Wy
e b(na3" 13— (n+1)a3"+1) 3141 padn+2 ppadn+l b(n1)a
L 1—a)(1-a3 a na na n+l)a
= 1-a /3 (1=a)(1-a”) Z w2y w4 wy ’
3n+1 j n— 1 a3(n—j-1) el n— 1 23(n—j-1) J
. —OCZ]* a ‘Bba Z Z +bu£ Z
3n+2

31+h 2;1:0 a3(n—j) 2{=0 el
a3n+2 ba® Yo a¥a3(n=))

Zy -2

baSZ]V_I:Ol 231 g3(n—j-1) uhzn 237 g3(n—j)
w -

-1 Wy
1-a32  pa2 Zn 1,8(n—j-1)1= a3]+3 +ba En 1,3(n—j-1) 1=a”l 7% a31+3 +h2n 3(n—j) 1= g3 13
= 1-a ﬁ —a3 1-a3
3n+2 b(n+1)u3”+3 b 3n+2 b(n+1)a3”+1
a na
X 0 w_2 w1 wo

2 _g3n _3n _g3n+3
_0(1 f3n+2‘81bf,13(11,au3 7”‘13")4’13“3(1 @ 77’1!13”)4» b (1 a

3n+3
@ 1-a3 1-a3 1-a3 7(7l+1)11 ”*)
B2 b(n+1)a 3 g2 b(nd1)a3
zZ w_ w_ w,
0 2 1 0
3n+4_ 3n+3 3n+1
1_g3n+2 b((n+1)a —a —(n+1)a +1) 3040 3n+3 3142 3n+1
=o' B G-00-a) 28" 2t a2 B )

forn € Ny.
CaseIf a # 1 = c. From (44)—(46) and by Lemma 2, we have

3n 1, n—1 1) n—1 3(n—j—1) n—1,: 3(n—j—1
23 — B 'Bba Ty ja? T rba T (1)@ ) b Y (1) a3 )

3, ba Zn;gl a3("*]'*1) b 27’;01 as("*];l)
a w ) w 7

2vn—1 _3(n—j—1
ba Z]-:o 23(n—j=1)
XZyp wW_, -1 W
_3n 2 a3 —pa3+n—1 a3"+37(n+1)a3+11 a3"+37(n+1)a3+n
:“%’Bba @12 +ba @12 +b @72
1—g3n 1—g3n 2 1—g3n
[l3n ba 1—aa3 b 1 au3 ba 17”113
X Z) w_, w 1 ZUO

-3 b (u2+u+l )u3”+27nu57(n+1)u4 - (n+l)a3+(n—] )a?+na+n

= 1-a 'B (a3-1)2

1-a3" 1-d3 21—g3"
113n ba 1—a3 b 1- a3 ba 1—a3
Xzg w_, T w_ " w,

L n ﬂsn;rzf)n(uz a2 i ba 117,,3; 117a33n ba? 117a33n
Y a—1)(a3—-1 —a —a —a
x T B ) ozg w_, T w_ " W,

13 of 31
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Zansi _azfnou/ﬁba Ty (j+1)an= H)Hmz;?;(}(j+1)a3<"*f*1>+bz;;(}(jﬂ)a n=j=1)
u3n+1 baZz]fl;Ol a3(n7j71) bazjﬂ;()l u3(n7j—1) hzn (n—j)
0 -2 w_4
3n+3_ 3 1—ad3n 1,a3n 1—g3n+3
be (n+1)a’+n 3041 ba? 4 ba 5 b .
a 1-a w_ 1-a wo 1-a , (54)

1-a3"+1 —y
= 1-a ‘B (a=1)(a>—1) Z0 w_,

Zamta it ,Bba Ty (1)@= 1 ba S (4 1)aP T b T (1) a0 )
n
342 hz?=0a3(n7j) buz):;':()l 23(n—j-1) abZ" (n—
Zp W W_q Wo
3n+2 2u3"+3—(n+1)a3+n b u3"+3—(n+1)a3+n bu3"+67(n+2)u3+n+1
@172 GE W12

/)

3n+3 ba 21— u3" h17u3n+3

3n+2 bl 5 3 3 3
w_ 1-a 1-a w() 1-a

)n—(a3+a—1) pl= a3 t3 pa? 1= abl=a
3n+2 3 — 3 — 3
D@0 T S w T, T, (55)

for n € Ny.
Case Ifa = 1 # c. From (44)—(46) and by Lemma 2, we have
3Tlﬁbzn 12] ]Cl+b27 Olzl e +b2 Zl e ZO bCZn d bCZ" ]Z{)SZ;Z(} o

1-=c"
I—c

Z3y

j+1 1—c
+b):n 11 ]C]C be 1—c 1—5 b
Z0W_, w_l ZUO

1— c/+l

Zn 11— c]+bzn 1

b(2c" T4 —3(c—1)n—2c—1) 1—cl 1—ch 1l
be be b
T T (56)

3 —2 —
=a”"pB (=) 20W_p w_y fwy

nLei bc):” d b):" o
31+ gt o VIR N VAN D S W) bCE 0 ¢ 0
Z3ns1 = 1+ ﬁ 1=0 1=0 1=0°€ ZO w,

11-dt+? 1-c" bel=c blfc"*l
_ 3n+1 35):" T—¢c CI—¢ T T1—c
= B Z0W_p CW_y Wy

n+1_ (- 1)— +1
3p¢ (e=)n—c bclfc" bcl— " bl c”
L S &)

232 by, zf c+b): ):’ c+hz" v
Z3ni2 = n+ IB =0 =0 0 24=0
bcz Oc] bCZ” J bZ]’-’:ch
X ZQW_, 1 wy

J+l 1— E]+l

1- /+1+bzn 111 2 +b2n

by 1
:“371—{-2’8 ):

be 1-c" n+1 bCl*C bl*L‘rH’l
1—c 1—c —
X ZW_, w_,"¢ w,
b(c" T2 12cM 1 _3(c—1)n+1—4c) 1_cn+l 1ot 1
be-=E¢ bcl—_ccwb — (58)
— 0

:Déanrzﬁ 102 Zow T—c o

for n € Ny.
Case If a = ¢ = 1. From (44)—(46), we have

n- 1 1
BnﬁbZ J+b o G+ )+ o G+ )Z w 2wb 1w8n

(3n+1)
3n5b Zowbnzwb 1w8n, (59)
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DYy () +b T (1) +b Xy (+1
Z3ni1 :a3n+1‘B Z]:[) (G+1)+ Z]:o (+1)+ Z]:o (j+ )Zowllnzwlinlwg(n‘*‘l)
n(n+1) b 1
—a PR 7 b g b () (60)

n—1¢ n—1¢; n :
Zani2 :Dé3n+2ﬁb ):]':0 (j+1)+b Z]‘:() (j+1)+b Z]‘:(] (]+1)Z0wli(£l+l)wlinlwg(n+l)

(n+1)(3n+2)
=312 zowli(gﬂ)wb_”l wg(nﬂ), (61)
for n € Np.

From all above presented formulas we see that system of difference equations (2) is solvable in
this case, as claimed. O

The statements in the following corollary are direct consequences of the formulas presented in the
proof of Theorem 2.

Corollary 2. Assume that a,b,c € Z,d =0, a, B, zg, w—_p, w_1,wy € C\ {0}. Then the following statements
are true.

(a) Ifa # 1 # c # a3, then the general solution to system (2) is given by (36), (47)—(49).
b)) Ifa#1#c= a3, then the general solution to system (2) is given by (36), (50)—(52).
(c) Ifa # 1 = c, then the general solution to system (2) is given by (37), (53)—(55).
(d) Ifa =1 # c, then the general solution to system (2) is given by (36), (56)—(58).
(e) If a = c =1, then the general solution to system (2) is given by (37), (59)—(61).

The following result concerns the case ¢ = 0. Note that under the condition system (2) of difference
equations is

b d
Zp4+1 = D‘Zzwnr Wyp4+1 = ;Ban n € Ny, (62)

which is system (3.15) in [33].
From (62) it follows that
Zui1 = aplzizily,
forn € N.

How this product-type difference equation can be solved was explained in the proof of
Theorem 3.3 in [33]. From the closed-form formulas obtained in the proof of Theorem 3.3 therein it
follows directly that the following result holds. Hence, to avoid repeating, the proof of the theorem is
omitted here.

Theorem 3. Assume that a,b,d € Z,c =0, a, B, zo, wy € C\ {0}. Then the following statements are true.
(@) Ifbd #0,a° +4bd # 0and a + bd # 1, then the general solution to system (2) is given by

n+1_ n+1 n_\n
(A~ DAL (A )AL ay Ay p A2 DA = (A1 -DAE+A1 -y M A AT-AS

A —A A —A
Pa—— =22~ (Ap—1) B MOl g MR gy M
-1 -1
(=DM (A1 —DAF+A1 Ay 1+bd(/\2—1)){’—1,()\1—1))\'21—1+/\1—/\2 dﬁ:ﬁg bd)‘;l,\ :23
wy =a" O B TR0 g1 g gyt R
forn € N, where

A a++a%+4bd
12=——%

2
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(b) Ifbd #0,a> +4bd = 0and a + bd # 1, then the general solution to system (2) is given by

1= (DA AL 1A (1) ) .
Zp =& (1-Ap)? B (1-21)? Z(()”'H)/\l wg”Al

-1 1
1= L (n=DA] 1-22 +(n=1)A] —(n—2)A]F

W, =& (1-71)? ‘B (1-71)2

Zgn)\¥’1w((]l—n)/\¥
forn € N, where

A= 5
(c) Ifbd #0,a®+4bd # 0and a + bd = 1, then the general solution to system (2) is given by

(=bd)" L4 (n41)bd+n p (Zbd)" nbdn—1 1—(=bd)"*t1 1 (—bd)"
Zy =« (1+bd)? ﬁ (1+bd)2 ZO 1+bd w(] 1+bd

7

(=bd)" +-nbd+n—1 (=" L4 (n=1)bd+n—2  ;1—(—bd)" 1—(—bd)"—1
w, =« (1+bd)2 ‘Bl+bd (1+bd)2 Zg 1+bd wgd 1+bd

7

forn € N.
(d) Ifbd #0,a® + 4bd = 0 and a + bd = 1, then the general solution to system (2) is given by

n(n+1) h(nfl)n 1.
zn=a 2 B2 zgtlwy"
d(n—l)n (3—n)n d 1—
wy, =at 2 7 zp"wy, "

forn € N.
(e) Ifbd =0anda # 1, then the general solution to system (2) is given by

1—a" blfar“l n n—1
b =—— _a"_ ba
zZy = T-¢ BP0z wy

1-g"~1 n—1
w, =a® T BT,

forn € N,
(f)  Ifbd = 0and a =1, then the general solution to system (2) is given by

Zn :a”ﬁh(”*l)zowg

wy, :ad("*l)ﬁzg,
forn € N

Theorem 4. Assume that a,b,c,d € Z,ac # 0, w, B,zo, w_p, w_1,wy € C\ {0}. Then system (2) is solvable
in closed form.

Proof. To deal with the case we use and modify our method previously used, for example, in [40,43].
Since &, B, zg, w—_p, w_1,wy € C\ {0}, we have z,w, # 0 for n € Ny. Hence,

b _ Zn+l
w, = , n €Ny, 63
n lXZ‘fl 0 ( )
b b,.b bd
Wy = wnC—ZZn , nE NO/ (64:)

from which we get

_ Jd—cpb_a bd ¢ —ac
Znt2 = & B Zy 120 Zn1Z, 0 (65)
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forn > 2.
Let 6 = al=pb,

ap=a, bp=bd, cg=c, dy=—-a, y; =1,
then
Zpyo = dylziilzzlzzlflzilz, n>2.
From (67) is obtained

d

_ syi(s01 a 1 \m b1 01 41
Znyo = 01 (02 2, 12, 52t 5) Mz 2 (2

n—2/
_ sy1+ay ma1+by biai+ey cray+dy diay
=0 Zn Zp-1 Zn—2 -3
d

_ s @2 by o 2
=62z0z,% 12,7 52,2 5,

n—1

for n > 3, where

ay :=may + by, by :=bray +c¢q1, ¢ :=cra1 +dq, dp := dqaq, Yo :=Yy1 +aj.

Suppose

_ sUkok by ek
Zni2 = 02,0 2y (k1

forak>2andn >k-+1,and

ax = a1ax—1 + b1, bx = brag_1 +cx_1,

Cx = C1ak—1 +dx—1, dp = drax_q,

Yk = Yk—1 + ak-1-
Using (67) in (70), we get

Sk (50 by o dy ar i o Ak
znto = 0% (02,} 1 42 4z 1% k)™ T k1

_ yk+uk alak+bk blak+ck clak+dk dlak
=0 Zn+1fk Zyk Zn—k-1%n—k-2
— SUka1oM1 Jberr Gk ki

=0 Zn+17kzn7kzn7kflzn7k72’

for n > k + 2, where
Agy1 i= Ak + by, brgpq = biag +cx,

c1ax +dyg,  diyq = dia,

Ck+1*

Yk+1 = Yk T g

Hence, by the induction we get that (70)—(72) hold.

17 of 31
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(70)

(71)

(72)
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(74)

(75)
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From (70) with k = n — 1 and (8), it follows that

101 bn-1 en—1 du—1
Zpyp =071z Tz, T T
(o 1—cab\yn_1 (1+at+a?+bd gb+aba®+2abd., abc. be . b(a?+bd)\a,
=(a" 7)1 (a Bz W W W, )it
14a gb_a%+bd. bc . ab\b,_ a,.b\cy_19n-1
x (a1 Bz M wwy )t (azgwg) Tz
:a(kc)yn,l+(1+u+a2+hd)an,1+(1+u)bn,1+cn,1 ﬁbyn,1+b(1+a)an,1+hbn,1

Z(”3+2”bd)anfl +(“2+bd)bn71 +acy—1+dy—1 ,wafzmn—] +beby wbcun—l

0 -1
b(a®+bd)a, 1 +abb, 1+bc,
X W,
—pYn+2—CYn-1 ‘Bbyn+1 Zgn+2_c’1n—1 wb_an wafn—l wgan+l , (76)
for n € Ny.
From (71) we have
A = mag_1 + a2 + 103 +diag_4, k=5, (77)

and that by, ¢, and dj also satisfy the equation, and using (74) and (75) for k = 0, —1, —2, —3 is obtained

a_3 = 0, a_p = 0, a_1 = 0, ap = 1, (78)
Yy3=y2=y1=Yy=0, y1=1, (79)
and
k—1
j=0

(see, for example, [33] for more details).

The solvability of (77) is a classical thing. Hence, by finding closed form formula for a,
employing it in (80), then using Lemma 2, is calculated y;. These two formulas and (76) give a
closed-form formula for solution to (65).

Now note that

2=l e N,, (81)
Wy_2

ziﬂ = a2, n e Ny, (82)

from which we get
W2 = a?B 0w wh Wl _qw ", n e N. (83)

As above is get
Wyt = Uykwleimfszlikl—kw;k—kwfzk—k—l' (84)

for every k,n € N, such that n > k — 1, where 7 = a?B', (a)ren, (x)ken, (ck)ken and (di)en are
defined by (66) and (71), while (yk)ken is defined by (72) and (79).
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From (84) with k = n + 1 and (8), we have

bn+1

An+1
w,
0

wn+2 — Uyn+l w]
— (wdﬁl_a)yn+l (,Bwizzg)“"“ wgnﬂwﬁlqu wtin?jrl

— adyn+1 ‘B(lfﬂ)yn-ﬂ +a,41 Zg”nJrl wC{ZHl +dyt1 wcnirl w(b)n+1

w

Cnt1,, Anil
-1 W)

_dyna 2= aYps1 3011, C(any1—aan)  clan—aa,_1) apio—aa, i1
= qHYn+ ﬁyn+ Yn+ zy w_, w_, wy , (85)

for n € Ny.

Recall that closed form formulas for a; and yj can be found. Applying them into (85) we show the
solvability of equation (83). It can be checked that (76) and (85) present a solution to (2), from which
the theorem follows. [

Corollary 3. Consider system (2) with a,b,c,d € Z, ac # 0, a, B, zo, w_p, w_1,wy € C\ {0}. Then the
general solution to (2) is given by (76) and (85), where (ay) e is defined by (77) and (78), while (yy)ken IS
defined by (79) and (80).

Detailed Form of Solutions Given in (76) and (85)

Equation (77) is not only theoretically but also practically solvable. The reason for this is that its
characteristic polynomial

ps(A) = A% —aA3 — bdA? — cA +ac, (86)

for the case ac # 0, is of the forth degree, thus, solvable by radicals.
Note that the equation p4(A) = 0 can be written as follows [44].

2 2 2
(Az—;)t—i—;) —(<{1+s+bd))\2—<azs—c))\+s4—aC>—0, (87)

Now, choose s so that the expression in the second bracket in (87) is a perfect square. Thus, it must be
(as — 2¢)? = (a* 4 4s + 4bd) (s* — 4ac),
that is,
3 + bds® — 3acs — a’c — ¢ — 4abed = 0. (88)

Hence, (87) can be written as

2 VaZ T 4s 1 4bd B 2

<A2_a)\+s) _( a +4s+4bd/\_ as —2c ) _o, (89)

2 2 2 2va? + 4s + 4bd

which is equivalent to
Va? +4s + 4bd s as — 2c

/\2—<a+>)\++=0, 90
2 2 2 2\a? 4 4s +4bd *0)
/\2_<a_\/a2+4s+4bd>)\+s_ as — 2c . 1)

2 2 2 2v/a? +4s+4bd

Using the change of variables s = f — b3—d in (88), it follows that

27 3.3
B <b3d + 3ac)t—|— 2b27d —a3c — ® —3abed = 0. (92)
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Let

210 3 2  n13.43
__(bd +3ac) and q__27ac+27c J;;Slabcd Zbd.

As usual, a solution to (92) is found in the form t = u + v. Putting it into (92) and requesting
uv = —p/3,is get u® + v> = —g and u®v® = —p3/27. Hence, u® and v° are solutions to the equation
22 +qz — p®/27 = 0, so, they must be (—q + /q% + 4p3/27) /2.

Hence
O U A B B 1 i
t\/ > 4+27+\/ 2+ 4—1—27, (93)

where any of the three possible values of the right-hand side can be chosen. If p = —A(/3 and
q = —A1/27, then it can be written as

1 3 3
t:m(w\lmem). (94)

For such chosen s, that is, t, (90) and (91) can be solved and by some calculation it is obtained that
the zeros of py are

1 2 2bd 1 2 4bd
Mgy g T e 5)
4% + 20 4t
2 2
n=f+3\% %? -3 2'*%?‘t“‘7£;“*' (9)
4% + 20 4t
1 2 2bd 1 2 4bd
=g\ T TSt 2*?‘”‘i£L4ﬂ 97)
4/% + 24 1y
2 2
N=t-3V% %? -3 2*%?‘”“‘7J;“ﬂ (98)
4% + 20 4t
where
Q :=—a® — 8c — 4abd. (99)

Recall, that the nature of these A;’s depends on the sign of the discriminant

1
A= ﬁ@mg —A?), (100)
where
Ao :=b*d? + 9ac, (101)

A = —203d3 + 8lachd + 27a%c 4 27¢2, (102)
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and the signs of
P := —8bd — 3a? (103)
and

D := 48ac — 16b*d> — 16a%bd — 3a®. (104)

Zeros of py are different and none of them is 1. If a, b, c and d are chosen such that
Ao = b?d* +9ac < 0,

then it will be A < 0, from which by Lemma 3 we have in this case that p4 has four different zeros.
Moreover, since A < 0 two zeros are real and two are complex-conjugate.

Zeros of py are different and one of them is 1. Polynomial ps has a zero equal to 1 if py(1) =
1—a—bd—c+ ac =0, thatis, if

(a—1)(c—1) =104, (105)
so that
pa(A) = At —aAd — (a—1)(c — 1)A% — cA +ac. (106)
Thus, if we choose a and ¢ such that
ph(1)=4-3a—-2(a—1)(c—1)—c #0,

thatis, (2a —1)(2c + 1) # 3, then p4 will be such a polynomial if A # 0. For example, if 4 = 3 and
¢ =2,thenbd =2 # 0, A # 0, which means that polynomial p4 has all zeros mutually different and
exactly one of them is equal to 1

pa(A) = AT =313 242 20 + 6= (A —1)(A% —2A% — 41 —6). (107)

Since in these two cases A; # A;, i # j, then the general solution to (77) is
ap = A} + 72AS + y3A5 +vaA), neN, (108)

where 7;, i = 1,4, are arbitrary constants.
Lemma 1 implies

4 )\é. 4 /\]3
=0 for 1=0,2, and =1. (109)
L oo Lo
From initial conditions (78) and (109), it is obtained
4 Ant3 Ant3 Ant3
=Y = 1 n 2
= pa(A;) (A= A2) (A —A3) (A —Ag) (Ao — A1) (A2 — A3) (A2 — Ay)
/\n+3 /\n+3
+ 3 + 4 , (110)
(A = A1) (A3 = A2) (A3 = Ag)  (Ag = A1) (Ag — A2)(Ag — A3)
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for n > —3 ([40]).

Combining (80) and (110), we get

n

e R VA N E IO V.Y
ZZ Z I , neN,
j=0 :1 i=1 P4</\i)()\i_1)
when A; #1,i = 1,4, and
B n
yn_z

4 A3 —1)

+ ;’ n e N’
—a+c—2ac 1; pi(Ai) (A —1)
when one of the zeros is 1, say Ay, is equal to 1

Note that if one of the zeros is equal to 1, then we have
ps(A) =A* —aA® — (a—1)(c —1)A® —cA +ac
=(A-1)(A3+

(1—a)A? +

(1 —a)cA —ac).
By using the change of variables A = ¢ + £

A+ (

in (113) we get that the equation
is transformed to the following one

1—a)A2+(1—a)cA—ac=0

+pt+4=0,
with

. (a=-1)(a+3c—-1)
P=- 3

whose solutions are given by

and 7= _(2(01—1)3 c(a—1)?

o7 + 3 —l—ac),
‘L j—1 ‘L £
\/ V3 +£ \/ TV 27

where 3 = 1and e # 1
Hence,

Aj=

j—27 ‘L j—2 ‘Li
‘C’\/ Vst 8\/ Vg T

for j = 2,4, are the other three zeros of the equation p4(A) = 0, in this case
A simple calculation along with (109) shows that (111) holds also forn = —j,j =

=-j,j=0,3.
The previous analysis along with Corollary 3 implies the following corollary.

following statements are true

Corollary 4. Assume that a,b,c,d € Z, ac # 0, «,B,zo,w—_p,w_1,wy € C\ {0} and A # 0. Then the

(a) If (a —1)(c — 1) # bd, then the general solution to (2) is given by (76) and (85), where (ay)y>_3 is

given by (110), (Yn)n>—3 is given by (111), while Aj’s, j = 1,4, are given by (95)—(98)

(b) If(a—1)(c—1) = bdand (2a — 1)(2c + 1) # 3, then the general solution to (2) is given by (76) and
(85), where (an)y>—3 is given by (110) with Ay = 1, (Yn)n>—_3 is given by (112), Ay = 1, while A;’s
j = 2,4, are given by (116) and (115)

22 of 31

(111)

(112)

(113)

(114)

(115)
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pa has only one double zero which is equal to 1. Polynomial (86) has a double zero equal to 1 if (105)
holds and

(20 —1)(2c+1) = 3. (117)
From (117) we have that it mustbea =2andc=0,ora =1landc=1,ora =0and c = -2,
ora=—landc = —1.Ifa = 0orc =0, then ac = 0, which contradicts to the assumption ac # 0.

If a = ¢ = 1, then bd = 0, from which it follows that
paA) =A = A3 A+ 1=(A-1)2(A2+A+1),

and consequently

Agg= —2 (118)

are the non-unit zeros of polynomial py in the case.
If a = ¢ = —1, then bd = 4, from which it follows that

pa(A) = AT+ A3 AN P A+ 1= (A —1)2(A2+3A +1),

and consequently

(119)

are the non-unit zeros of polynomial p4 in the case.

From this, we have proved in passing, that there are no a,c € Z \ {0}, such that 1 is a triple zero
of p4 or that it has two pairs of double zeros one of which is 1.

In these two cases we have (see, for example, [38])

_ _ _ _ An+3 )\n+3
a, :n(l A3)(1— Ay) +23}\3}\4 22)L3 204 +1 n g n g (120)
(1—23)(1 = A4) (A3 —=1)2(Az = Ag) (A —1)*(Ag — A3)
and
_ "i (j(l —A)(1— M) 43050 — 20— 20 +1 AL . AP )
= (=221~ Aa)? (o=TP0s—A) " (=P =23)) 1),
_ (n-1)n n(3A3Ag — 243 — 244+ 1) AS(AZ—1) AS(AF—1)
2(1=23)(1— Ay) (T—=23)2(1—Ay)? (A3 =13 (A3 —Ag) (A —1)3(As— Ag)’

pa has a double zero different from 1. Let bd = 0, then
pa(A) = A* —aAd —cA +ac = (A —a)(A° — o).
If we take ¢ = 43, then it is obtained
pa(A) = (A —a)2(A% +ar +a?),

which for a € Z\ {0,1} is a polynomial with a double zero different from 1 and two non-real
complex-conjugate zeros.
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Since, in the case A1 = Ay, A; # /\j, 2 <1i,j <4,wehave
an = (711 +72n)A; + 7345 + 14y, n €N, (122)
where v;, i = 1,4, are arbitrary constants, and the solution satisfying (78) can be obtained, for example,

by letting A1 — Aj in (110) [38]

p _ATA((n 4 3) (A2 — A3) (A2 — Ag) — A2 (242 — A3 — Ay))
! (A2 = A3)2 (A2 — Ag)?
)\731+3 )\Z+3

+ + . 123
(A3 = A2)2(A3 = Ag)  (Ag = A2)%(Ag — A3) (123)
From (80), (123) and by Lemma 2, we get
y :E (A];rz((]' +3) (A2 — A3) (A2 — Ag) — A2(2A2 — Az — Ag))
" =0 (A2 = A3)2(A2 — Ay)?
i+3 i3
N R LR
(A3 =A2)2(A3 = Ag) (Mg — A2)%(Ag — A3)
_ A -nART (- 1AFT (A 20345 — 24344 £ 3A3A3 ) (M) — 1)
(A2 = A3) (A2 — Ag)(1— A2)? (A2 —A3)2(A2 — Ag)? (A2 — 1)
AS(A—1 AS(A" —1

+ .
(A3 =22)*(As = A)(As = 1)~ (M= 22)2(Aa = A3) (A — 1)
From the previous analysis and Corollary 3 we obtain the following result.

Corollary 5. Assume that a,b,c,d € Z, ac # 0 and «, B,zo,w_p, w_1,wy € C\ {0}. Then the following
statements are true.

(a) If only one of the zeros of p4 is double and different from 1, then the general solution to (2) is given by (76)
and (85), where (a,)n>_3 is given by (123), while (Y )n>—_3 is given by (124).
(b) If 1 is a unique double zero of polynomial py, say Ay = Ay = 1, then the general solution to (2) is given

by (76) and (85), where (ay)y>—3 is given by (120), (Yn)n>—3 is given by (121), while A3 4 are given by
(118)ifa=c=1orby (119) ifa =c = —1.

Two pairs of different double zeros. In this case it must be D = 0 which implies that
16t% + 16a”t + 3a* — 48ac = 0, (125)
where t = bd. On the other hand, it must be A = 0, which is equivalent to 4A8 = A%, that is,
(—2b3d® + 81lacbd + 27a3¢ 4 27¢*)* = 4(b*d* + 9ac)®,
from which it follows that
c(16at* +4(a® + ¢)t> — 207a%ct* — 162ac(a + c)t — 27¢(a® — ¢)?)) = 0. (126)

The problem of the existence of a joint zero of the polynomials in (125) and (126) for some integers
a, b, c and d, such that ac # 0, seems quite technical, so we leave it to the reader.
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Solutions to (77) in this case are
ap = (71 + 12m)A] + (v3 +1an)As, neN, (127)
where 7;, i = 1,4 are constants. The solution to (127) such that (78) holds is [38]

M = A4 A~ 4oda +30]) | AT (n(As = Aa)® + A — AA0s o+ 303)

= (Ag — Ag)t (Ag — Ag)* (128)

From (80), (128) and Lemma 2, we get

. (A];“(juz ~ M)+ A3~ 4AaAs+30) | AT — A0)? + 4] — 4o 3A%))
-

=0 (Ag — Ag)? (Ag — Ap)*
A3 —nALTE 4 (n—1)A5T N (A5 —4A3A4 +3A2A3) (A — 1)
(A2 —Ag)2(1 = A2)? (A2 = Ag)* (A2 — 1)

A=A 4 (n = 1A (A — 43 +3A3A0) (A — 1)

()\4 — )\2)2(1 — )L4)2 + (A4 - )\2)4(/\4 - 1) (129)

Corollary 6. Assume that a,b,c,d € Z, ac # 0and «, B,zo, w_p, w_1,wy € C\ {0}. Then the following
statements are true.

(a)  If polynomial py has two pairs of double zeros both different from 1, then the general solution to (2) is
given by (76) and (85), where (ay)n>_3 is given by (128), while (y,)y>—3 is given by (129).
(b)  The polynomial in (86) cannot have two pairs of double zeros such that one of them is equal to 1.

Triple zero case. In this case it must be A = Ay = 0, or equivalently, Ag = A; = 0. Hence,
ac = —b*d*/9 and 2b%d® — 8lacbd — 27a%c — 27¢* =0,

from which it follows that

4
11(bd)® 4 34 (bd)? — (g’g =0. (130)

Since bd = 0 implies ac = 0, which contradicts to the assumption ac # 0, from (130) it follows that

s2—335—9=0, (131)
where s = bd/a?. Hence, it must be
bd ) a? — 33+ 2\/1125 bd/a? — 33 — 2\/1125,

which is not possible since bd/ a2 is a rational number, whereas (33 + 4/1125) /2 are both irrational
numbers. Hence, p4 cannot have a triple, and consequently cannot have a quadruple zero.

Corollary 7. Assume that a,b,c,d € Z, ac # 0and w, B, zg, w_p, w_1,wo € C\ {0}. Then polynomial (86)
cannot have a triple zero.

Theorem 5. Assume that b,c,d € Z,a = 0,bcd # 0, a, B, 20, w_p, w_1,wy € C\ {0}. Then system (2) is
solvable in closed form.
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Proof. In this case (2) is
Zps1 = awh,  Wyiq = pwh ozl n €Ny
Using the first equation in (132) into the second one it follows that
Wpi1 = a®pwld jws_,, neN,
Let = a%p,
Pr=bd, m=¢ 6=0 x=1
then, we have
W1 = qwgl Jw Zwi 5 neN.

Hence

o1
n—3

X 1 1
Wy1 =1 (ﬂwn Sw 4)'Blwn—2w

o
:Ux1+/31w71 wﬁ1ﬁ1+ 1wZ1_/541

— 2 /32 w”? ™
=1 w2 5w, 4,

for n > 3, where

xi=x1+p1, Pai=71, 12 =P1frto, &2 i=mpar

Suppose that
B

w n*kw w? w’*
n+l = nknklnkZ’

forak € N\ {1} and every n > k+1, and

Bk = k-1, Yk = B1Br—1 +%-1, Ok = 11Pk-1,

Xk = Xg—1 + Pr-1-
Using (135) in (136), we have

ﬁl ﬁk ()
Wyt =1" (ankzw Yie3) w W ko

X Bros Tk ﬁlﬁk+5k 71Bk
=1 Wy k- 1Wy k2 Wy k3

TpprgpPkrl Vel o0k

=1 n—k-1Yn—k—2Wy_k—3

forak > 2and n > k + 2, and where
Br+1 =Y Vi1 :=B1Pr + 3k k1= 1P

Xpy1 i= Xk + P

From this we see that hypotheses (136)—(138) are true.

26 of 31
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(136)

(137)
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Let k = n — 1, then from (136)—(138), it follows that
Xy Bu-1. Yn-1. 0n-1
Wy =11y wy" w ™"

=(a By (Bt 2P ]

:adxn,l ’an,lJrﬁnflzg/gn—lwiﬁzn—l w‘s_nl—l wgn—l

:lxdxn,l ‘an Zgﬁn—lwc_ﬁ;—l wi/gln—zwgnl (139)
forn > 3.

From (137) it follows that

Br = B1Br—2+MPrs k=4, (140)

and that 7y, and & also satisfy (140).
From (140) and since 1 = ¢ # 0, we have that

By = Pr=PrPia (141)
T

From (138) and (141) with k = 3,2,1 and some calculation is obtained

B_3=0, B2=0, p_1=1 PBp=0, (142)
X_3=X_32=X_1= 0, Xp = X1 = 1, (143)
and
k=1
xe=1+) Bj (144)
j=1

Since equation (140) is solvable, we can calculate By, from which along with (144) and Lemma 2,
Y is calculated. These facts along with (139) gives a closed form formula for (133).
Using (139) in the first equation in (132) we get

bdB,_o>_ bcBu_n_ beBy_3_ b,
Zn+1 = a1+hdxn72ﬁbxn—lzo ﬁn 2wf§n Zw_cfn 3w0ﬁn 1, ne NO- (145)

It is not difficult to see that (139) and (145) are solutions to (2) in the case. [

Theorem 5 solves theoretically system (2) when a = 0 and bcd # 0. Now we will practically solve
it in terms of the parameters and initial values. The following polynomial

pa(A) = A% —bdA —c, (146)

is the characteristic one associated to Equation (140), and its solutions are

1 i3/~ -~ -~ _i 3]~ -~ ~ .
Aj= m(e]\/Al— \/A%—4A8+8]\/A1+\/A%—4A8>,]_0,2, (147)

where

-~

Ag=3bd=:—-3p and A, =27c=:-27g, (148)

ande® =1,¢ # 1.
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Zeros of p3 are different and none of them is 1. In this case it must be Z% # 4A3, which can written as
27¢* # 4(bd)3.

Hence, in the case all the zeros of pj3 are different. If additionally p3(1) # 1, thatis, c+bd # 1,
then none of the zeros is 1. For example, if ¢ = bd = k € N, then we have such a situation.

Zeros of p3 are different and one of them is 1. Polynomial p3 has a zero equal to 1if c + bd = 1. Then
A=A+ (c-DA—c=A-1)(A2+A+c).

Hence

+ —
M=1 Ay = 2T (149)

are the zeros of the equation p3(A) = 0, in this case. Since pj(1) = 2 + ¢, it follows that p3 can have 1
as a double zero only if c = —2.

The general solution to (140) in these two cases is
Bn = A} +apAs +azAs, neN, (150)

for some constants «;, i = 1,3, which due to ; = ¢ # 0 can be prolonged for every non-positive index.
From Lemma 1 with Q(¢) = ps(t) = H?Zl(t —Aj), we have

5. A 3. A2
=0, forl=0,1, and = (151)
L) Lo
From (142), (150) and (151), we get
/\n+3 An+3 /\n+3
Bn = L + Z + 2 , (152)
(M =A2)(A1=23)  (A—A1)(A2a—A3) (A3 —A1)(A3—A2)
forn > —2.
From (144) and (152), it follows that
n—1 3 )\;‘*3
Xp =1+ , (153)
! k=1 j; Pé (/\j)
forn € N.
IfA #1,j= 1,3, then from formula (153), it follows that
/\4 /\n 1_ /\4 An—l -1
Xn =1+ l( ) 4 2( 2 )
(M =A2)(A1 = A3) (A = 1) (A2 = A1) (A2 —A3) (A2 — 1)
M1
fut - ) s
(/\3 —M)(A3 = A2) (A3 = 1)
for n € N, moreover, (154) holds for every n > —2.
If one of the zeros is 1, say A3, then 1 # A1 # Ay # 1, and we have
AdArt At -1 -
X, =1+ 1(A] ) 2(A3 ) n—1 (155)

(A1 = A2) (A —1)2 * (A2 = A1) (A2 —1)2 - (M =1)(A2—1)

for n € N. Moreover, due to (151), (155) holds for every n > —2.



Symmetry 2017, 9, 200 29 of 31

Corollary 8. Assume that a,b,c,d € Z,a = 0, bed # 0, a, B, zo, w—p, w_1,wy € C\ {0} and Z% + 43(3).
Then the following statements are true.

(a) Ifc+bd # 1, then the general solution to (2) is given by (139) and (145), where (By)n>—_2 is given by
(152), (x4 )n>—2 is given by (154), while Aj’s, j = 1,3 are given by (147) and (148).

(b)  Ifc+bd =1, then ps has a unique zero equal to 1, say A3, and the general solution to (2) is given by
formulas (139) and (145), where (Bn)n>—2 is given by (152) with A3 = 1, (xy)y>_2 is given by (155),
while A's, j = 1,3 are given by (149).

One of the zeros is double. In this case it must be A3 = 4A3, that is, (bd)® = 27¢? /4. Assume that m
is a double zero of p3, then it must be

m? —bdm —c=0 and 3m2—bd:0,
from which it follows that
p3(A) = A3 = 3m2A +2m® = (A — m)*(A +2m). (156)

Since bd # 0, we have m # 0. From this and since ¢ # 0, from (156) we see that p3 cannot have
a triple zero. It also cannot have a unique zero equal to 1, since otherwise we would have 2m = —1,
from which it would be bd = 3/4 ¢ Z, which would be a contradiction. Note also that the polynomial
can have 1 as a double zero when bd = 3 and ¢ = —2.

If A1 # Ay = As, then the general solution to (140) has the following form

Bn = &1A} + (Ra + &3n)A}, neN, (157)

where &;, i = 1,3 are constants. Since, in our case condition (142) must be satisfied, the solution
(Bn)n>—2 to (140) can be found by letting A3 — A in (152), so that

AT 4 (242 =3y + (A — Ag))AG T

Bn =12 , (158)
forn > —2.
From (144) and (158), we have
= n=L AP (205 — BA1 4 (A — A1) AL
xp =1+ =1+ L 2, 159
n ]; Bj ]; o 1) (159)
forevery n € N.
From (159) and Lemma 2, we get
oy MY @0 ) By -y
" (A2 = A1)2 (M —1) (A2 = A1)2 (A2 = 1) (A2 —=M)(A—=1)2 7
for n € N (in fact, (160) hold also for every n > —2).
If we assume that Ay # 1 and Ap = A3 = 1, then from (159) it follows that
/\4 )\Tlfl _ 1 _ _ _
xp =1+ 1( 1 ) (2 3A1)(7’l 1) (1’1 1)” (161)

(A —1)3 (A —1)2 2(1—-Aq)

A direct calculation shows that (161) holds also for every n > —2.
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Corollary 9. Assume that b,c,d € Z, a = 0, bed # 0, a, B,z0, w_p,w_1,wy € C\ {0} and A2 = 43(3).
Then the following statements are true.

(a)

(b)

(c)

If c 4 bd # 1, then the general solution to (2) is given by (139) and (145), where (Bn)n>—2 is given by
(158), while (xp)n>—_2 is given by (160).

Ifbd = 3 and ¢ = —2, then 1 is a double zero of p3, say, Ay = A3 = 1, then the general solution to
system (2) is given by (139) and (145), where (By)y>—2 is given by (158) with Ay = 1, (xp)p>—2 is
given by (161), while A3 = —2.

It is not possible that 1 is a simple zero of ps.

Triple zero case. Since in this case p3 must have the form in (156), we see that the only possibility

that this polynomial has a triple zero is if m = 0, which is impossible due to the condition ¢ # 0.
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