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Abstract: We reveal the frame-exchange space-inversion (FESI) symmetry and the frame-exchange
time-inversion (FETI) symmetry in the Lorentz transformation and propose a symmetry principle
stating that the space-time transformation between two inertial frames is invariant under the FESI
or the FETI transformation. In combination with the principle of relativity and the presumed
nature of Euclidean space and time, the symmetry principle is employed to derive the proper
orthochronous Lorentz transformation without assuming the constancy of the speed of light and
specific mathematical requirements (such as group property) a priori. We explicitly demonstrate
that the constancy of the speed of light in all inertial frames can be derived using the velocity
reciprocity property, which is a deductive consequence of the space–time homogeneity and the space
isotropy. The FESI or the FETI symmetry remains to be preserved in the Galilean transformation at
the non-relativistic limit. Other similar symmetry operations result in either trivial transformations
or improper and/or non-orthochronous Lorentz transformations, which do not form groups.
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1. Introduction

The importance of the Lorentz transformation (LT) in the special theory of relativity can hardly be
overemphasized. Physical laws are Lorentz-covariant between two inertial frames; namely, the form of
a physical law is invariant under the LT. This is called the Lorentz symmetry. The proper orthochronous
LT forms a group and reduces to the Galilean transformation (GT) as the speed of light approaches
infinity. The mathematical structure of the LT is simple, while the conceptual change involved
in interpreting it properly is profound. This explains the relentless interest in re-deriving and
re-deciphering the LT, even a century after the birth of the theory.

Einstein’s original derivation of the LT [1] was based on the principle of relativity and the
assumed constancy of the speed of light (Einstein’s second postulate). It is now known that the second
postulate is not a necessary ingredient in the axiomatic development of the theory. It has been shown,
as far back as 1910s [2,3], that the LT can be derived using the velocity reciprocity property for the
relative velocity of two inertial frames and a mathematical requirement of the transformation to be
a one-parameter linear group [4–7]. In fact, the mathematical form of the LT was known before
Einstein published his seminal paper. Pauli provided a brief historical background of the theoretical
development of the LT before Einstein’s 1905 paper [4]. In particular, it was Poincaré who first
recognized the group property of the LT and named it after Lorentz [8]. Both the velocity reciprocity
property [9,10] and the linearity property [11,12] can be deduced from the presumed space–time
homogeneity and the space isotropy, which are the embedded characteristics of Euclidean space
and time [13,14]. Therefore, special relativity can be formulated on a weaker base of assumptions
than Einstein’s, and special relativity becomes purely kinematic with no connection to any specific
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interactions or dynamical processes. These efforts are more than pedantic pursuits for intellectual
satisfaction, but greatly extend the original scope for unifying electrodynamics and mechanics. To the
present knowledge it is generally believed that the Lorentz symmetry serves as a universal principle
to describe the world manifold in which all fundamental processes take place, except, perhaps,
for the quantum gravity phenomena [15]. To put it in a modern context and future perspective,
recent interests in reformulating the logical foundation of special relativity have been mainly invoked
by the experimental search for the evidence of the Lorentz-violating effects [15–17]. For example,
relaxing some presumed postulates can lead to a “Very Special Relativity” proposed by Cohen and
Glashow [18–20] or an extension of special relativity by Hill and Cox [21] that is applicable to relative
velocities greater than the speed of light. These extensions largely widen our scope of exploring the
more fundamental side of Lorentz symmetry and give impetus to further experimental research.

A prevailing theme in the literature is to reformulate special relativity in terms of intrinsic
space–time symmetry principles [22–26], where the form of the space–time transformation is invariant
under the symmetry operations, and auxiliary mathematical requirements such as group property can
be minimized. The practice of replacing the mathematical requirement of group property by a more
fundamental symmetry principle is appealing. Not only is it more axiomatically natural from the
physical point of view, but it also provides a perspective capable of admitting fundamentally new
physical concepts. In this paper, we sort out the possible space–time symmetries which leave the LT
invariant under the corresponding symmetry operations. One of the most surprising observations is
that the LT is intrinsically related to some discrete space–time symmetry, while the LT itself forms the
basis to describe the continuous Lorentz symmetry to gauge physical laws. We reveal two symmetry
operations under which the LT is invariant; namely, (1) the frame-exchange space-inversion (FESI);
x′ ↔ −x , c′t′ ↔ ct ; and (2) the frame-exchange time-inversion (FETI); x′ ↔ x , c′t′ ↔ −ct . To best
demonstrate the utility of the proposed symmetry principle, we re-derive the LT without assuming
the mathematical group property a priori. We show that either the FESI or the FETI can lead to the
proper orthochronous LT, and both are preserved for the GT. This is the main contribution of this
work. Additionally, as has been known for a long time, we demonstrate that the second postulate can
be obtained by using the velocity reciprocity property [9,10]. Moreover, the necessary condition for
physical causality is shown to be a deductive consequence of this symmetry principle.

2. Derivation of the Lorentz Transformation

Originally motivated, we start with Einstein’s simple derivation of the LT in a popular science
exposition of relativity in 1916, in which he employed a symmetrized form of the space–time
transformation [27]. Although there have been a number of analyses on the 1905 paper [28–30],
this later formulation seems to receive little attention for its implications. In our point of view,
the formulation has the great advantage of providing streamlined reasoning and heuristic inspiration,
and is therefore suitable for presentation of the intrinsic symmetry hidden in the LT.

Let us now proceed to derive the LT. Consider the two inertial coordinate systems K and K’
depicted in Figure 1a. The x- and x’-axes of both systems are assumed to coincide permanently, and
the origins of the two systems coincide at t = 0. If a light-ray is transmitted along the positive direction
of x and x’, then the propagation of the light-ray is described by x− ct = 0 in K and x′ − c′t′ = 0 in
K’, respectively, where c and c’ are the light-speed measurements in K and K’. Our purpose is to find
a system of transformation equations connecting x, t in K and x’, t’ in K’. It is obvious that the simplest
equations must be linear in order to account for the presumed homogeneity property of space and
time, which can be formally proved [11,12,27]. Following Einstein [27], a symmetrized form of the
transformation reads:

x′ − c′t′ = λ (x− ct) (1)

where λ is a constant which may depend on the constant velocity v. Similar considerations, when
applying to the light-ray being transmitted along the negative direction of x and x’, lead to:
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x′ + c′t′ = µ (x + ct) (2)

where µ is another constant not necessary to be the same as λ [27]. Different from Einstein’s derivation,
we do not use the second postulate; namely, we do not require c’ = c at this point. We now show that
the constancy of the speed of light can be obtained from the velocity reciprocity property. For a proper
observer who is “at rest” in K, K’ is “moving” with a constant velocity v towards the positive x-axis.
The origin of K’ is specified by x’ = 0 in Equations (1) and (2); so, we have:

λ− µ

λ+ µ
=

v
c

(3)

Similarly (see Figure 1b), for a proper observer who is “at rest” in K’, K is “moving” with a constant
velocity v towards the negative x’-axis (the velocity reciprocity property) [9,10]. The origin of K is
specified by x = 0 in Equations (1) and (2), so we have:

λ− µ

λ+ µ
=

v
c′

(4)

Equations (3) and (4) lead to c′ = c. As we mentioned, this fact has been known for a long time.
Here we explicitly demonstrate it.

To determine the specific form of the transformation, we employ the symmetry principle.
If Equations (1) and (2) are invariant under the FESI or the FETI transformation, it is found that
λ and µ are mutually in inverse proportion to each other:

λµ = 1 (5)

For example, applying the FETI symmetry on Equation (1), we obtain x + ct = λ(x′ + c′t′).
Using Equation (2), we have x+ ct = λµ(x+ ct), thus yielding Equation (5). Together with Equation (3),
we obtain:

λ =
√

c+v
c−v

µ =
√

c−v
c+v

(6)

and c must be greater than v in order to constrain λ and µ being real numbers. Substituting Equation (6)
into (1) and (2), we obtain:

x′ = 1√
1−v2/c2 (x− vt)

t′ = 1√
1−v2/c2

(
t− v

c2 x
) (7)

which is the proper orthochronous Lorentz transformation.

3. Discussion

There are several interesting points to note from the above derivation of the LT. First, using the
symmetrized form of the transformation and the symmetry principle, all of the mathematical formulas
are essentially symmetric. This clearly gives some aesthetic satisfaction; second, this formulation
demonstrates that the second postulate is not at all necessary to be assumed a priori [31–37].
The velocity reciprocity property alone leads to the constancy of the speed of light. This may justify the
numerous studies re-deriving the LT by dispensing with the second postulate. On the other hand, if we
did use Einstein’s second postulate, Equation (5), together with Equations (1)–(3), it suffices to obtain
the LT while the velocity reciprocity property, Equation (4), now becomes a deduction. However, in this
way, we could not see that the existence of an invariant quantity with a dimension of speed is related
to the space isotropy. As has been constantly criticized by others, the (experimentally found) constancy
of light-speed is just an exhibition of the nature of space–time, but not a special property of any
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specific theory such as electrodynamics. It just happens that light is propagating in vacuum in this
specific speed; third, the FESI or the FETI symmetry principle replaces the group assumption of the
transformation in determining the functional form of the transformation parameters. The resulting LT
is proper and orthochronous, and thus forms a group post priori. Finally, the necessary condition of c
being a limiting velocity for the physical requirement of causality can be obtained without resorting to
auxiliary postulates. It is simply the result of the requirement of the transformation parameters being
real numbers.

Other similar space–time operations result in either trivial transformations or improper and/or
non-orthochronous LTs, which do not form groups [38]. For example, the following operations:

x′ ↔ x, c′t′ ↔ ct
x′ ↔ −x, c′t′ ↔ −ct

x′ ↔ ct, c′t′ ↔ x
x′ ↔ −ct, c′t′ ↔ −x

(8)

lead to the trivial transformation, λ = µ = 1, while the following operations:

x′ ↔ ct, c′t′ ↔ −x
x′ ↔ −ct, c′t′ ↔ x
x′ ↔ c′t′, x ↔ −ct
x′ ↔ −c′t′, x ↔ ct

(9)

result in improper and/or non-orthochronous LTs. Field [25] was able to derive the proper
orthochronous LT using the space–time exchange (STE); x′ ↔ ct′ , x ↔ ct (for completeness,
the operation of x′ ↔ −ct′ , x ↔ −ct , termed STE’, is also a proper choice, although it was not
discussed in the paper). Notice that these operations are performed in the same frames, respectively.
It can be seen that Equations (1) and (2) are also invariant under the STE (or the STE’) operation.
However, it has been pointed out [39] that the STE symmetry is not exactly preserved for the GT,
although the “broken symmetry” has its own subtleties [40,41]. On the other hand, the FESI or FETI
symmetry remains to be valid at the non-relativistic limit as c→ ∞ , as can be shown easily.

Another compact presentation which is consistent with the FESI or the FETI symmetry utilizes
an involutive form of the transformation [42–44]. Starting with a change of sign of the spatial coordinate
in K only; x → −x , Equations (1) and (2) read:

x′ − c′t′ = −λ (x + ct) (10)

and:
x′ + c′t′ = −µ (x− ct) (11)

respectively. If one now assumes that the above equations are involutive; namely, they are invariant
under the operations x′ ↔ x and c′t′ ↔ ct , one obtains Equation (5). Unfortunately, the resulting LT is
an improper orthochronous LT, and the symmetry is not preserved for the GT (for completeness,
if one starts with t→ −t in K only and assumes the transformation equations are involutive,
one obtains yet another improper orthochronous LT). To obtain the physically acceptable proper
orthochronous LT, one has to reverse the sign of x (in K only) post priori, thus making the whole
methodology ad hoc. Although this involutive formulation has the mathematical advantage of utilizing
well-established matrix algebra (e.g., the transformation matrix is involutory), it is not suitable to be
promoted to a physical principle.



Symmetry 2016, 8, 94 5 of 6
Symmetry 2016, 8, 94    5 of 6 

 

 

Figure 1. Two inertial frames K(O) and K’(O’) with (a) K’ moving with a relative constant velocity v 

viewed by a proper observer in K; and (b) K moving with a relative constant velocity –v viewed by a 

proper observer in K’. 

4. Conclusions 

In  concluding  this paper, among  the possible discrete‐type  space–time  symmetry operations 

studied  herein which  leave  the  coordinate  transformation  between  two  inertial  frames  formally 

similar  to  the  LT,  we  have  found  that  only  the  FESI  or  the  FETI  satisfies  the  following  two 

requirements: (1) the final resulting LT is proper and orthochronous and thus forms a group; and (2) 

the  symmetry  remains  to be valid  at  the non‐relativistic  limit. We demonstrate  the utility of  the 

revealed  symmetry  principle  through  a  derivation  of  the  LT which  closely  follows  the  logic  of 

Einstein  in  1916.  The  mathematical  requirement  of  the  group  property  for  the  space–time 

transformation is not assumed a priori, but becomes a natural result due to the intrinsic symmetry 

principle of space–time. 

Acknowledgments:  This  work  was  partly  supported  by  the  National  Taiwan  University.  This  work  is 

financially  supported  by  the  Ministry  of  Science  and  Technology  (MOST)  of  Taiwan  through  MOST 

104‐2221‐E‐002‐032‐MY3. 

Conflicts of Interest: The author declares no conflict of interest. 

References 

1. Einstein, A. Zur elecktrodynamik bewegter korper. Ann. Phys. (Leipzig) 1905, 17, 891–921. (In German) 

2. Von Ignatowsky, W.A. Einige allgemeine bemerkungen zum relativitatsprinzip. Verh. Deutch. Phys. Ges. 

1910, 12, 788–796. (In German) 

3. Frank,  P.;  Rothe,  H.  Uber  die  transformation  der  raumzeitkoordinaten  von  ruhenden  auf  bewegte 

systeme. Ann. Phys. (Leipzig) 1911, 34, 825–855. (In German) 

4. Pauli, W. Theory of Relativity; Pergamon: London, UK, 1958. 

5. Arzelies, H. Relativistic Kinematics; Pergmon: New York, NY, USA, 1966. 

6. Lee, A.R.; Kalotas, T.M. Lorentz transformations from the first postulate. Am. J. Phys. 1975. 43, 434–437. 

7. Lėvy‐Leblond, J.‐M. One more derivation of the Lorentz transformation. Am. J. Phys. 1976, 44, 271–277. 

8. Poincaré, H. On the Dynamics of the Electron. Comptes rendus. 1905, 140, 1504–1508. (In French) 

9. Berzi, V.; Gorini, V. Reciprocity principle and the Lorentz transformations. J. Math. Phys. 1969, 10, 1518–1524. 

10. Bacry, H.; Lėvy‐Leblond, J.‐M.J. Possible kinematics. Math. Phys. 1968, 9, 1605–1614. 

11. Eisenberg, L.J. Necessity of  the  linearity of  relativistic  transformations between  inertial  systems. Am. J. 

Phys. 1967, 35, doi:10.1119/1.1974203. 

12. Baird, L.C. Linearity of the Lorentz transformation. Am. J. Phys. 1976, 44, 167–171. 

13. Einstein, A. The Principle of Relativity; Methuen: London, UK, 1923. 

14. Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1955. 

15. Liberati,  S.  Tests  of  Lorentz  invariance:  A  2013  update.  Class.  Quantum  Gravity  2013,  30, 

doi:10.1088/0264‐9381/30/13/133001. 

Figure 1. Two inertial frames K(O) and K’(O’) with (a) K’ moving with a relative constant velocity v
viewed by a proper observer in K; and (b) K moving with a relative constant velocity –v viewed by
a proper observer in K’.

4. Conclusions

In concluding this paper, among the possible discrete-type space–time symmetry operations
studied herein which leave the coordinate transformation between two inertial frames formally similar
to the LT, we have found that only the FESI or the FETI satisfies the following two requirements:
(1) the final resulting LT is proper and orthochronous and thus forms a group; and (2) the symmetry
remains to be valid at the non-relativistic limit. We demonstrate the utility of the revealed symmetry
principle through a derivation of the LT which closely follows the logic of Einstein in 1916.
The mathematical requirement of the group property for the space–time transformation is not assumed
a priori, but becomes a natural result due to the intrinsic symmetry principle of space–time.
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