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Abstract: A simplified Keller–Segel model is studied by means of Lie symmetry based approaches.
It is shown that a (1 + 2)-dimensional Keller–Segel type system, together with the correctly-specified
boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras.
A Lie symmetry classification of the Cauchy problem depending on the initial profile form is
presented. The Lie symmetries obtained are used for reduction of the Cauchy problem to that
of (1 + 1)-dimensional. Exact solutions of some (1 + 1)-dimensional problems are constructed.
In particular, we have proved that the Cauchy problem for the (1 + 1)-dimensional simplified
Keller–Segel system can be linearized and solved in an explicit form. Moreover, additional biologically
motivated restrictions were established in order to obtain a unique solution. The Lie symmetry
classification of the (1 + 2)-dimensional Neumann problem for the simplified Keller–Segel system is
derived. Because Lie symmetry of boundary-value problems depends essentially on geometry of the
domain, which the problem is formulated for, all realistic (from applicability point of view) domains
were examined. Reduction of the the Neumann problem on a strip is derived using the symmetries
obtained. As a result, an exact solution of a nonlinear two-dimensional Neumann problem on a finite
interval was found.

Keywords: Lie symmetry; algebra of invariance; nonlinear boundary-value problem; Keller–Segel
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1. Introduction

Nonlinear partial differential equations describe various processes in society and nature.
The well-known principle of linear superposition cannot be applied to generate new exact solutions to
nonlinear partial differential equations (PDEs). Therefore, the classical methods for solving linear PDEs
are not applicable for solving nonlinear PDEs. It means that finding exact solutions of most nonlinear
PDEs generally requires new methods. Finding exact solutions that have a physical, chemical or
biological interpretation is of fundamental importance. The most popular method for construction of
exact solutions to nonlinear PDEs is the Lie method, which was created by Sophus Lie, the famous
Norwegian mathematician, in 1880s–1890s and published in his papers and books. His most important
work in this direction is [1] (see also [2]). Nowadays, the Lie symmetry method is widely applied to
study partial differential equations (including multi-component systems of PDEs), notably for their
reductions to ordinary differential equations (ODEs) and for constructing exact solutions. There are
a huge number of papers and many excellent books [3–7] devoted to such applications.

In real world applications, mathematical models are typically based on PDEs with the relevant
boundary and/or initial conditions. As a result, one needs to investigate boundary value problems
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(BVPs) and initial problems (Cauchy problems). In the case of nonlinear BVPs and initial problems,
a fundamental difficulty arises in solving such problems using analytical methods. One may note
that the Lie method has not been widely used for solving BVPs and initial problems. A natural
reason follows from the following observation: the relevant boundary and initial conditions are
usually not invariant under transformations, which are generated by Lie symmetry of the governing
PDE. Nevertheless, there are some classes of BVPs that can be solved by means of the Lie symmetry
algorithm. A brief history concerning first attempts to apply Lie symmetries for solving BVPs are
discussed in the recent papers [8–11] and the relevant papers cited therein.

In this work, we continue study of a simplified (1+2)-dimensional Keller–Segel model, initiated in
the first part of this work [12]. This model is a particular case of the classical Keller–Segel model [13,14]
used for modeling a wide range of processes in biology, ecology, medicine, etc. The basic equations of
the simplified Keller–Segel model that we are interested in have the form (see more details about these
equations in [15–18]):

Nt(t, x, y) = d14N(t, x, y)− χ0∇.(N(t, x, y)∇P(t, x, y)),

0 = 4P(t, x, y) + αN(t, x, y)− βP(t, x, y),
(1)

where unknown functions N(t, x) and P(t, x) describe the densities of cells (species) and chemicals,
respectively; t and x denote the time and space variables; the parameters d1, χ0, α and β are
non-negative constants, χ0α 6= 0 (otherwise, the model loses its biological meaning) and the operators
4 = ∂2

x + ∂2
y, ∇ = (∂x, ∂y). We start from the nonlinear System (1) supplied by initial profiles

for unknown functions, i.e. the Cauchy problem, and continue by examination of System (1) with
Neumann boundary conditions (including zero flux conditions as an important particular case).

The paper is organized as follows. In Section 2, the Lie symmetry classification of the Cauchy
problem for a simplified Keller–Segel (SKS) system is derived. In Section 3, the exact solutions of the
(1 + 1) and (1 + 2)-dimensional Cauchy problems were constructed including a nontrivial example of
the exact solution for the correctly-specified initial profiles. In Section 4, Lie symmetry of BVPs with
the Neumann boundary conditions is studied. Because Lie symmetry of BVPs essentially depends
on geometry of the domain, which the problem is formulated on, all realistic (from applicability
point of view) domains were examined. In Section 5, a Lie symmetry operator was used in order to
reduce the (1 + 2)-dimensional Neumann problem for SKS and to construct the exact solution of the
corresponding (1 + 1)-dimensional Neumann problem. The results obtained are summarized in the
Conclusions section.

2. Lie Symmetry of the Cauchy Problem

It was shown in [12] that the SKS System (1) can be further simplified provided βd1/α = ε� 1.
In this case, one may reduce SKS System (1) to the form:

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),

0 = 4S(t, x, y) + ρ(t, x, y).
(2)

Of course, the system derived is still nonlinear; however, one admits infinite-dimensional Lie
algebra of invariance generated by the operators [12]:

G∞
1 = f1(t) ∂

∂x + x f ′1(t)
∂

∂S , G∞
2 = f2(t) ∂

∂y + y f ′2(t)
∂

∂S ,

X∞
S = g(t) ∂

∂S , Pt =
∂
∂t , J12 = −x ∂

∂y + y ∂
∂x ,

D = 2t ∂
∂t + x ∂

∂x + y ∂
∂y − 2ρ ∂

∂ρ ,

(3)

where f1(t), f2(t) and g(t) are arbitrary smooth functions.
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Now, we consider the Cauchy problem for the nonlinear System (2), which can be formulated
as follows:

ρt = 4ρ−∇(ρ∇S),
0 = 4S + ρ,
t = 0 : S = φ(x), ρ = −φxx(x),

(4)

where φ(x) is an arbitrary smooth function. In the most general case, this function may depend also
on the variable y; however, here we restricted ourselves in this case, in order to avoid cumbersome
calculations. To guarantee existence of a classical solution of the Cauchy Problem (4), the initial profile
for the component ρ should be specified as above.

Obviously, the Lie algebra (3) cannot be maximal algebra of invariance (MAI) of the Cauchy
Problem (4) for the arbitrary given Function φ(x). To determine which of the operators listed in (3)
are Lie symmetry operators of the Cauchy problem in question, we use the well-known criteria [4].
According to the criteria, one should examine whether initial conditions from Equation (4) are invariant
under the operator in question. In order to check this for all the operators listed in Equation (3), we
take their linear combination (hereafter, ai, i = 1, 2, 3... are arbitrary parameters):

X = a1G∞
1 + a2G∞

2 + a3X∞
S + a4Pt + a5 J12 + a6D =

(a4 + 2ta6)
∂

∂t
+ (a1 f1(t) + a5y + a6x)

∂

∂x
+

(a2 f2(t)− a5x + a6y)
∂

∂y
+

(a3g(t) + a1 f ′1(t)x + a2 f ′2(t)y)
∂

∂S
− 2a6ρ

∂

∂ρ
.

(5)

Applying operator X to the manifold M = {t = 0, S = φ(x), ρ = −φxx(x)} generated by the
initial conditions, one arrives at the restriction and two equations:

a4 = 0, (6)

(a1 f1(0) + a5y + a6x)φx(x) = a3g(0) + a1 f ′1(0)x + a2 f ′2(0)y, (7)

2a6φxx(x) + (a1 f1(0) + a5y + a6x)φxxx(x) = 0. (8)

Because Equation (8) is a differential consequence of (7), we need to analyze (7) only. Obviously,
the restriction means (6) that the Cauchy problem is not invariant w.r.t. time translation.

Equation (7) implies certain limitations on the function φ(x). This function can only be arbitrary
when both sides of equation vanish. When the multiplier on the left-hand-side is non-zero, then
one obtains a linear ordinary differential equation (ODE) to find φ(x). This ODE has been solved
depending on the values of the parameters ai, i = 1, 2, 3.... As a result, four different profiles for the
function φ(x) were derived. One of them, namely, φ(x) = γ ln |x|+ λ1 x + λ0 (this function springs up
if a6 6= 0), was exempted from the further examination because the function ln |x| possesses singularity.
The other three cases are presented in Table 1 together with the relevant MAIs.

Theorem 1. All possible MAIs of the (1+2)-dimensional Cauchy Problem (4), depending on the form of initial
profiles (up to translations w.r.t. the space variable x), are presented in Table 1.

Remark 1. Because G∞
1 , G∞

2 and X∞
S contain arbitrary functions on time (see Formulae (3)), one notes

corresponding restrictions on these functions in Table 1, which reduce their arbitrariness. For instance, MAI in
case 4 differs from that in case 1 because there is only a single restriction on the function f1, while there are
two restrictions on f1 in case 1.
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Table 1. maximal algebra of invariances (MAIs) of the Cauchy Problem (4).

φ(x) MAI

1 ∀
G∞

1 with f1(0) = f ′1(0) = 0,
G∞

2 with f ′2(0) = 0,
X∞

S with g(0) = 0

2 0

G∞
1 with f ′1(0) = 0,

G∞
2 with f ′2(0) = 0,

X∞
S with g(0) = 0,

J12, D

3 λ1x, λ1 6= 0

G∞
1 + b6D with f1(0) = 0, f ′1(0) = b6λ1,

G∞
2 + b5 J12 with f ′2(0) = b5λ1,

b1G∞
1 + X∞

S + b1a6D with g(0) = b1λ1 f1(0),
f1(0) 6= 0, f ′1(0) = a6λ1

4 λ2x2 + λ0, λ2 6= 0
G∞

1 with f ′1(0) = 2λ2 f1(0),
G∞

2 with f ′2(0) = 0,
X∞

S with g(0) = 0

3. Application of Lie Symmetry for Constructing Exact Solutions of Cauchy Problems

The Cauchy Problem (4) can be reduced to a set of (1 + 1)-dimensional ones by using the Lie
symmetry operators. Nowadays, it is a standard routine in the case of application of symmetry
operators to PDEs in the case of Lie algebras of low dimensionality. In the case of BVPs with a wide
Lie symmetry, classification of inequivalent subalgebras of MAI and its application for reducing can be
highly nontrivial (see examples in [8]). One notes that all MAIs listed in Table 1 are infinite-dimensional,
hence here we restrict ourselves on the operator G∞

2 from case 1 of Table 1.
Because the operator G∞

2 contains an arbitrary function f2(t) with the property f ′2(0) = 0,
we consider two cases, namely: (i) f2(t) = conts 6= 0, i.e., G∞

2 = ∂y, and (ii) f2(t) is an arbitrary
non-constant function.

3.1. Exact Solutions of the (1 + 1)-Dimensional Cauchy Problem

In case (i), one easily construct the ansatz:

S(t, x, y) = S(t, x), ρ(t, x, y) = ρ(t, x). (9)

Substituting ansatz (9) into Equation (4), the (1 + 1)-dimensional Cauchy problem,

ρt = ρxx − (ρSx)x,
0 = Sxx + ρ,
t = 0 : ρ = −φxx(x), S = φ(x),

(10)

is obtained. Thus, the same problem is derived, however, in the case of a single spacial variable. Let us
reduce the governing system to a single equation, extracting ρ = −Sxx from the second equation of
Equation (10) and substituting it into the first. Hence, the 4th order differential equation:

Stxx = Sxxxx − (SxxSx)x

is obtained, which is equivalent to the 3rd order equation:

Stx = Sxxx − SxxSx + θ(t),

where θ(t) is an arbitrary function. The obvious substitution:

W(t, x) = Sx(t, x)
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transforms the last equation to the nonlinear 2nd order equation:

Wt = Wxx −WxW + θ(t). (11)

It can be noted that the substitution:

W(t, x) = U(t, y) +
∫ t

0 θ(τ)dτ,
x = z + j(t),

where j(t) =
∫ t

0 (
∫ τ

0 θ(τ1)dτ1)dτ, reduces Equation (11) to the Burgers equation:

Ut = Uzz −UUz.

The Burgers equation is linearizable via the famous Cole–Hopf substitution [19,20]:

U(t, z) = −2
Vz(t, z)
V(t, z)

to the linear heat equation:
Vt = Vzz. (12)

All the substitutions mentioned above could be combined as follows:

Sx(t, x) = −2 Vz(t,z)
V(t,z) +

∫ t
0 θ(τ)dτ,

x = z + j(t).
(13)

It should be stressed that the Substitution (13) reduces the nonlinear Cauchy Problem (10) to the
linear problem for the heat Equation (12), which can be exactly solved. In fact, having the specified
initial profiles in (10), we find the initial condition for Equation (12) as follows:

−2
Vz(0, z)
V(0, z)

= (φ(z))z,

i.e.,

V(0, z) = a e−
1
2 φ(z) ≡ a p(z), a > 0. (14)

Obviously, the exact solution of Cauchy Problems (12) and (14) is the Poisson integral:

V(t, z) =
a√
4πt

∫ +∞

−∞
p(ξ) e−

(z−ξ)2
4t dξ. (15)

Thus, calculating the derivatives Vz(t, z) and Vzz(t, z), and using Substitution (13), one can
construct the solution of the Cauchy Problem (10):

S(t, x) =
∫

W(t, x)dx =
∫ (

U(t, z) +
∫ t

0
θ(τ)dτ

)
dx =

− 2 ln(V(t, z)) + x ·
∫ t

0
θ(τ)dτ + A(t) =

− 2 ln
(

1√
4πt

∫ +∞

−∞
p(ξ) e−

(x−j(t)−ξ)2
4t dξ

)
+ x ·

∫ t

0
θ(τ)dτ + A(t),
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ρ(t, x) =−Uz(t, z) = 2

(
Vzz(t, z)
V(t, z)

−
(

Vz(t, z)
V(t, z)

)2
)

=

− 1
t
·
∫ +∞
−∞ p′(ξ) (x− j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ
−

− 1
2t2 ·

∫ +∞
−∞ p(ξ) (x− j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ

2

.

Because the Cole–Hopf substitution in non-local transform (i.e., involves derivatives), we need to
examine the behavior of the solution as t→ 0:

lim
t→0

S(t, x) = −2 ln
(

lim
t→0

(V(t, x))
)
+ A(0) = −2 ln(e−

1
2 φ(x)) + A(0) = φ(x) + A(0).

Hence, having chosen the function A(t) with the property A(0) = 0, we obtain
limt→0 S(t, x) = S(0, x), i.e., the function S(t, x) is continuous at t = 0.

In order to prove that limt→0 ρ(t, x) = ρ(0, x), one needs to show that limt→0 Vz(t, z) = Vz(0, z)
and limt→0 Vzz(t, z) = Vzz(0, z). The proof of the first equality can be found in [19]. We have proved that
limt→0 Vzz(t, z) = Vzz(0, z) under the restriction φ(x) = o(x2), x → ∞ (here, the relevant calculations
are omitted). Thus, the following statement can be formulated.

Theorem 2. The classical solution of the Cauchy Problem (10), in the case when φ(x) is differentiable twice
and φ(x) = o(x2), x → ∞ can be presented as:

S(t, x) =− 2 ln
(

1√
4πt

∫ +∞

−∞
p(ξ) e−

(x−j(t)−ξ)2
4t dξ

)
+

+ x ·
∫ t

0
θ(τ)dτ + A(t),

ρ(t, x) =− 1
t
·
∫ +∞
−∞ p′(ξ) (x− j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ
−

− 1
2t2 ·

∫ +∞
−∞ p(ξ) (x− j(t)− ξ) e−

(x−j(t)−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−j(t)−ξ)2

4t dξ

2

,

(16)

where p(ξ) = e−
1
2 φ(ξ), A(0) = 0.

Obviously, the exact Solution (16) is not unique because one contains two arbitrary functions
θ(t) and A(t). To specify these functions, one needs additional biologically motivated restrictions.
We remind the reader that function S(t, x) describing the density of chemicals should be bounded in
space. Therefore, functions θ(t) must vanish (in this case, function j(t), which depends on θ(t), also
vanishes). In order to specify both functions θ(t) and A(t) one needs, for example, to assume that the
quantity of the chemical S(t, x) is finite in space and time, i.e.,

∫ +∞
−∞ |S(t, x)|dx < 0 for ∀t > 0. This

assumption immediately leads to the unique solution of Cauchy Problem (10) in the form:
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S(t, x) = −2 ln
(

1√
4πt

∫ +∞
−∞ p(ξ) e−

(x−ξ)2
4t dξ

)
,

ρ(t, x) =− 1
t
·
∫ +∞
−∞ p′(ξ) (x− ξ) e−

(x−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−ξ)2

4t dξ
−

1
2t2 ·

∫ +∞
−∞ p(ξ) (x− ξ) e−

(x−ξ)2
4t dξ∫ +∞

−∞ p(ξ) e−
(x−ξ)2

4t dξ

2

.

(17)

In order to present a non-trivial exact Solution of (10) in terms of elementary functions, we
consider the initial profiles:

S(0, x) = φ(x) = −2 ln(sin(γx) + 2) + 2 ln(3),

ρ(0, x) = −2γ2 1+2 sin(γx)
(sin(γx)+2)2 ,

(18)

where γ is an arbitrary constant.
Using Formula (17), one obtains:

S(t, x) = −2 ln
(

1
2
√

πt

∫ +∞

−∞
e−

1
2 φ(ξ) e−

(ξ−x)2
4t dξ

)
=

− 2 ln
(

2
3
+

1
6
√

πt
e−

x2
4t

∫ +∞

−∞
sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ

)
.

To calculate the integral I(t, x) =
∫ +∞
−∞ sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ, the Mellin transformation
(see, e.g., [21]) has been used:

I(t, x) =
∫ +∞

0
sin(γξ) e−

1
4t ξ2+ x

2t ξ dξ −
∫ +∞

0
sin(γξ) e−

1
4t ξ2− x

2t ξ dξ =

i
2

√
2t e

x2
8t −

t
2 γ2

(e−
ixγ
2 (D−1(

x√
2t
− iγ
√

2t) + D−1(−
x√
2t

+ iγ
√

2t))−

e
ixγ
2 (D−1(

x√
2t

+ iγ
√

2t) + D−1(−
x√
2t
− iγ
√

2t))).

Here, D−1(·) is a parabolic cylinder function. Using the known properties of such functions, the
integral in question can be explicitly calculated:

I(t, x) = 2
√

πt sin(γx)e
x2
4t −γ2t.

Now, we find the function:

S(t, x) =− 2 ln
(

2
3
+

1
6
√

πt
e−

x2
4t 2
√

πt sin(γx)e
x2
4t −γ2t

)
=

− 2 ln
(

sin(γx) e−γ2t + 2
)
+ 2 ln(3).

Because ρ(t, x) = −Sxx(t, x), one also finds the function ρ(t, x). Thus, the exact solution of the
Cauchy Problems (10) and (18) has the form:

S(t, x) = −2 ln
(

sin(γx) e−γ2t + 2
)
+ 2 ln(3),

ρ(t, x) = −2γ2e−γ2t e−γ2t+2 sin(γx)
(sin(γx) e−γ2t+2)2

.
(19)
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Plots of this solution with γ = 1 are presented in Figures 1 and 2. Both functions, ρ(t, x) and
S(t, x), have attractive properties. For example, they are periodic, bounded and tend to some constants
if t → +∞. However, one notes that the function ρ(t, x), which usually describes the densities of
cells or species (see Introduction), are not non-negative for ∀x ∈ R. It turns out that this unrealistic
behavior (for real world applications) is a natural property of each non-constant solution of the
(1 + 1)-dimensional Cauchy Problem (10) with an arbitrary non-negative function φ(x) 6= const.

Figure 1. Plots of the functions S(0, x) and S(t, x) using Formulae (19) with γ = 1.

Figure 2. Plots of the functions ρ(0, x) and ρ(t, x) using Formulae (19) with γ = 1.

Let us show this assuming that there is a Solution of (10) with a non-negative function
φ(x) 6= const, such that the functions ρ(t, x) and S(t, x) are non-negative for ∀(t, x) ∈ R+ ×R. Let
us fix an arbitrary t = t0 > 0. Because 0 ≤ ρ(t0, x) = −Sxx(t0, x), the second derivative Sxx(t0, x) is
non-positive for all x. It means the continues function S(t0, x) is convex upwards for all x (otherwise,
one is a constant). Now, one realizes that any function with such property (like−x2 + c(t),−e−x + c(t),
etc.) cannot be non-negative for all x.

3.2. Reduction and Exact Solutions of (1 + 2)-Dimensional Cauchy Problem

Now, we apply the operator G∞
2 with an arbitrary non-constant function f2(t). In order to reduce

System (4), we need to construct an ansatz by solving the corresponding system of characteristic
equations for this operator. After rather standard calculations, the ansatz:

S(t, x, y) = f ′2(t)
f2(t)
· y2

2 + ψ(t, x), ρ(t, x, y) = Ψ(t, x) (20)

is obtained. Ansatz (20) reduces Cauchy Problem (4) to the (1 + 1)-dimensional Cauchy problem:
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Ψt(t, x) =Ψxx(t, x)−Ψ(t, x)ψxx(t, x)−

Ψx(t, x)ψx(t, x)− f ′2(t)
f2(t)

Ψ(t, x),

0 = ψ(t, x) + f ′2(t)
f2(t)

+ Ψ(t, x),

t = 0 : ψ = φ(x), Ψ = −φxx(x).

(21)

The function Ψ(t, x) can be easily found by using the second equation:

Ψ(t, x) = − f ′2(t)
f2(t)

− ψxx(t, x).

Substituting this expression into the first Equation of (21), one arrives at the fourth order partial
differential equation:

ψtxx =ψxxxx − (ψxxψx)x −
2 f ′2(t)
f2(t)

ψxx −
f ′′2 (t)
f2(t)

,

which can be integrated twice w.r.t. the variable x. Thus, the second order nonlinear equation:

ψt = ψxx −
1
2
(ψx)

2 − 2 f ′2(t)
f2(t)

ψ− f ′′2 (t)
2 f2(t)

x2 + c1(t)x + c0(t), (22)

is obtained (c1(t) and c0(t) are arbitrary smooth functions).
In contrast to the nonlinear Equation (11), we were unable to linearize Equation (22) (we remind

the reader that f ′2(t) 6= 0). To find particular solutions, we used a non-Lie ansatz (see [22] for
an example):

ψ(t, x) = ψ2(t)x2 + ψ1(t)x + ψ0(t). (23)

in order to reduce the partial differential Equation (22) to a system of ODEs. In fact, Substituting (23)
into Equation (22), the system of three ODEs:

ψ′2 + 2ψ2
2 +

2 f ′2
f2

ψ2 +
f ′′2

2 f2
= 0,

ψ′1 + 2ψ1ψ2 +
2 f ′2
f2

ψ1 = c1(t),

ψ′0 − 2ψ2 +
1
2 ψ2

1 +
2 f ′2
f2

ψ0 = c0(t),

(24)

is obtained to find unknown functions ψ0(t), ψ1(t) and ψ2(t). Because System (24) has the same
structure as (38) [22], one is integrable. In fact, the first equation can be solved for arbitrary function
f2(t). By substituting the known function ψ2(t) into the second equation, one obtains the first
order linear ODE to find the function ψ1(t). Finally, having the known functions ψ1(t) and ψ2(t),
the third equation of System (24) can be easily solved. As a result, the general Solution of (24) has
the form:

ψ2(t) = 1
2(t−t0)

− f ′2
2 f2

, t0 ∈ R,

ψ1(t) = 1
(t−t0) f2(t)

(
∫
(t− t0) f2(t)c1(t)dt + k1) , k1 ∈ R,

ψ0(t) =
k0

f 2
2 (t)
− 1

2
+

1
f 2
2 (t)

∫ (
c0(t) f 2

2 (t) +
f 2
2 (t)

t− t0

)
dt−

1
f 2
2 (t)

∫ (
(
∫
(t− t0) f2(t)c1(t)dt + k1)

2

2(t− t0)2

)
dt, k0 ∈ R.

(25)

Taking into account that c1(t) and c0(t) are arbitrary smooth functions, we may simplify the
general Solution (25) to the form:
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ψ2(t) = 1
2(t−t0)

− f ′2(t)
2 f2(t)

, t0 ∈ R,

ψ1(t) = c∗1(t),
ψ0(t) = c∗0(t),

(26)

by introducing new notations c∗1(t) and c∗0(t), which are arbitrary smooth functions, while t0 is
an arbitrary parameter.

Thus, using Equations (20), (23) and (26), we construct the exact solution:

S(t, x, y) =
f ′2(t)

2 f2(t)
y2 − f ′2(t)

2 f2(t)
x2 +

1
2(t− t0)

x2+

c∗1(t)x + c∗0(t),

ρ(t, x, y) = 1
t0−t

(27)

of Cauchy Problem (4) with the correctly-specified initial profile φ(x) = − 1
2t0

x2 + c1x + c0.
Obviously, this solution blows up for the finite time t0 > 0, which makes its immediate biological

interpretation unlikely. On the other hand, it is in agreement with [18] (see also the references cited
therein) because the global solution of this problem requires the constraint

∫
R2 ρ(0, x, y)dxdy < 8π,

which does not take place for ρ(0, x, y) = 1
t0

. Notably, blow-up solutions occur in some physical models,
and they have been intensively studied since the 1980s (see, e.g., [23] and references therein).

4. Lie Symmetry of the Neumann Problems

In this section, we study Lie symmetry of BVPs with the Neumann boundary conditions.
Because the result depends essentially on geometry of the domain Ω, where BVP in question is
defined, one needs to examine different cases. In [12], the simplest case, when Ω is a half-plane,
was under study. In principle, Ω can be an arbitrary (bounded or unbounded) domain with smooth
boundaries. However, it was established in [10] that geometry of Ω is predicted by the Lie symmetry
of the governing equations of BVP in question. In particular, all possible domains were established if
the projection of MAI of the governing equations on the (x, y) space gives the Lie algebra with the
basic operators:

X = ∂x, Y = ∂y, J12 = −x∂y + y∂x, D12 = x∂x + y∂y. (28)

Now, one notes that such projection of MAI (3) is exactly the Lie algebra (28) (the projections of
G∞

1 and G∞
2 are the operators f1(t) ∂

∂x and f2(t) ∂
∂x , which are equivalent to X and Y because the time

variable is now a parameter). It means that all generic domains leading to non-trivial Lie symmetry of
any Neumann problem for the SKS System (2) are already known [10]. Here, we consider the most
important (from an applicability point of view) of them, and the first one is a strip.

4.1. Neumann Problem on the Strip

The Neumann problem on the strip Ω = {(x, y) : −∞ < x < +∞, 0 < y < π} can be formulated
as follows:

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 = 4S(t, x, y) + ρ(t, x, y),
t = 0 : S = ϕ(x, y), ρ = −4ϕ(x, y),
y = 0 : ρy = q1(t), Sy = q2(t),
y = π : ρy = 0, Sy = 0,

(29)

where ϕ(x, y), q1(t) and q2(t) are arbitrary smooth functions. We note that BVP on an arbitrary strip
Ω1 = {(x, y) : −∞ < x < +∞, C1 < y < C2} can be reduced to BVP (29) by the translation and
scaling transformation w.r.t. the variable y.
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In contrast to the previous problem, BVP (29) does not involve boundary conditions at infinity;
hence, the standard definition of invariance can be applied in order to find Lie symmetry of
Problem (29). Let us apply the operator X (5) to the manifolds {y = 0}, {y = π}, {t = 0}:

X(y− 0)|y=0 = a2 f2(t)− a5x + a6y = a2 f2(t)− a5x = 0,
X(y− π)|y=π = a2 f2(t)− a5x + a6y = a2 f2(t)− a5x + a6π = 0,
X(t− 0)|t=0 = a4 = 0.

A simple analysis of the conditions obtained above immediately leads to a2 = a4 = a5 = a6 = 0.
Now, one needs to apply the first prolongation X

1
to the manifolds {y = 0, ρy = q1(t)}, {y = 0, Sy = q2(t)},

{y = π, ρy = 0} and {y = π, Sy = 0}. Taking into account the restrictions a2 = a4 = a5 = a6 = 0,
one may easily check that the expressions:

X
1

(
ρy − q1(t)

) ∣∣∣y=0, ρy=q1(t) = −a4 q′1(t) = 0,

X
1

(
Sy − q2(t)

) ∣∣∣y=0, Sy=q2(t) = −a4 q′2(t) = 0,

X
1

(
ρy − 0

) ∣∣∣y=π, ρy=0 = 0,

X
1

(
Sy − 0

) ∣∣∣y=π, Sy=0 = 0,

are fulfilled automatically. Thus, there are no any restrictions on the functions q1(t) and q2(t). Finally,
we apply operator X with a2 = a4 = a5 = a6 = 0 to the initial profiles:

X (S− ϕ(x, y))
∣∣∣t=0, S=ϕ(x,y) = a1 f ′1(0)x− a1 f1(0)ϕx(x, y) + a3g(0) = 0,

X (ρ +4ϕ(x, y))
∣∣∣t=0, ρ=−4ϕ(x,y) = a1 f1(0)(ϕxxx(x, y) + ϕyyx(x, y)) = 0.

One notes that the second equation in these formulae is a differential consequence of the first.
Thus, we need solve only the equation:

a1 f ′1(0)x− a1 f1(0)ϕx(x, y) + a3g(0) = 0. (30)

Obviously, it is the linear ODE for the function ϕ(x, y) (variable y should be treated as a parameter).
A simple analysis of Equation (30) leads two different cases, f1(0) = 0 and f1(0) 6= 0. As a result, the
following statement can be formulated.

Theorem 3. MAI of the Neumann Problem (29) does not depend on the form of the functions q1(t) and q2(t).
If the initial profile ϕ(x, y) is an arbitrary smooth function, then MAI is the infinite-dimensional Lie algebra
generated by the operators:

G∞
1 = f1(t)

∂

∂x
+ x f ′1(t)

∂

∂S
, X∞

S = g(t)
∂

∂S
, (31)

with f1(0) = f ′1(0) = 0 and g(0) = 0. In the case,

ϕ(x, y) = λ2 x2 + λ1x + µ(y),

where µ(y) is an arbitrary smooth function, this algebra is extended by operators of the form:

G∞
1 + bX∞

S , (32)

with f ′1(0)
2 f1(0)

= λ2, b g(0)
f1(0)

= λ1, f1(0) 6= 0.
There are no other initial profiles ϕ(x, y), leading to extensions of the Lie algebra (31).
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It is worth noting that Lie symmetry of the Neumann problem on the strip (29) is essentially
different than one for the same problem on the half-plane. In particular, there is no any dependence on
the form of flux (i.e., the functions q1(t) and q2(t)) in contrast to case of the half-plane (see Theorem 2
in [12]).

4.2. Neumann Problem on Interior/Exterior of a Circle

Now, we turn to the case of a bounded domain. As it was pointed out in [10], the interior of the
circle Ω = {(x, y) : x2 + y2 < R2} is the simplest case of such domain, which may occur for the system
in question. It should be noted that the circle interior is a two-dimensional analog of the ball in the
3D space. On the other hand, the ball is a typical approximation of the domains arising in biomedical
applications (for instance, when the Keller–Segel model is applied for tumour growth).

The Neumann problem in Ω can be formulated as follows:

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),

0 = 4S(t, x, y) + ρ(t, x, y),

t = 0 : S = ϕ(x, y), ρ = −4ϕ(x, y),

x2 + y2 = R2 : ∂ρ
∂n = q1(t), ∂S

∂n = q2(t),

(33)

where ϕ(x, y), q1(t) and q2(t) are again arbitrary smooth functions, while n is the outer normal to the
boundary (the circus of the radius R) of the domain. Now, we formulate the theorem presenting the
Lie symmetry classification of this BVP.

Theorem 4. MAI of the Neumann Problem (33) does not depend on the form of the functions q1(t) and q2(t).
If the initial profile ϕ(x, y) is an arbitrary smooth function, then MAI is the infinite-dimensional Lie algebra
generated by the operator X∞

S with g(0) = 0.
In the case:

ϕ(x, y) = ψ(x2 + y2) + h0 arctan
y
x

, (34)

this algebra is extended by operator of the form:

J12 − h(t)
∂

∂S
, (35)

where ψ and h are arbitrary smooth functions of their arguments, the function h additionally satisfies the
condition h(0) = h0 with a fixed constant h0.

There are no other initial profiles ϕ(x, y) leading to extensions of the above Lie algebras.

The proof of the theorem is similar to that of Theorem 3 and is based on applying the invariance
criteria to the operator X (5). It is worth noting that the relevant calculations can be essentially simplified
if one applies the polar coordinates (r, θ) instead of the Cartesian of those (x, y). In particular, one
may see that Formula (34) is much simpler in the polar coordinates, and the operator J12 takes the
form J12 = − ∂

∂θ .
Another possible bounded domain is the annulus Ω = {(x, y) : R2

1 < x2 + y2 < R2
2} only [10].

In the case of the annulus, the corresponding Neumann problem has the form (33) with the additional
boundary conditions:

x2 + y2 = R2
2 :

∂ρ

∂n
= q3(t),

∂S
∂n

= q4(t), (36)

q3(t) and q4(t) being arbitrary smooth functions. It turns out that the result of the Lie symmetry
classification for such BVP will be the same as presented in Theorem 4.
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Finally, the case of the domain, which is the interior of the circle Ω = {(x, y) : x2 + y2 > R2},
is also interesting. The Neumann Problem (33) in such domain should be supplied by the boundary
conditions at infinity. Typically, they have the form:

x2 + y2 → ∞ :
∂ρ

∂n
= 0,

∂S
∂n

= 0, (37)

i.e., zero-flux at infinity. In order to establish Lie symmetry of the nonlinear BVPs (33) and (37),
one needs to examine separately the boundary Conditions (37). Because Formula (37) presents
conditions at infinity, we cannot apply the standard invariance criteria [3]; however, we may use
Definition 2 [10]. In fact, applying the transformation:

r∗ =
1
r

, U =
ρ

r
, V =

S
r

, (38)

to Equation (37) in the polar coordinates, one may easily calculate that the manifold M = {r =

+∞, ∂ρ
∂r = 0, ∂S

∂r = 0} corresponding to Equation (37) is mapped into M∗ = {r∗ = 0, U = 0, V = 0}. At
the final step, one checks invariance of the manifold M∗ w.r.t. the operators X∞

S and Equation (35),
taking into account transformation (38).

Thus, we have shown that Theorem 4 is also valid for the Neumann problems on Ω, which is
the annulus or the interior of the circle, and the additional boundary Conditions (36) or (37) take
place, respectively.

5. Exact Solutions of the Neumann Problem

This section is devoted to the application of the Lie symmetry operators obtained in the previous
section in order to reduce BVP (29) to BVPs of lower dimensionality and to find exact solutions.

Let us consider the case of the specified initial profile from Theorem 3:

ϕ(x, y) = λ2 x2 + λ1x + µ(y),

and apply operator (32). This operator generates ansatz:

ρ(t, x, y) = $(t, y),

S(t, x, y) = s(t, y) + f ′1(t)
2 f1(t)

x2 + b g(t)
f1(t)

x,
(39)

which reduces BVP (29) to the (1 + 1)-dimensional BVP:

$t(t, y) = $yy(t, y)− ($(t, y)sy(t, y))y −
f ′1(t)
f1(t)

$(t, y),

0 = syy(t, y) + $(t, y) + f ′1(t)
f1(t)

,

t = 0 : s = µ(y), $ = −µyy(y),
y = 0 : $y = q1(t), sy = q2(t),
y = π : $y = 0, sy = 0.

(40)

This (1 + 1)-dimensional BVP is still nonlinear, and it is a difficult task to construct its exact solution
in an explicit form. We are interested in the special case when f1(t) = 1 (then, automatically, λ2 = 0),
when Problem (40) is nothing else but the (1 + 1)-dimensional case of BVP (29), i.e., the Neumann
problem on the interval [0; π] for the simplified Keller–Segel system.

Nevertheless, the corresponding BVP can be solved for arbitrary smooth functions q1(t), q2(t),
and we take q1(t) = q1 = const, q2(t) = q2 = const in order to avoid cumbersome formulae. In this
case, the nonlinear Problem (40) takes the form:

$t(t, y) = $yy(t, y)− ($(t, y)sy(t, y))y,

0 = syy(t, y) + $(t, y),
(41)



Symmetry 2017, 9, 13 14 of 17

t = 0 : s = µ(y), $ = −µyy(y),
y = 0 : $y = q1, sy = q2,
y = π : $y = 0, sy = 0.

(42)

First of all, we reduce System (41) to the 3rd order PDE in a similar way as it was done in Section 3;
hence, we arrive at:

sty = syyy − syysy + ϑ(t).

Setting ϑ(t) ≡ 0, one notes that it is the Burgers equation w.r.t. the function sy(t, y). Thus, using the
celebrated Cole–Hopf Substitution [20]:

sy(t, y) = −2
vy(t, y)
v(t, y)

, (43)

and taking into account the Conditions (42), one obtains the Neumann problem for heat equation:

vt = vyy, (44)

t = 0 : v = ω(y),
y = 0 : vy +

q2
2 v = 0,

y = π : vy = 0,
(45)

where ω(y) = Ce−
1
2 µ(y), C 6= 0. We will use Fourier method to solve Problems (44) and (45).

Let v(t, y) = T(t)W(y), by substituting it into (44), we obtain:

W′′

W
=

T′′

T
= −λ, λ > 0.

Thus, T(t) = ae−λt and W(y) = c1 cos(
√

λy) + c2 sin(
√

λy). Using boundary Conditions (45), we
obtain the equation for λ:

tan(
√

λπ) = − q2

2
√

λ
. (46)

Now, we can calculate the general solution for Equations (44) and (45):

v(t, y) =
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny)), (47)

where λn are the roots of Equation (46) and:

an =
1

||Wn||2
∫ π

0
ω(y)(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))dy,

||Wn||2 =
∫ π

0
(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))2 dy =

π

2
+

q2
2π− 2q2

8λn
,

for n > 0. Thus, using Substitution (43) and the second equation from (41), one constructs the exact
solution of the nonlinear BVPs (41) and (42):

s(t, y) =− 2 ln(v(t, y)) + B(t) =

− 2 ln

(
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(t),
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$(t, y) = 2
(

vyy

v
−
(vy

v

)2
)
=

− 2

( ∞
∑

n=1
anλne−λnt(cos(

√
λny)− q2

2
√

λn
sin(
√

λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(
√

λny))
+

 an
√

λne−λnt(sin(
√

λny) + q2
2
√

λn
cos(
√

λny))

ane−λnt(cos(
√

λny)− q2
2
√

λn
sin(
√

λny))

2)
,

where B(t) is an arbitrary function.
Because the Cole–Hopf substitution in non-local transform (i.e., involves derivatives) we need to

check whether this solution satisfies the initial and boundary conditions. Setting t = 0, we note that:

s(0, y) =− 2 ln

(
∞

∑
n=1

an(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(0) =

µ(y)− 2 ln |C|+ B(0).

Therefore, s(0, y) = µ(y) provided B(0) = 2 ln |C|. Simple calculations show that the second initial
condition $(0, y) = −µyy(y) is also fulfilled.

It can be easily checked that the functions s(t, y) and ρ(t, y) constructed above also satisfy zero
Neumann conditions from Equation (42).

Finally, our result can be formulated as the following theorem.

Theorem 5. The exact solution of the Neumann problem for the simplified Keller–Segel Systems (41) and (42)
can be presented as:

s(t, y) =− 2 ln

(
∞

∑
n=1

ane−λnt(cos(
√

λny)− q2

2
√

λn
sin(

√
λny))

)
+ B(t),

$(t, y) =− 2

( ∞
∑

n=1
anλne−λnt(cos(

√
λny)− q2

2
√

λn
sin(
√

λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(
√

λny))
+


∞
∑

n=1
an
√

λne−λnt(sin(
√

λny) + q2
2
√

λn
cos(
√

λny))

∞
∑

n=1
ane−λnt(cos(

√
λny)− q2

2
√

λn
sin(
√

λny))


2)

,

(48)

where λn are the roots of the transcendent equation tan(
√

λπ) = − q2
2
√

λ
, while:

an =
1

||Wn||2
∫ π

0
ω(y)(cos(

√
λny)− q2

2
√

λn
sin(

√
λny))dy,

||Wn||2 =
π

2
+

q2
2π− 2q2

8λn
,

and for n > 0, ω(y) = Ce−
1
2 µ(y), C 6= 0, B(t) is an arbitrary function, such that B(0) = 2 ln |C|.

Obviously, the exact Solution (48) is not unique because one contains the arbitrary function B(t)
and a parameter C. To specify this function, one needs additional biologically motivated restrictions;
however, it lies outside of the scope of this paper.
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6. Conclusions

In this paper, the simplified Keller–Segel model has been studied by means of Lie symmetry
based approaches. It is shown that (1 + 2)-dimensional Keller–Segel type System (2), together with the
relevant boundary and initial conditions, is invariant with respect to infinite-dimensional Lie algebras.
A classification of Lie symmetries for the Cauchy problem and the Neumann problem for this system
is derived and presented in Theorems 1, 3 and 4, which say that the Cauchy (initial) problem and
some Neumann problems for this system are still invariant w.r.t. infinite-dimensional Lie algebras
(with the relevant restrictions on the structure of arbitrary functions arising in Equation (3)). It should
be stressed that Lie symmetry of a boundary-value problem depends essentially on geometry of the
domain, which the problem is formulated on. All possible domains, which may lead to nontrivial Lie
symmetry of BVPs with the governing System (2), have been identified using the result of the recent
paper [10]. All realistic from applicability point of view domains (a strip, an interior and exterior of the
circle, an annulus) were examined (the case of a half-plane was studied earlier in [12]).

The results obtained, in particular infinite-dimensional Lie algebras of invariance, seem to be very
interesting because initial and boundary-value problems usually demonstrate a full scale breaking Lie
symmetry of the governing equation(s). For example, the classical example of the Cauchy problem
for the linear heat equation says that this problem can be invariant only w.r.t. finite-dimensional Lie
algebra [3]. Finite-dimensional Lie algebras of invariance occur also for boundary-value problems
involving the linear heat equation [3,24] and nonlinear heat equations [8,9]. However, one cannot
claim that the result obtained here is unique because infinite-dimensional Lie algebras of invariance
may occur for BVPs with the governing equation(s) possessing infinite-dimensional MAI. A non-trivial
example can be found in [10] (see case 11 in Table 2).

The Lie symmetries obtained are used for reduction of the problems in question to
two-dimensional those. Exact solutions of some two-dimensional problems are constructed.
In particular, we have proven that the Cauchy problem for the (1 + 1)-dimensional Keller–Segel type
system can be linearized and solved in an explicit form (see Theorem 2). Because the exact solution
involves two arbitrary functions, the relevant biologically motivated restrictions were proposed in
order to obtain a unique solution. A non-trivial example of the solution in terms of elementary
functions was also derived (see Formulae (19)). It should be stressed that exact solutions of Cauchy
problems with nonlinear governing PDEs can be derived only in exceptional cases because there are
no constructive methods for solving such nonlinear problems (in contrast to linear Cauchy problems).

Symmetry operators were applied also for reduction of the Neumann problems on the strip.
As a result, the exact solution of the Neumann problem for the (1 + 1)-dimensional simplified
Keller–Segel system has been constructed (see Theorem 5). The work is in progress for finding exact
solutions of the Neumann problem on bounded domains.
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