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Abstract: This paper proposes a novel approach to cope with the multi-criteria group
decision-making problems. We give the pairwise comparisons based on the best-worst-method
(BWM), which can decrease comparison times. Additionally, our comparison results are determined
with the positive and negative aspects. In order to deal with the decision matrices effectively,
we consider the elimination and choice translation reality (ELECTRE III) method under the
intuitionistic multiplicative preference relations environment. The ELECTRE III method is designed
for a double-automatic system. Under a certain limitation, without bothering the decision-makers
to reevaluate the alternatives, this system can adjust some special elements that have the most
influence on the group’s satisfaction degree. Moreover, the proposed method is suitable for both the
intuitionistic multiplicative preference relation and the interval valued fuzzy preference relations
through the transformation formula. An illustrative example is followed to demonstrate the
rationality and availability of the novel method.

Keywords: multi-criteria decision-making; BWM method; automatic ranking system; intuitionistic
multiplicative preference relations

1. Introduction

Multi-criteria group decision-making (MCGDM) is characterized as a process of ranking
the alternatives. Due to its practicability, it had been studied by some scholars in recent decades.
Many methods were proposed to solve MCGDM problems and their interrelated extensions.
Among them, elimination and choice translation reality (ELECTRE), including its derivations, became
an important branch. The ELECTRE method was proposed in 1966 [1] firstly. Its main idea is
taking advantage of the outranking relations. To date, ELECTRE I, ELECTRE II, ELECTRE III,
ELECTRE IV and ELECTRE TRI are widely-known derivations. In this article, we focus on
utilizing ELECTRE III to deal with the ranking problem of multi-criteria decision-making (MCDM).
In order to rank the alternatives, J.C. Leyva-Lopez [2] constructed a fuzzy outranking relation
depending on the ELECTRE III. A. Papadopoulos and A. Karagiannidis [3] used ELECTRE III
to discuss the renewable energy source problems, obtaining an optimization of decentralized
systems. Furthermore, E. Radziszewska-Zielina [4] introduced a solution to choose the best construction
enterprise. M.M. Marzouk [5] proposed a method with an increase of efficiency for ranking alternatives.
B. Vahdani, S.M. Mousavi and R. Tavakkoli-Moghaddam [6] studied a company manufacturing
tractor components and renewed the manufacturing system. ELECTRE III is outstanding both in the
practicality and efficiency aspects.

For the development of society, the decision-making problems become more complex, leading
to a situation that one decision-maker (DM) or one considered criterion is not sufficient. DMs may
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not make exact judgments always due to lacking experience or information. These scenarios need
some useful methods. The appearance of multi-criteria group decision-making under the fuzzy theory
environment makes the connection between theory and practice closer. DMs can judge the alternatives
by fuzzy numbers [7], interval-valued numbers [8], intuitionistic fuzzy numbers [9], interval-valued
intuitionistic fuzzy numbers [10] or with hesitant fuzzy sets [11–13], Type-2 or type-n fuzzy sets [14,15].
Besides, pairwise comparison has also been gradually acknowledged. Generally, decision-makers
can express their decision results based on multiplicative preference relations (MPRs) [16] and fuzzy
preference relations (FPRs) [17]. However, it happens often that DMs may not be sure about the
intensities of preferences. This means that their results may be fluctuating in some interval during
the decision-making process. In 1987, Satty and Vargas introduce interval-valued multiplicative
preference relations (IVMPRs) [18]. In 2004, Xu introduced interval-valued fuzzy preference relations
(IVFPRs) [19]. In order to highlight the preferred degree and non-preferred degree, the concepts
of intuitionistic multiplicative preference relations (IMPRs) [20] and intuitionistic fuzzy preference
relations (IFPRs) [21] were introduced as extensions of the traditional multiplicative preference
relations. In addition, when dealing with the practical problems, the consistency degree [22,23],
the transitivity and the additivity should also be considered. H.M. Zhang [24] gave a consistency
model for group decision-making (GDM) problems by constructing a novel logarithmic distance
formula. Z.S. Xu [25] firstly established a quadratic programming model and then constructed new
approached with respect to the consistency and additivity. S. Alonso et al. [26] proposed a method
to estimate missing elements from preference relation results, depending on the consistency of the
preference relation. Y. Dong and E. Herrera-Viedma [27] discussed two-tuple linguistic modeling
by proposing a consistency-driven automatic methodology, which is based on the consistency of
preference relation. M.R. Uren̆a et al. [28] studied the group decision-making problem with incomplete
information, under the fuzzy preference relation’s environment. They developed a new method to
cope with the problem that some useful information might not be considered properly. This method’s
highlight was that it can calculate the unknown values only with the preference information from that
particular decision-maker. More relevant theories and applications can be found in [8,29–34].

However, for the general preference relations, DMs need to compare alternatives pairwise, leading
to at least n(n− 1)/2 or n(n− 1) times of comparisons. J. Rezaei [35] proposed a novel method named
the best-worst-method (BWM) about multi-criteria decision-making problems, which only needed
2n− 3 comparisons without losing the accuracies of ranking results. BWM expressed the comparison
results by numbers from set {1, 2, 3, 4, 5, 6, 7, 8, 9} and ignored the reciprocals of each pair to avoid
the trouble caused by unequal distance between fractional comparisons. He discussed a practical
application of the college students’ cell phone selection problem to identify that without considering
the reciprocals, the results were also credible. The simplicity of BWM is obvious; then, it leads us to
thinking of further discussions and more applications; because ignoring the reciprocals is not sufficient
for some other situations, especially for some complicated ranking problems. Unequal distance
between fractional comparisons does exist. Then, we extend the BWM to the intuitionistic preference
relations environment. It is known that elimination and choice expressing the reality is a popular
MCDM method, which is a comprehensive approach and has been developed into different forms:
ELECTRE I, II, III, IV and TRI; and all have been applied to practical problems in many areas [36–38];
where ELECTRE I is introduced to solve selection problems, II, III and IV are designed for ranking
alternatives and TRI for sorting problems. F. Shen et al. [39] discussed this question and proposed
an automatic ranking approach for MCGDM problems, which was applied to discuss a supplier
evaluation problem in a high-tech company. While few researchers have studied solving MCGDM
problems with intuitionistic multiplicative preference relations, based on the ELECTRE III method,
in this paper, we will study the ELECTRE III method with BWM’s idea. Additionally, the evaluating
results are expressed by the intuitionistic preference relation. Then, we can get two kinds of matrices
with respect to the best alternative and the worst alternative, which is a main advantage compared
with the other decision-making methods. Depending on the matrices, we develop a double-automatic
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approach to deal with a real group ranking problem. This means that we do not need to bother DMs
again, when the results are not satisfied in some certain limited conditions.

The rest of the paper is organized as follows. Section 2 shows some basic information.
In Section 3, we propose an approach to solve a group decision-making problem based on the BWM
method automatically. An illustrative example for demonstrating the developed method is stated in
Section 4. Result discussions are given in Section 5, along with the advantages and drawbacks of the
proposed method. This paper concludes in Section 6 with summarizing our developments and future
research directions.

2. Preliminaries

Before proposing the novel method, we firstly introduce some basic concepts and methods that
will be needed to construct the new model. Note that X = {x1, x2, ..., xn} is a set of n alternatives;
C = {c1, c2, ..., cm} is a set of m criteria; W = {w1, w2, ..., wm} is a set of weights corresponding to the
set C; E = {e1, e2, ..., eT} is a set of DMs or experts; D = {λ1, λ2, ..., λT} is a set of the DMs’ weights.
Additionally, there are three thresholds: qt, beneath which the DM is indifferent to two alternatives
under a certain criterion, pt, above which the DM makes a strict preference for one alternative over
another under a certain criterion, vt, the veto threshold means that the DM should negate any possible
outranking relationship indicated by the other criteria if there exists a discordant difference in favor of
one alternative greater vt.

Definition 1. [20] Let X = {x1, x2, ..., xn} be a set of n alternatives. The intuitionistic multiplicative
preference relation (IMPR) is defined as R = (rij)n×n, where rij = (ρij,σij) is an intuitionistic multiplicative
number (IMN); ρij means the preferred intensity of xi over xj; σij means the non-preferred intensity of xi over
xj, both of which satisfy that:

ρij = σij, σij = ρij, ρii = σii = 1, 1/9 ≤ ρij,σij ≤ 9. (1)

Let πij = 1/(ρijσij) represent the hesitation degree to which xi is preferred to xj with πij ∈ [1, 81].

Definition 2. [26] Let X = {x1, x2, ..., xn} be a non-empty finite set with n elements. Its associated
multiplicative reciprocal preference relation A = (aij) with aij ∈ [1/9, 9] and aij · aji = 1, ∀i, j ∈ {1, 2, ..., n}.
The corresponding fuzzy reciprocal preference relation associated with A is given as follows:

pij = f (aij) =
1
2
(1 + log9 aij) (2)

where pij ∈ [0, 1] and pij + pji = 1, ∀i, j ∈ {1, 2, ..., n}.

Depending on Definition 2, we build the following definition to measure the distance between
two IMNs.

Definition 3. Let αij = (ραij ,σαij ,παij) and βij = (ρβij ,σβij ,πβij) be two IMNs, then:

dIMN(αij,βij) =

√
1
4
[(log9 ραij − log9 ρβij)

2 + (log9 σαij − log9 σβij)
2] (3)

is called an intuitionistic multiplicative fuzzy distance between αij and βij.

Deriving from Definition 3, we obtain the following propositions about dIMN :

(1) 0 ≤ dIMN ≤ 1;
(2) dIMN(αij,βij) = dIMN(βij,αij);
(3) dIMN(αij,βij) = 0, iff ραij = ρβij , σαij = σβij .



Symmetry 2016, 8, 95 4 of 16

For each criterion cl , l ∈ {1, 2, ..., m}, DM et, t ∈ {1, 2, ..., T} chooses the best alternative xB
and the worst xW . Additionally, give the comparison results: Xl

B(t) = (xl
B1, xl

B2, ..., xl
Bn), Xl

W(t) =

(xl
1W , xl

2W , ..., xl
nW), where xl

Bj and xl
iW , i, j ∈ {1, 2, ..., n} are IMNs, which stand for the preferred

degree of xB over xj and xi over xW with respect to the criterion cl . Then, obtain the decision matrices
DMB(t) = (Xl

B(t))n×m and DMW(t) = (Xl
W(t))n×m.

Definition 4. Determine the intuitionistic multiplicative positive functions about alternative xi outranks xj,
which are denoted by C(xBj1 , xBj2) with respect to the decision matrix DMB(t) and D(xi1W , xi2W) with respect
to the decision matrix DMW(t), stated as follows and illustrated in Figure 1:

c = cl
t(xBj1 , xBj2) =


1, gt(xBj1) + qt ≥ gt(xBj2),

0, gt(xBj1) + pt ≤ gt(xBj2),

pt − (gt(xBj2)− gt(xBj1))

pt − qt
, otherwise.

(4)

d = dl
t(xi1W , xi2W) =


1, gt(xi1W) + qt ≥ gt(xi1W),

0, gt(xi1W) + pt ≤ gt(xi2W),

pt − (gt(xi2W)− gt(xi1W))

pt − qt
, otherwise.

(5)

where j1, j2, i1, i2 ∈ {1, 2, ..., n}.

gl
t(xij) =

{
dIMN(xij,α−), i f cj ∈ c+,

dIMN(xij,α+), i f cj ∈ c−.
(6)

where c+ means the positive criteria set; c− means the negative criteria set; α− = ( 1
9 , 9, 1), α+ = (9, 1

9 , 1).
Therefore, obtain:

ct(xBj1 , xBj2) =
m

∑
l=1

wlcl
t(xBj1 , xBj2); (7)

dt(xi1W , xi2W) =
m

∑
l=1

wldl
t(xi1W , xi2W). (8)

Then, the intuitionistic multiplicative positive index matrices Ct and C̃t are written as follows:

Ct =


∗ ct(xBj1 , xBj2) ct(xBj1 , xBj3) · · · ct(xBj1 , xBjn)

ct(xBj2 , xBj1) ∗ ct(xBj2 , xBj3) · · · ct(xBj2 , xBjn)

ct(xBj3 , xBj1) ct(xBj3 , xBj2) ∗ · · · ct(xBj3 , xBjn)
...

...
...

. . .
...

ct(xBjn , xBj1) ct(xBjn , xBj2) ct(xBjn , xBj3) · · · ∗

 (9)

Dt =


∗ dt(xi1W , xi2W) dt(xi1W , xi3W) · · · dt(xi1W , xinW)

dt(xi2W , xi1W) ∗dt(xi2W , xi3W) · · · dt(xi2W , xinW)

dt(xBj3 , xBj1) dt(xBj3 , xBj2) ∗ · · · dt(xBj3 , xBjn)
...

...
...

. . .
...

dt(xinW , xi1W) dt(xinW , xi2W) dt(xinW , xinW) · · · ∗

 (10)
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Figure 1. Figure of intuitionistic multiplicative positive functions.

Definition 5. Determine the intuitionistic multiplicative hesitant functions about alternative xi1 outranks
xi2 with respect to the decision matrices DMB(T) and DMW(t) under the decision criteria cl , denoted by

dl
t(xBj1 , xBj2) and d̃l

t(xi1W , xi2W), respectively, stated as follows:

c = c̃l
t(xBj1 , xBj2) =


1, log9(πBj1) + pj ≥ log9(πBj2),

0, log9(πBj1) + vj ≤ log9(πBj2),

vj − (log9(πBj2)− log9(πBj1))

vj − pj
, otherwise.

(11)

d = d̃l
t(xi1W , xi2W) =


1, log9(πi1W) + pj ≥ log9(πi2W),

0, log9(πi1W) + vj ≤ log9(πi2W),

vj − (log9(πi1W)− log9(πi2W))

vj − pj
, otherwise.

(12)

where i1, i2, j1, j2 ∈ {1, 2, ..., n}. Then, the intuitionistic multiplicative hesitant index matrices C̃t = (c)n×n

and D̃t = (d)n×n.

Definition 6. Based on Definition 5, define the intuitionistic fuzzy outranking index r(xBj1 , xBj2) and
r̃(xi1W , xi2W) with respect to C and C̃, D and D̃, respectively, which aggregate the concordance and discordance
indices to measure the outranking intensity about criterion cl .

r(xBj1 , xBj2) = c(xBj1 , xBj2)× c̃(xBj1 , xBj2) (13)

r̃(xi1W , xi2W) = d(xi1W , xi2W)× d̃(xi1W , xi2W) (14)

These considerations of the intuitionistic multiplicative outranking index r and r̃ combine the positive and
hesitant functions together, indicating the degree to which xj1 outranks xj2 or xi1 outranks xi2 .

Definition 7. Define the outranking flow f (xi, xj) and f̃ (xi, xj), which stands for the outranking character of
xi over xj and is defined as follows:

f (xBj1 , xBj2) = r(xBj1 , xBj2)− r(xBj2 , xBj1) (15)

f̃ (xi1W , xi2W) = r̃(xi1W , xi2W)− r̃(xi2W , xi1W) (16)

which satisfy −1 ≤ f (xBj1 , xBj2) ≤ 1, −1 ≤ f̃ (xi1W , xi2W) ≤ 1.
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Definition 8. Define the outranking flow index Φt(xi), i = 1, ..., t, indicating the outranking character of xB
over all of the remaining alternatives given by DM et, t ∈ {1, 2, ..., T}, and the outranking character of all of the
other characters over xW , defined as follows:

Φt(xBj1) =
n

∑
j2=1

f (xBj1 , xBj2) (17)

where j1 6= j2;

Φ̃t(xi1W) =
n

∑
i2=1

f̃ (xi1W , xi2W) (18)

where i1 6= i2.
Then, the group outranking flow indexes are defined as follows:

Φ(xBj1) =
T

∑
t=1

λtΦt(xBj1) (19)

where j1 6= j2;

Φ̃(xi1W) =
T

∑
t=1

λtΦ̃t(xi1W) (20)

where i1 6= i2.

Definition 9. Y. Goletsis et al. [40] gave Formulas (21) and (22) to calculate the personal index, which is the
consistency index of DM et, t ∈ {1, 2, ..., T} and the group G with n alternatives followed.

ϕt = 1− 6 ∑n
i=1(ut(xi)−U(xi))

2

n3 − n
; (21)

ϕ̃t = 1− 6 ∑n
i=1(ũt(xi)− Ũ(xi))

2

n3 − n
. (22)

where ut(xi) is the ranking order of alternative xi and U(xi) is the group ranking order. Then, the group’s
satisfaction indexes are:

ϕG =
T

∑
t=1
λtϕt; (23)

ϕ̃G =
T

∑
t=1
λtϕ̃t. (24)

Definition 10. Considering the reason for the nonacceptance, we should check where the comparison results
come from and give Formulas (25) and (26):

ξ j1 j2 =

√√√√ T

∑
t=1
λt( f

l
j1 j2 − f

l
j1 j2)

2, (25)

ξ j1 j2 =

√√√√ T

∑
t=1
λt( f̃ l

j1 j2
− f̃ l

j1 j2
)2, (26)

where f
l
j1 j2 = ∑T

t=1 λt f l
j1 j2

, f̃ l
j1 j2

= ∑T
t=1 λt f l

i1i2
.



Symmetry 2016, 8, 95 7 of 16

Theorem 1. Let Qs
BJ1

= { f s
Bj1(1)

, f s
Bj1(2)

, ..., f s
Bj1(t)
}, (j1 = 1, 2, ..., n) be a set of the DMs’ outranking flow

values after s times about X(t) and Qs
i1W = { f s

i1W(1), f s
i1W(2), ..., f s

i1W(t)}, and (j1 = 1, 2, ..., n) be a set of the

DMs’ outranking flow values after s times about X̃(t). The values of ξ j1 j2 and ξ̃i1i2 , defined in Step 10, satisfy:

lim
s→∞

ξ j1 j2 = 0, (27)

lim
s→∞

ξ̃i1i2 = 0, (28)

Proof. Depending on Definition 10 about the automatic strategy, we can derive that the sequences
{ξ j1 j2} and {ξ̃i1i2} are both monotonically decreasing ones and have the lower bounds for ξ j1 j2 ≥ 0 and

ξ̃i1i2 ≥ 0. Then, we know that both of the limits lims→∞ ξ j1 j2 and lims→∞ ξ̃i1i2 exist and are denoted
by ε and η, respectively. However, the automatic process would not stop if ε ≥ 0 and η ≥ 0, for the
reason that there always exist the farthest distances from f j1 j2 and f̃i1i2 . Continuing to run the process,

we can obtain the next set after changing the farthest values for each matrices and new deviations ξ
∗
j1 j2

and ξ̃∗i1i2
. As ε = inf{ξ j1 j2} and η = inf{ξ̃i1i2}, the values of ξ

∗
j1 j2 and ξ̃∗i1i2

cannot be smaller than ε and
η, respectively. Therefore, ε = 0 and η = 0.

2.1. The Best-Worst Multi-Criteria Decision-Making Method

In 2015, J. Rezaei [35] proposed the BWM method, in order to get the weight values of all
alternatives based on the evaluationsmade by DMs. In generally, there are three steps:

Step 1. Determine the best and worst criteria from n alternatives.
Step 2. Determine the preference intensity degree of the best one compared to the others, except

for the worst one, which need n− 2 times. The remaining n− 2 ones to the worst one need n− 2 times.
Add up the comparison of the best one to the worst one; there are (n− 2) + (n− 2) + 1 = 2n− 3 times
of comparisons in all needed.

Step 3. Calculate the weights of all alternatives and rank them (here, the details are omitted).

2.2. ELECTRE III Method

C. Giannoulis and A. Ishizaka [41] described that ELECTRE III method was a multi-criteria
method extended for solving a ranking problem that was based on the outranking relations, including
the constructing step and exploitation step.

3. Framework of the Proposed Novel Method

In this part, we construct a novel systematic MCGDM approach based on the ELECTRE III method
and the BWM method.

Step 1. For each DM, he/she should determine three thresholds: qt, pt, vt, t ∈ {1, 2, ..., T}.
Step 2. DM et determines the decision matrix DMB(t) = (xl

B(t))n×m and DMW(t) = (xl
W(t))n×m

with respect to every criterion cl , l ∈ {1, 2, ..., m}, t ∈ {1, 2, ..., T}.
Step 3. Determine the weight vector W = {w1, w2, ..., wm} for each criterion. Additionally, each

DM gives his/her weight value for each criteria and calculates the average.
Step 4. Based on Definition 4, obtain the positive proposition matrix C(xBj1 , xBj2) and negative

proposition matrix C̃(xi1W , xi2W).
Step 5. Based on Definition 5, obtain the hesitant proposition matrix D(xBj1 , xBj2) and D̃(xi1W , xi2W).
Step 6. Based on Definition 6, obtain outranking index r(xBj1 , xBj2) and r̃(xi1W , xi2W).
Step 7. Based on Definition 7, calculate the outranking flow f (xi, xj) and f̃ (xi, xj), which stands

for the outranking character of xi over xj.
Step 8. Based on Definition 8, calculate the outranking flow index Φt(xi), Φ̃t(xi1W), i = 1, ..., t,

and the group outranking flow indexes Φ(xBj1), Φ̃(xi1W).
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Step 9. Based on Definition 8, calculate the consistency index of DM et, t ∈ {1, 2, ..., T} and the
group G with n alternatives.

Step 10. Based on Definition 10, we obtain two deviation degree matrices ξ and ξ̃. From ξ and ξ̃,
picking up the maximum elements ξ j∗1 j∗2

and ξ̃i∗1 i∗2
, we would find the farthest weighted distances from

f j∗1 j∗2
and f̃i∗1 i∗2

, respectively, i.e.,

λt∗( f j∗1 j∗2 (t
∗) − f j∗1 j∗2

)2 = max{λt( f j∗1 j∗2 (t)
− f j∗1 j∗2

)2}, (29)

λt∗( f̃i∗1 i∗2 (t
∗) − f̃i∗1 i∗2

)2 = max{λt( fi∗1 i∗2(t)
− f̃i∗1 i∗2

)2} (30)

Then, we replace f j∗1 j∗2 (t
∗) and fi∗1 i∗2(t

∗) by f j1 j2 and f̃i1i2 , respectively, and keep the other values
unchanged, i.e.,

f
s+1
j1 j2(t) =

 f
s
j1 j2(t), i f j1 = j∗1 , j2 = j∗2 , j3 = j∗3 , and t = t∗,

f s
j1 j2(t)

, otherwise.
(31)

f̃ s+1
i1i2(t)

=

 f
s
i1i2(t), i f i1 = i∗1 , i2 = i∗2 , i3 = i∗3 , and t = t∗,

f s
i1i2(t)

, otherwise.
(32)

If s ≤ S, where S is the upper limit of adjusting times, then return to Step 8, otherwise, return to
the first step to re-evaluate the original decision matrices or change the related parameters.

Step 11. Calculate the final group ranking results.
Step 12. End.

4. A Numerical Example

With the continuous development of the Chinese economy, people’s living standards are
improving unceasingly. Meanwhile, demands for culture service and facilities are also increasing. The
relevant government departments have put forward an explicit policy: enrich cultural products and
services, in order to build the modern system of public cultural services. The practical cultural facilities
are the foundations of the Chinese socialist cultural undertakings’ prosperity and development.
Building them reasonably plays an important role. However, domestic research focuses on investment
management modes. Few researchers pay attention to the decision-making problem about cultural
facilities’ pre-construction. Some big cities in China, such as Tianjin, Shenzhen and Taiyuan, have built
cultural centers to enrich the cultural life of the citizens. A provincial capital would also plan to
construct a cultural center as a reward for complying with the policy. The first problem to solve is
site selection. There are five candidates, x1, x2, x3, x4 and x5 (n = 5), to be chosen. Additionally,
there are four criteria to be considered: c1 stands for traffic conditions; c2 stands for environment
effects; c3 stands for ancillary facilities; and c4 stands for procurement cost (m = 4). The decision
group contains three experts. In the following, we will apply the proposed method to solve these
decision-making problems.

Step 1. Every DM determines the best and worst alternatives by taking consideration of
each criterion, obtaining the following two kinds of decision matrices: the best-to-others comparisons
about DMt (t = 1, 2, 3), named as DMB(t), and the others-to-worst comparisons about DMt (t = 1, 2, 3),
named as DMW(t), entering Matrices (33)–(35).

DMB(1) =


(7, 1/8) (5, 1/6) (6, 1/7) (8, 1/9)
(1, 1) (8, 1/9) (4, 1/5) (2, 1/3)

(4, 1/5) (2, 1/3) (1, 1) (4, 1/5)
(2, 1/4) (4, 1/5) (2, 1/3) (1, 1)
(5, 1/6) (1, 1) (8, 1/9) (6, 1/7)

 DMW(1) =


(1, 1) (2, 1/3) (3, 1/5) (1, 1)

(7, 1/8) (1, 1) (5, 1/7) (7, 1/8)
(2, 1/4) (5, 1/6) (8, 1/9) (8, 1/9)
(2, 1/4) (4, 1/5) (2, 1/3) (1, 1)
(2, 1/3) (8, 1/9) (1, 1) (3, 1/4)

 (33)
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DMB(2) =


(6, 1/7) (5, 1/7) (5, 1/7) (8, 1/9)
(1, 1) (7, 1/8) (4, 1/6) (3, 1/4)

(2, 1/4) (3, 1/4) (1, 1) (4, 1/5)
(3, 1/4) (3, 1/6) (3, 1/4) (1, 1)
(5, 1/5) (1, 1) (7, 1/9) (7, 1/8)

 DMW(2) =


(1, 1) (2, 1/4) (3, 1/4) (1, 1)

(6, 1/7) (1, 1) (5, 1/6) (6, 1/7)
(4, 1/5) (6, 1/8) (8, 1/9) (4, 1/5)
(3, 1/4) (3, 1/4) (6, 1/7) (8, 1/9)
(2, 1/4) (7, 1/8) (1, 1) (3, 1/5)

 (34)

DMB(3) =


(8, 1/9) (5, 1/6) (5, 1/6) (7, 1/9)
(1, 1) (8, 1/9) (3, 1/4) (2, 1/4)

(3, 1/6) (2, 1/4) (1, 1) (4, 1/6)
(4, 1/5) (3, 1/5) (2, 1/3) (1, 1)
(6, 1/7) (1, 1) (7, 1/8) (5, 1/7)

 DMW(3) =


(1, 1) (3, 1/5) (3, 1/5) (1, 1)

(8, 1/9) (1, 1) (5, 1/6) (6, 1/8)
(4, 1/5) (6, 1/7) (7, 1/8) (4, 1/7)
(3, 1/5) (4, 1/5) (6, 1/7) (7, 1/9)
(2, 1/4) (8, 1/9) (1, 1) (2, 1/3)

 (35)

Step 2. Enter a table about the predefined thresholds by the three DMs; details are shown
in Table 1.

Table 1. The predefined threshold values about every decision-maker (DM).

ql pl vl

DM1 0.04 0.14 0.30
DM2 0.06 0.16 0.36
DM3 0.10 0.20 0.35

Step 3. Based on the realistic demand, determine the weight values of each criterion by DMs:
w(c1) = 0.15, w(c2) = 0.25, w(c3) = 0.15, w(c4) = 0.45.

Step 4. Calculate the credibility proposition matrices by Equations (4)–(8), obtaining
Matrices (36)–(38) with respect to the best aspect and the worst aspect.

C1 =


∗ 0.4810 0.7000 0.7000 0.6610

0.5500 ∗ 0.4000 0.4000 0.5500
0.3000 0.6000 ∗ 0.6000 0.8873
0.4874 0.6000 0.4000 ∗ 0.5500
0.3288 0.4500 0.5619 0.4500 ∗

 D1 =


∗ 0.5500 0.3000 0.1500 0.1500

0.4529 ∗ 0.6000 0.4500 0.4500
0.7000 0.4320 ∗ 0.8500 0.6000
0.8500 0.5500 0.9374 ∗ 0.6000
0.8500 0.5500 0.9545 0.9545 ∗

 (36)

C2 =


∗ 0.5987 0.7000 0.7000 0.7191

0.5500 ∗ 0.4000 0.4000 0.5500
0.3000 0.8500 ∗ 0.6000 0.5500
0.5500 0.6000 0.4000 ∗ 0.3000
0.4933 0.4500 0.4500 0.4500 ∗

 D2 =


∗ 0.5500 0.3000 0.5494 0.1500

0.4676 ∗ 0.6610 0.6000 0.450
0.7000 0.4000 ∗ 0.9331 0.7000
0.7000 0.4365 0.6194 ∗ 0.5728
0.8500 0.5500 0.6309 0.9988 ∗

 (37)

C3 =


∗ 0.5984 0.7000 0.7000 0.8774

0.5500 ∗ 0.4000 0.5303 0.5500
0.3000 0.6000 ∗ 1.6030 0.5892
0.3028 0.6000 0.8500 ∗ 0.9142
0.6000 0.4500 0.5131 0.5710 ∗

 D3 =


∗ 0.5500 0.3926 0.6903 0.1500

0.5684 ∗ 0.6000 0.6000 0.4500
0.4500 0.3010 ∗ 1.1485 0.7920
0.7375 0.6191 1.2048 ∗ 0.5920
0.8500 0.5500 0.8109 1.0083 ∗

 (38)

Step 5. Calculate the credibility proposition of the alternative xi being not as good as xj with
respect to decision matrices X and X̃ under consideration of each criterion by Equations (11) and (12).

C̃1 =


∗ 1.0000 1.0000 0.8925 1.0000

1.0000 ∗ 1.0000 0.8500 1.0000
1.0000 1.0000 ∗ 0.7824 0.8610
1.0000 0.8747 1.0000 ∗ 0.7773
1.0000 1.0000 1.0000 0.9133 ∗

 D̃1 =


∗ 1.0000 0.8500 0.8500 0.8500

0.7500 ∗ 0.8500 0.8500 0.8500
1.0000 1.0000 ∗ 0.9765 0.9397
1.0000 0.5500 1.0000 ∗ 0.8565
0.9133 0.9877 0.5500 0.9582 ∗

 (39)

C̃2 =


∗ 1.0000 0.9360 0.9971 1.0000

1.0000 ∗ 0.8834 0.8816 1.0000
1.0000 0.9816 ∗ 0.9693 1.0000
1.0000 1.0000 0.9816 ∗ 1.0000
1.0000 1.0000 0.8834 0.8057 ∗

 D̃2 =


∗ 1.0000 1.0000 1.0000 0.7203

1.0000 ∗ 1.0000 1.0000 0.9308
1.0000 1.0000 ∗ 1.0000 0.9596
1.0000 1.0000 1.0000 ∗ 0.9391
1.0000 1.0000 1.0000 1.0000 ∗

 (40)
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C̃3 =


∗ 0.9967 0.8840 1.0000 1.0000

1.0000 ∗ 0.7814 1.0000 1.0000
1.0000 1.0000 ∗ 1.0000 1.0000
1.0000 0.6536 0.9861 ∗ 1.0000
1.0000 1.0000 0.7623 1.0000 ∗

 D̃3 =


∗ 1.0000 1.0000 0.6034 0.8500

0.8625 ∗ 1.0000 1.0000 0.8881
1.0000 1.0000 ∗ 1.0000 0.9361
1.0000 1.0000 1.0000 ∗ 0.5500
0.9175 1.0000 1.0000 1.0000 ∗

 (41)

Step 6. In addition, by Equations (13) and (14), we get the intuitionistic fuzzy outranking index
matrices (r(xBj1 , xBj2))5×5 and (r̃(xi1W , xi2W))5×5 for every DM.

R1 =


∗ 0.4810 0.7000 0.6247 0.6110

0.5500 ∗ 0.4000 0.3400 0.5500
0.3000 0.6000 ∗ 0.4695 0.8873
0.4874 0.5248 0.4000 ∗ 0.5500
0.3288 0.4500 0.5619 0.4110 ∗

 R̃1 =


∗ 0.5500 0.2550 0.1275 0.1275

0.3397 ∗ 0.5100 0.3825 0.3825
0.7000 0.4320 ∗ 0.8500 0.6000
0.8500 0.3025 0.9374 ∗ 0.6000
0.7663 0.5432 0.5250 0.9147 ∗

 (42)

R2 =


∗ 0.5987 0.6552 0.6980 0.7191

0.5500 ∗ 0.3524 0.3527 0.5500
0.3000 0.8344 ∗ 0.5816 0.5500
0.5500 0.6000 0.3926 ∗ 0.3000
0.4933 0.4500 0.3975 0.3626 ∗

 R̃2 =


∗ 0.5500 0.3000 0.5494 0.1080

0.3768 ∗ 0.6610 0.6000 0.4188
0.6785 0.4000 ∗ 0.9331 0.6717
0.6785 0.4365 0.6194 ∗ 0.5380
0.7494 0.5500 0.6309 0.9988 ∗

 (43)

R3 =


∗ 0.5964 0.6188 0.7000 0.8774

0.5500 ∗ 0.3126 0.5303 0.5500
0.3000 0.6000 ∗ 1.6030 0.5892
0.5277 0.3922 0.8382 ∗ 0.9142
0.6000 0.4500 0.3911 0.5710 ∗

 R̃3 =


∗ 0.5500 0.3629 0.4166 0.1275

0.4903 ∗ 0.6000 0.6000 0.3997
0.4500 0.3010 ∗ 1.1485 0.7414
0.7375 0.6191 1.2048 ∗ 0.3256
0.7799 0.5500 0.8109 1.0083 ∗

 (44)

Step 7. By Equations (15) and (16), we can calculate the ranking flow matrices Ft( f (xBj1 , xBj2))5×5,
F̃t( f̃ (xi1w, xi2w))5×5.

F1 =


∗ −0.0690 0.4000 0.1373 0.3322

0.6090 ∗ −0.2000 −0.1848 0.1000
−0.4000 0.2000 ∗ 0.0695 0.3254
−0.1373 0.1848 −0.0695 ∗ 0.1390
−0.3322 −0.1000 −0.3254 −0.1390 ∗

 (45)

F̃1 =


∗ 0.2103 −0.4450 −0.7225 0.6488

−0.2103 ∗ 0.0780 0.0800 −0.1607
0.4450 −0.0780 ∗ −0.874 0.0750
0.7225 −0.0800 0.0874 ∗ −0.3147
0.6488 0.1607 −0.0750 0.3147 ∗

 (46)

F2 =


∗ 0.0487 0.3552 0.1480 0.2255

−0.0487 ∗ −0.4810 −0.2473 −0.1000
−0.3552 0.4810 ∗ 0.1890 −0.1525
−0.1480 0.2473 −0.1890 ∗ −0.0626
−0.2250 −0.1000 −0.1525 0.0626 ∗

 (47)

F̃2 =


∗ 0.1732 −0.3785 −0.1292 −0.6413

−0.1732 ∗ 0.2610 0.1635 −0.1312
0.3785 −0.2610 ∗ 0.3137 0.0408
0.1292 −0.1635 0.3137 ∗ −0.4609
0.6413 −0.1312 −0.0408 0.4609 ∗

 (48)
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F3 =


∗ 0.0464 0.3188 0.1723 0.2774

−0.0464 ∗ −0.2874 0.1382 0.1000
−0.3188 0.2874 ∗ 0.7648 0.1981
−0.1723 −0.1382 −0.7648 ∗ 0.3432
−0.2774 −0.1000 −0.1981 −0.3432 ∗

 (49)

F̃3 =


∗ 0.0597 −0.0574 −0.3210 −0.6524

−0.0579 ∗ 0.2990 −0.0191 −0.1503
0.0574 −0.2990 ∗ −0.0564 −0.0694
0.3201 0.0191 0.0564 ∗ −0.6827
0.6524 0.1503 0.0694 0.6827 ∗

 (50)

Step 8. Applying Equations (17)–(20), we summarize the next Tables 2 and 3 and show the
conditions about the original outranking flow indexes.

Table 2. The original group outranking flow indexes of every alternative about the best aspect.

x1 x2 x3 x4 x5

Φ1 0.8005 −0.2158 0.1949 0.1171 −0.8966
Φ2 0.7777 −0.6771 0.4672 −0.1521 −0.4157
Φ3 0.8149 −0.0957 0.9315 −0.7321 −0.9187
ΦG 0.7977 −0.3295 0.5312 −0.2557 −0.7437

Table 3. The original group outranking flow indexes of every alternative about the worst aspect.

x1 x2 x3 x4 x5

Φ̃1 −1.6060 −0.2130 0.3546 0.4152 1.0492
Φ̃2 −0.9758 0.1201 0.4721 −0.8090 1.1926
Φ̃3 −0.9711 0.0699 −0.3674 −0.2863 1.5549
Φ̃G −1.1843 −0.0077 −0.1531 −0.2267 1.2655

What follows is the corresponding outranking flow order Ut and Ũt, as shown in Tables 4 and 5.
We should pay attention to the elements’ meaning from the decision matrix DMB(1), MB(2), DMB(3);
that is, the preference degree of the best alternative to the others, meaning the smaller the values,
the better.

Table 4. The original group outranking flow orders of every alternative about the best aspect.

x1 x2 x3 x4 x5

U1 5 2 4 3 1
U2 5 1 4 3 2
U3 4 3 5 2 1
UG 5 2 4 3 1

Table 5. The original group outranking flow orders of every alternative about the worst aspect.

x1 x2 x3 x4 x5

Ũ1 5 4 3 2 1
Ũ2 5 3 2 4 1
Ũ3 5 2 4 3 1
ŨG 5 3 2 4 1
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Step 9. Using Equations (21)–(24), we can calculate the satisfaction index degree of persons
and the group, as shown in Table 6. In this paper, if the satisfaction index degree is higher than
0.85, we will accept it and go to Step 12; if not, we will go to Step 10. Obviously, the satisfaction
index degree of others-to-worst is low. We will go to Step 10 to adjust some comparisons for a higher
satisfaction degree.

Table 6. The satisfaction index degree.

ϕ0
(1) ϕ0

(2) ϕ0
(3) ϕ0

(G)

Best-to-Others 0.9 0.7 0.6 0.7
Others-to-Worst 0.7 0.6 0.9 0.7

Step 10. Use Equations (25) and (26) to calculate the deviation matrices ξ̃, as shown in Matrix (51).

ξ̃ =


∗ 0.1110 0.2931 0.4282 0.0080

0.1110 ∗ 0.1617 0.1293 0.0212
0.2931 0.1671 ∗ 0.3156 0.1068
0.4282 0.1293 0.3156 ∗ 0.2621
0.0080 0.0212 0.1068 0.2621 ∗


5×4

(51)

Find the max value of matrix (51) as ξ̃14 = ξ̃41 = 0.4282. In addition, by Equation (30), we derive
that the elements that cost these highest deviation are f̃14 and f̃41 from F̃1. We replace them according to
Equation (32), to obtain the first around adjusted outranking flow matrix F̃(1)

1 as shown in Matrix (52):

F̃(1)
1 =


∗ 0.2103 −0.4450 −0.3909 0.6488

−0.2103 ∗ 0.0780 0.0800 −0.1607
0.4450 −0.0780 ∗ −0.874 0.0750
0.3909 −0.0800 0.0874 ∗ −0.3147
0.6488 0.1607 −0.0750 0.3147 ∗

 (52)

Next, we calculate the first roundadjusted outranking flow indexes about the worst-to-others
aspect, shown in Table 7.

Table 7. The first roundadjusted group outranking flow indexes of every alternative about the
worst-to-others aspect.

x1 x2 x3 x4 x5

Φ̃1 −1.2744 −0.2130 0.3546 0.0836 1.0492
Φ̃2 −0.9758 0.1201 0.4721 −0.8090 1.1926
Φ̃3 −0.9711 0.0699 −0.3674 −0.2863 1.5549
Φ̃G −1.0737 −0.0077 0.1531 −0.3372 1.2655

We can calculate the adjusted group outranking flow orders, as shown in Table 8. Table 9 shows
the adjusted satisfaction degree that can be accepted.
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Table 8. The first roundadjusted group outranking flow orders of every alternative about the
worst aspect.

x1 x2 x3 x4 x5

Ũ1 5 4 2 3 1
Ũ2 5 3 2 4 1
Ũ3 5 2 4 3 1
ŨG 5 3 2 4 1

Table 9. The first roundadjusted satisfaction index degree about the worst aspect.

ϕ1
(1) ϕ1

(2) ϕ1
(3) ϕ1

(G)

Others-to-Worst 0.90 1.00 0.70 0.87

Generally, we set the adjustment times as three. Although, the result is surely better by Theorem 1.
Adjusted results may be too far from reality and lose the value of judging the alternatives, when we
adjust too many times.

Step 11. The final ranking results are x5 � x2 � x4 � x3 � x1 from the best-to-others aspect
and x5 � x3 � x2 � x4 � x1 from the others-to-worst aspect.

Step 12. End.

5. Discussions

For any two intuitionistic multiplicative numbers (IMNs), based on Definition 1, in order to
rank them, M.M. Xia et al. [20] defined the following comparison laws:

Let α = (ρα,σα) be an IMN; we call s(α) = ρα/σα the score function of α and h(α) = ρασα the
accuracy function of α. To compare any two IMNs α1 = (ρα1 ,σα1) and α2 = (ρα2 ,σα2), the following
laws can be given:

(1) If s(α1) > s(α2), then α1 > α2,
(2) If s(α1) = s(α2) and if h(α1) > h(α2), then α1 > α2; and if h(α1) = h(α2), then α1 = α2.

Utilizing these laws, we compare the same numerical example from Section 4, and the ranking
results are summarized in Table 10. Z.S. Xu [25] also studied the intuitionistic multiplicative preference
relations (IMPR). He proposed a method to derive the priority weights under the IMPR environment.
We apply Approach I from Xu’s method to calculate the numerical example from Section 4, and the
ranking results are also summarized in Table 10.

Table 10. The ranking results from two different methods.

Best-to-Others Others-to-Worst

M.M. Xia et al. x5 � x1 � x3 � x4 � x2 x5 � x1 � x3 � x4 � x2
Z.S. Xu x5 � x3 � x2 � x1 � x4 x5 � x3 � x2 � x4 � x1

Although the ranking results have some differences, the best alternative is the same. This
means that our method is also reasonable. Every method has its own benefits and drawbacks, and
stresses different core concerns. Next, we point out some advantages and drawbacks of the proposed
methodology, comparing with the other methods for multi-criteria group decision-making problems.

Advantages:

(a) The proposed method of this paper is based on BWM. It can decrease the comparison times
to 2n− 3, compared with at least (n− 1)n/2 times (AHP, TOPSIS). We increase the method’s
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efficiency in this way. Besides, comparison results are expressed by intuitionistic multiplicative
preference relations, which is different from the original BWM.

(b) We study the ELECTRE III method with intuitionistic multiplicative preference relations.
Additionally, we introduce a distance formula, which can measure the distance between two
IMNs. This distance formula is also suitable for interval-valued fuzzy preference relations. The
research scope would be expended with this formula.

(c) Comparing with the general ELECTRE method [3,37,41], based on BWM, we give the outranking
functions with two kinds of matrices: the best-to-others, which is about the comparison results of
the best alternative over the others; the others-to-worst, which is about the comparison result
of the other alternatives over the worst one. That is consistent with the practical situation and
improves the rationality of the final ranking result.

(d) Our method can change some improper elements from the decision matrices automatically.
This means that within a limited condition, our method would readjust itself by preference
relations from the given matrices, if the decision results do not meet the requirements.

Drawbacks:

(a) Our decision matrices are obtained based on BWM, including two parts: the matrix about
best-to-others and the matrix about others-to-worst. Each kind of matrix does not have the
problems of consistency. However, there exists a consistency issue between comparisons about
best-to-others and others-to-worst, which have not been discussed in this paper.

(b) The proposed method is based on the intuitionistic preference relations. However, in some
more complicated conditions, this tool may still be beyond expression. Therefore, this research
should be discussed further with more practical tools, such as interval-valued intuitionistic
preference relations.

6. Conclusions

The method proposed in this paper is a combination for solving MCGDM problems based on
the BWM method and the ELECTRE III method. Specially, we express the comparison results of the
BWM method with intuitionistic multiplicative preference relations, which is closer to real situations.
Additionally, the BWM method decreases the comparison times from n(n− 1)/2 to 2n− 3. In addition,
we discuss the decision matrices automatically, which means that we can change some improper
elements in certain limitations without bothering the DMs to reappraise again. All of the highlights
show that is meaningful to do this research. In the future, on the one hand, we hope that our method
can be extended to solve more complex MCGDM problems with more practical tools; on the other hand,
we would study the consistency degree of comparisons between best-to-others and others-to-worst.

Acknowledgments: This paper is supported by the funds: National Natural Science Foundation of
China (71272148). These funds covered the costs to publish in open access.

Author Contributions: Xinshang You is responsible for the article’s theoretical demonstration, model construction,
data analysis and English writing. Tong Chen takes charge of macro-direction and foundation item. Qing Yang
contributes to the data collection, algorithms analysis, English editing and corresponding issues.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Benayoun, R.; Roy, B.; Sussman, N. Manual de reference du programme electre. In Note De Synthese
et Formaton; Direction Scientifque SEMA: Paris, France, 1966.

2. Leyva-Lopez, J.C. Multi criteria decision and application to a student selection problem. Pesqui. Oper. 2005,
25, 45–68.

3. Papadopoulos, A.; Karagiannidis, A. Application of the multi-criteria analysis method ELECTRE III for the
optimization of decentralized energy systems. Omega 2008, 36, 766–776.



Symmetry 2016, 8, 95 15 of 16

4. Radziszewska-Zielina, E. Methods for selecting the best partner construction enterprise in terms of
partnering relations. J. Civ. Eng. Manag. 2010, 16, 510–524.

5. Marzouk, M.M. ELECTRE III model for value engineering applications. Autom. Constr. 2011, 20, 596–600.
6. Vahdani, B.; Mousavi, S.M.; Tavakkoli-Moghaddam, R. A new design of the elimination and choice

translating reality method for multi-criteria group decision making in an intuitionistic fuzzy environment.
Appl. Math. Model. 2013, 37, 1781–1799.

7. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353.
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