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Abstract:



In this paper, zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged [image: there is no content] nonlinear [image: there is no content]-model. If [image: there is no content], [image: there is no content], is the quantized magnetic flux of the two species of BPS vortex solutions, [image: there is no content] linearly-independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension [image: there is no content] of these stringy topological defects is thus locally shown.
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1. Introduction


[image: there is no content] models in two-dimensional Euclidean space-time were introduced by Golo and Perelomov (see [1]) with the goal of discussing self-dual [image: there is no content]-instantons in a complex/Khӓler framework. These systems in Minkowski [image: there is no content] space-time are a variant of the [image: there is no content] non-linear sigma model, which is constructed in turn as a restriction of the linear sigma model of Gell-Mann and Levy [2] to the dynamics of their Goldstone bosons. Several generalizations of the non-linear [image: there is no content]-sigma model appeared as low energy effective theories in hadronic physics related to current algebras before the surge of non-Abelian gauge theories in particle physics. In this work, we shall focus on a model belonging to the family of gauged non-linear Sigma models (see, e.g., [3]), which might be treated also in the interaction with gravity (see [4]), granting to this kind of systems a role in cosmology.



In particular, we shall concentrate on the simplest model studied in [5], where we added to the action of the gauge [image: there is no content]-model a potential energy density depending only on the fields and guaranteeing that both the scalar and vector particles are massive. Moreover, we showed that in this model, there are two species of BPS vortices living respectively in the south and north charts. Because our vortex solutions have cylindrical symmetry, they can be interpreted as cosmic strings conveying by themselves cosmological implications if the model is defined in curved space-time; see inter alia the monographic textbook [6] and the references quoted therein.



Besides letting the system live in the Higgs phase, our choice of the potential energy density is guided by the existence of a self-dual structure: first-order static field equations together with a topological bound. This structure arises at the critical point where the scalar and vector particle masses are equal, and it is the requirement to build generalizations of these gauge non-linear sigma models with extended supersymmetry. In fact, in the disguise of [image: there is no content] instantons, Nitta and Vinci discovered in [7] the same topological defects in the framework of the two-dimensional [image: there is no content] SUSY sigma model that we described within a purely bosonic context in [5]. The promotion of the field theory model at the stake of a [image: there is no content] supersymmetric status is possible through a standard procedure using the K[image: there is no content]hler structure of [image: there is no content].



Our goal in this essay, however, is to analyze thoroughly the BPS vortex zero modes of the two species. Despite being in a Higgs phase, our model exhibits zero gap fluctuations around the BPS vortices. In [8,9], we developed this task in a fully-detailed manner for the BPS vortices in the Abelian Higgs model. The information that we acquired in this work was the key to the computations achieved in [10] of the one-loop BPS vortex string tension shifts in the AHM when these objects are immersed in the quantum world. We plan thus to establish the analogies and differences between the zero modes of the fluctuation of the standard self-dual vortices and those of the two species of BPS vortices in our gauged [image: there is no content] model. Because zero modes provide a bridge between the classical and quantum domains, we hope that the results obtained here will be useful in future research about the quantum properties of the two species of BPS [image: there is no content] vortices.




2. A Gauge [image: there is no content] Massive Non-Linear [image: there is no content]-Sigma Model with Two Self-Dual Vortex Species


We shall address a system of three scalar fields [image: there is no content], which take values on a [image: there is no content]-sphere target space:


ϕ(xμ):R1,3→S2whereϕ12(xμ)+ϕ22(xμ)+ϕ32(xμ)=ρ2andxμ≡(x0,x1,x2,x3)∈R1,3











We also denote [image: there is no content] and choose the metric tensor in [image: there is no content] as: [image: there is no content]. Stereographic projections respectively from the north and south poles of the sphere to the plane lead to the south and north charts that form a minimal atlas in [image: there is no content] intersecting at the equator. In these two planes/charts, we define the complex scalar fields:


ϕS(xμ)=ρϕ1(xμ)+iϕ2(xμ)ρ−ϕ3(xμ),ϕN(xμ)=ρϕ1(xμ)−iϕ2(xμ)ρ+ϕ3(xμ),ρ>0








distinguished by the superscripts S and N. The use of complex coordinates characterizes the target [image: there is no content]-sphere as the complex manifold [image: there is no content], i.e., the complex projective line. The information coming from one of these charts is translated into the other one via the transition function [image: there is no content], which allows the global definition of the [image: there is no content] by prescribing how the two charts are related. We remark that our choice of the transition function reverses the orientation of the north chart with respect to that of the south chart. The reason for choosing this option is to deal later with scalar fields coupled to the gauge field with identical electric charges in both charts. The massless Lagrangian [image: there is no content] describing the dynamics of the [image: there is no content] model written in terms of the south chart fields reads:


L0S[ϕS]=124ρ4(ρ2+|ϕS|2)2∂μϕS*·∂μϕS











The global [image: there is no content]-symmetry with respect to changes in the field phase [image: there is no content] may be promoted to local invariance following the standard procedure: a gauge field [image: there is no content] enters the system and supplements the local [image: there is no content] transformation [image: there is no content] with the gauge transformation [image: there is no content]. A potential energy density yielding spontaneous breaking of the gauge symmetry in the Higgs mechanism mode will be also allowed. All of this leads to the Lagrangian of a gauged massive Abelian non-linear [image: there is no content] model with dynamics governed by the Lagrangian:


LS[ϕS,Aμ]=−14FμνFμν+124ρ4(ρ2+|ϕS|2)2DμϕS*DμϕS−US(|ϕS|2)



(1)







The covariant derivatives and the electromagnetic tensor are defined as usual: [image: there is no content] and [image: there is no content]. In order to write the Lagrangian (1) in the north chart, we need to know how the covariant derivatives and the potential energy density read there:


DμϕS=−ρ2(ϕN*)2DμϕN*andUN(|ϕN|2)=USρ4|ϕN|2











Thus, in the other chart, the Lagrangian becomes:


[image: there is no content]



(2)




a formula showing, together with (1), that this model is globally defined on [image: there is no content]. For the sake of concision, we shall write the Lagrangians (1) and (2) in the unified form:


[image: there is no content]



(3)




where [image: there is no content] stands for either [image: there is no content] or [image: there is no content] if either the south or the north charts are alternatively considered in the description of the model. In both charts, the metric factor in the target manifold, which appears multiplying the kinetic terms respectively in (1) and in (2), is written in the form:


g(|ϕ|2)=4ρ4(ρ2+|ϕ|2)2











Notice that the Abelian Higgs model Lagrangian follows the generic form (3) when the metric factor [image: there is no content] is the unity, and there is only one chart in the non-compact target space [image: there is no content]. We recall that the celebrated Abrikosov–Nielsen–Olesen vortex filaments arise in the AHM as cylindrically-symmetric solutions of the field equations grown from planar topological solitons endowed with a quantized magnetic flux. The ANO vortices are static configurations; henceforth, their investigation requires the temporal gauge [image: there is no content]. Axial symmetry is realized in two steps: First, one searches for field configurations living in the [image: there is no content] plane: [image: there is no content] and [image: there is no content], [image: there is no content], a restriction that is consistent only in the axial gauge [image: there is no content]. Second, in the restricted second-order field equations, one looks for solutions with these characteristics and appropriate boundary conditions, which force the quantization of the magnetic flux. Repeated infinitely in the third dimension, the ANO magnetic flux tubes are obtained from these planar vortex solutions having finite energy per unit length. If the parameters of the AHM are such that the system lives at the critical point between Type I and Type II superconductivity, there exists a first-order PDE (Bogomolny) system of field equations, such that the vortex solutions, usually called self-dual or BPS vortices, saturate a topological bound, i.e., their energy per length unit is proportional to the magnetic flux.



Closely following the developments in [5], we summarize the investigation of BPS vortex solutions starting from the Lagrangian (3), which covers the two species of BPS vortices in our gauged massive Abelian [image: there is no content] model. From this Lagrangian, one easily derives the energy per unit of length functional for static and planar configurations:


V[ϕ,Aj]=∫R2d2x12F122+12g(|ϕ|2)(Djϕ)*Djϕ+U(|ϕ|2)



(4)







We then focus on the set of all static planar configurations with finite energy per unit length: [image: there is no content]. Membership to [image: there is no content] space demands the following asymptotic behavior:


limr→∞ϕ*ϕ=|v|2,v∈M={v∈C:U(|v|2)=0}andlimr→∞Djϕ=0,r=x12+x22,



(5)




where [image: there is no content] is the set of zeroes of the non-negative function [image: there is no content]. Moreover, we shall restrict ourselves to a subclass of models governed by the Lagrangian (3) for which the energy per unit length functional (4) admits a Bogomolny arrangement. It was proven in [5] that [image: there is no content] is the sum of positive (perfect squares) terms plus a (positive) topological quantity:


V[ϕ,A]=12∫R2d2xF12±12G(ϕ*ϕ)−α22+g(|ϕ|2)|D1ϕ±iD2ϕ|2+α22|∫R2d2xF12|



(6)




when the scalar field potential term [image: there is no content] is of the form:


U(ϕ)=18G(|ϕ|2)−α22whereG(z)=∫0zdzg(z)



(7)




taking into account that [image: there is no content]. Notice that [image: there is no content], [image: there is no content] because of the definition in (7), and we choose [image: there is no content] in order to leave room for spontaneous symmetry breaking of the [image: there is no content] symmetry. Solutions of the first-order PDE system:


D1ϕ±iD2ϕ=0,F12±12G(|ϕ|2)−α2=0



(8)




are thus the minima of the energy per unit length and, therefore, also solve the second-order field equations. Moreover, the boundary conditions (5) ensure that the vector field [image: there is no content] is asymptotically purely vortical and, via Stoke’s theorem, that the total magnetic flux is a topological quantity given by the degree of the map from the circle at infinity [image: there is no content] to the manifold [image: there is no content] provided by the asymptotic behavior of the scalar field. BPS or self-dual vortices are static and [image: there is no content]-independent field configurations that solve the PDE system (8) subjected to the boundary conditions (5). Thus, the BPS vortex solutions saturate the Bogomolny bound [image: there is no content], where n is an integer, becoming the configurations of minimum energy per unit of length in each disconnected sector of the configuration space. The BPS magnetic flux lines are accordingly stable minima of the functional [image: there is no content], which do not exhibit fluctuation modes of negative energy. Saturation of the Bogomolny bound, however, is compatible with flat directions in configuration space [image: there is no content] of neutral equilibrium. In [5], we applied the index theorem unveiling the existence of [image: there is no content] zero modes of fluctuations around the new species of vortices. This means that the quanta of magnetic flux are, at least locally, free of moving independently from each other through the moduli space of vortices.



Following the same strategy as in [8] on the research for vortex zero modes in the AHM, we shall first investigate the planar PDE system (8) by using polar coordinates in the [image: there is no content]-[image: there is no content] plane,


Drϕ=∓irDθϕ,1rFrθ=∓12G(|ϕ|2)−α2,θ=arctanx2x1



(9)




i.e., we shall explore circularly-symmetric, or cylindrically symmetric seen in three dimensions, BPS vortices. The remnant gauge freedom allows us to set the radial gauge condition [image: there is no content], and we shall plug the ansatz:


ϕ(r,θ)=fn(r)einθ,rAθ(r)=nβn(r),n∈Z



(10)




into the PDE system (9). We end with the non-linear ODE system:


dfndr=±nrfn(r)[1−βn(r)],nrdβndr=12α2−G[fn2(r)]



(11)




determining the radial profiles [image: there is no content] and [image: there is no content] of the scalar and vector field components of the self-dual vortices. From the boundary conditions (5), we derive the asymptotic behavior of these radial profiles:


limr→∞fn(r)=f∞=[G−1(α2)]12,limr→∞βn(r)=1



(12)




where [image: there is no content] denotes the inverse function to G. Because the vacuum orbit M={v:|v|2=G−1(α2)} is a circle in the target manifold, the scalar field at infinity [image: there is no content] provides a map from the boundary of the plane at infinity to [image: there is no content], which belongs to the n-th homotopy class of the first homotopy group of circle: [image: there is no content]. The winding number n of this map is also encoded in the fact that the magnetic flux is classically quantized:


ϕmagnetic=12π∫R2d2xF12=12πlimr→∞∮∂R2≡S∞1rAθ(r)dθ=n











We do not only require the asymptotic behavior (12) for the vortex solutions of (11), but we demand also regularity at the origin, which implies [image: there is no content] in (10). However, near the [image: there is no content] axis, the ODE system (11) can be solved analytically because if [image: there is no content] the equation for the radial profile becomes: [image: there is no content], which is solved by:


fn(r)=dnrn+o(rn+1)



(13)




where [image: there is no content] is an integration constant. We obtain next [image: there is no content] near the origin by solving the other linearized equation in (11):


nrdβndr=12α2+g(0)dn2r2n+o(r2n+1)



(14)







To derive this linearization, we used the radial profile (13) near the origin and the power series expansion of the [image: there is no content] function around [image: there is no content]: [image: there is no content] up to the [image: there is no content]-th order. Solving for [image: there is no content] in the linear ODE (14) is an easy task:


βn(r)=e2r2+e2n+2r2n+2+o(r2n+3)wheree2=α24n,e2n+2=g′(0)dn24n(n+1)



(15)







The vortex radial profiles written in (13) and (15) clearly show that [image: there is no content], i.e., both the scalar and the vector vortex fields vanish at the vortex center [image: there is no content] as demanded. The behavior in the intermediate region varies with the choice of potential [image: there is no content], henceforth with the metric [image: there is no content] of the target manifold. Since the ODE system (11) is in general not analytically solvable, a numerical scheme is usually used to obtain solutions in the whole radial range compatible with the prescribed behavior near [image: there is no content] and close to [image: there is no content].



We come back now to the non-linear [image: there is no content]-sigma model characterized at the beginning of this section. The compatibility relation (7) between the metric in the target space and the potential fixes the scalar field self-interaction in the south chart to be:


US(|ϕS|2;α2)=184ρ2|ϕS|2ρ2+|ϕS|2−α22



(16)







If [image: there is no content], a spontaneously broken symmetry scenario arises from the structure of the potential (16). The family of degenerate vacua, which in the south chart coordinates reads:


M=vS∈C:|vS|=αρ4ρ2−α2



(17)




constitutes a parallel circle on the [image: there is no content]-sphere target manifold. The mass of the vector particle is the coefficient of the quadratic term [image: there is no content] in the Lagrangian after choosing one point in the vacuum circle and expanding the scalar field near this point, [image: there is no content]:


mV2=4ρ4|vS|2(ρ2+|vS|2)2=α21−α24ρ2.



(18)







Simili modo, expanding the purely scalar field contribution to the Lagrangian in the unitary gauge where the spurious Goldstone boson is set to zero, [image: there is no content],


LS(|vs|,φ1S(xμ),φ2S(xμ)=0)=124ρ4(ρ2+|vS|2)2∂μφ1S(xμ)∂μφ1S(xμ)−184ρ2(|vS|+φ1S)2ρ2+(|vS|+φ1S)2−α22≃4ρ4(ρ2+|vS|2)2∂μφ1S(xμ)∂μφ1S(xμ)−124ρ2|vS|2(ρ2+|vs|2)2·φ1S(xμ)φ1S(xμ)+o((φ1S)3)








up to the quadratic order in the Higgs field [image: there is no content], one finds that the scalar particle mass is also:


mH2=4ρ4|vS|2(ρ2+|vS|2)2=α21−α24ρ2.



(19)







At least in the south chart, our model verifies that: (1) in a Higgs phase, all of the particles have mass; (2) at the critical point between Type I and Type II superconductivity, scalar and vector particles have the same mass.



Coordinates in the north chart are related to those in the south chart by means of the (orientation reversing) transition function: [image: there is no content]. In the north chart, the potential (16) thus reads:


UN(|ϕN|2;α2)=184ρ2|ϕN|2ρ2+|ϕN|2−4ρ2+α22.



(20)







The vacuum orbit seen in the north chart is the parallel circle:


|vN|2=4ρ2α2−1ρ2.



(21)







Because [image: there is no content], one realizes that it is the same parallel as (17), but seen from the south pole. Moreover, the masses of the scalar and vector particles in the north chart:


[image: there is no content]








are the same as in the south chart, and the model is globally defined in target space.



The vacuum orbit parallel [image: there is no content] splits the sphere into two spherical caps, each cap entirely belonging to either the south or the north chart. This fact is behind the existence of two species of self-dual vortices. Each species takes values only on one of these two caps sharing only the parallel [image: there is no content] as the common boundary. We recall also that stereographic coordinates describing the vortex scalar field [image: there is no content] vanish at the vortex center. The two species of self-dual vortices in the gauged [image: there is no content]-model are classified as follows:

	
The south vortex species: If the [image: there is no content]-valued [image: there is no content] field describing the vortex solution points downwards at the vortex center, [image: there is no content], only the south chart enters the game. The first-order ODE system (11) determining the south vortex species reads:


dfnS(r)dr=±nrfnS(r)[1−βnS(r)],nrdβnSdr=12α2−4ρ2(fnS(r))2ρ2+(fnS(r))2]



(22)




where the obvious notation [image: there is no content] has been used.



	
The north vortex species: If the vortex configuration in [image: there is no content]-space valued at the origin points upwards, [image: there is no content], only the north chart plays a role. The self-duality ODE system solved by the north vortex species corresponds to:


dfnN(r)dr=±nrfnN(r)[1−βnN(r)],nrdβnNdr=124ρ2−α2−4ρ2(fnN(r))2ρ2+(fnN(r))2]



(23)




derived from (11) by taking the north chart fields and the appropriate function G.








Although the ODE systems (22) and (23) characterize two different species of vortex solutions, they exhibit related features. Notice that the potentials describing the scalar field interactions in each chart are connected by the relation:


[image: there is no content]








where the unified notation has been again used. This identity implies that the functional form of the first-order ODE systems (22) and (23) is symmetric under the interchange of the parameters [image: there is no content] and [image: there is no content]; simply look at the right members of the ODE’s on the right in (22) and (23). These two parameters are inversely related; the greater the first one is, the lesser the second one becomes, since [image: there is no content]. The values of [image: there is no content] and [image: there is no content] have a direct impact on the magnitudes of the derivatives of the function f and β, as we can check from (22) and (23). The asymmetry between the values of [image: there is no content] and [image: there is no content] causes the difference between the core sizes of the vortices belonging to different species. Recall that the vortex core is characterized by small values of the scalar field. In Figure 1, below, we have displayed the field profiles of these two species of vortices with vorticity (or winding number) [image: there is no content] for [image: there is no content] and [image: there is no content], tantamount to [image: there is no content].


Figure 1. Cross-sections of the cylindrically-symmetric self-dual three-vortices in the south chart (a,b) and in the north chart (c,d). Graphics of the scalar field [image: there is no content] (a,c) and the vector field [image: there is no content] (b,d) profiles are depicted by means of superimposed Mathematica vector and density plots.



[image: Symmetry 08 00091 g001]






In the first and second graphics in Figure 1, the scalar and vector field profiles of the three-vortex belonging to the south species are respectively depicted by means of arrow plots. The shadowed discs are centered at the zeroes of the scalar and vector fields. In the third and fourth graphics, analogous arrow plots for the north species of the three-vortex are shown. The components of the arrows specify the real and imaginary parts of the complex scalar fields. We observe in these figures that the winding number of the two species of three-vortex profiles is three: note that in any quadrant, every arrow rotates a [image: there is no content] angle. On these figures, we have plotted density representations of the modulus of the scalar field. The darker the color is, the lesser the value of the modulus is in such a way that the shadowed region in the scalar field graphics represents the vortex core. Notice that for our choice of [image: there is no content] and [image: there is no content], the south species vortices are thicker than their north species partners. The same routine has been followed for the representation of the vortex vector field profiles of the two species; see Figure 1b,d.




3. Zero Mode Fluctuations around Cylindrically-Symmetric BPS Vortices of the Two Species


We shall devote this section to investigate the zero modes (eigenmodes with null eigenvalue) that exist in the spectrum of cylindrically-symmetric vortex fluctuation operators of the two species. In [5], the existence has been shown of [image: there is no content] linearly-independent zero modes of fluctuation around BPS vortices living alternatively in one of the two charts by using the Callias–Bott–Weinberg index theorem; see [11,12,13]. These eigenmodes are the key ingredient to describe the adiabatic motion of vortices in their moduli space (see, e.g., [14]), and therefore, they are the cornerstone for studying the effective vortex dynamics in low energy scenarios.



3.1. Analytical Description of the Zero Modes of Fluctuation of Cylindrically-Symmetric BPS Vortices


In order to distinguish between the vortex solution and its fluctuations, we shall denote the scalar and the vector field profiles corresponding to a self-dual vortex solution of vorticity n as:


ψ(x→;n)=ψ1(x→;n)+iψ2(x→;n),V(x→;n)=(V1(x→;n),V2(x→;n))








while the scalar and vector field fluctuations of the self-dual vortex solution will be denoted as [image: there is no content] and [image: there is no content], respectively. Fluctuations of this type built around the BPS vortex are zero modes of fluctuation if the perturbed fields:


ϕ(x→)=ψ(x1,x2;n)+ϵφ(x→)andA(x→)=V(x1,x2;n)+ϵa(x→)








are still solutions of the Equation (8) at first order in ϵ. This requirement compels the fluctuation fields [image: there is no content], and [image: there is no content] to comply with the first order partial differential equations:


[image: there is no content]



(24)







In order to discard pure gauge fluctuations, we select the generalized background gauge in the fluctuation space:


−∂1a1−∂2a2+g(|ψ|2)(ψ1φ2−ψ2φ1)=0



(25)







Assembling the field fluctuations in a real four-column vector:


ξT(x1,x2)=a1(x1,x2)a2(x1,x2)φ1(x1,x2)φ2(x1,x2)








the first-order PDE system of the four Equations (24)–(25) may be re-written in the matrix form:


Dξ(x1,x2)=−∂2∂1g(|ψ|2)ψ1g(|ψ2|)ψ2−∂1−∂2−g(|ψ|2)ψ2g(|ψ2|)ψ1ψ1−ψ2−∂2+V1−∂1−V2ψ2ψ1∂1+V2−∂2+V1a1a2φ1φ2=0000.



(26)







Here, [image: there is no content] denotes the first-order partial differential matrix deformation operator, and the zero mode fluctuations [image: there is no content] are required also to be square-integrable vectors of a Hilbert space [image: there is no content] with the [image: there is no content]-norm:


∥ξ(x→)∥2=∫R2d2x(a1(x→))2+(a2(x→))2+g(|ψ|2)(φ1(x→))2+g(|ψ|2)(φ2(x→))2<+∞



(27)







We are interested in the zero mode fluctuations of cylindrically-symmetric n-vortex solutions, and thus, we plug the ansatz:


ψ1(x→,n)=fn(r)cos(nθ),ψ2(x→,n)=fn(r)sin(nθ)V1(x→,n)=−nβn(r)rsinθ,V2(x→,n)=nβn(r)rcosθ








into the PDE system (24)–(25). The outcome is the equivalent PDE system:


−1r∂ar∂θ+∂aθ∂r+1raθ+fn(r)g[fn2(r)]cos(nθ)φ1+fn(r)g[fn2(r)]sin(nθ)φ2=0−∂ar∂r−1rar−1r∂aθ∂θ−fn(r)g[fn2(r)]sin(nθ)φ1+fn(r)g[fn2(r)]cos(nθ)φ2=0−1r∂φ1∂θ−∂φ2∂r−nβn(r)rφ2+fn(r)arcos(nθ)−fn(r)aθsin(nθ)=0−∂φ1∂r−nβn(r)rφ1+1r∂φ2∂θ−fn(r)arsin(nθ)−fn(r)aθcos(nθ)=0



(28)




where we have used the polar representation for the vector fluctuation field: [image: there is no content] and [image: there is no content]. In the system (28), a discrete symmetry between the vectors in the kernel of the first-order operator [image: there is no content] is hidden: if [image: there is no content] is a zero mode (a solution of the system (28)), then [image: there is no content] is another zero mode orthogonal with respect to ξ. This symmetry reduces the search for the [image: there is no content] vortex zero modes of this field theory model to only n of them. We now investigate the analytical properties of these eigenfunctions. Given the cylindrical symmetry of the vortex solutions, we propose an angular dependence of the zero mode wave functions of the form:


ar(r,θ)=snk(r)sin[(n−k)θ],φ1(r,θ)=tnk(r)cos(kθ)aθ(r,θ)=snk(r)cos[(n−k)θ],φ2(r,θ)=tnk(r)sin(kθ)



(29)




where [image: there is no content] in order to deal with single-valued eigenfunctions: [image: there is no content]. Plugging the ansatz (29) into the system of four first-order PDE’s (28) reduces the problem to solving the following system of two coupled first-order ODEs:


dsnk(r)dr+1r(k+1−n)snk(r)+fn(r)g[fn2(r)]tnk(r)=0dtnk(r)dr+nβn(r)−krtnk(r)+fn(r)snk(r)=0



(30)




for the radial form factors [image: there is no content] and [image: there is no content] of the vortex zero mode fluctuations defined in (29). Notice that the norm (27) in the Hilbert space of normalizable fluctuations is simplified to:


∥ξ(x→,n,k)∥2=2π∫drrsnk2(r)+g(fn2(r))tnk2(r)



(31)







We can go further in our analytical calculations by solving for the radial function [image: there is no content] in the first equation of (30):


[image: there is no content]



(32)




and inserting the result in the second equation of (30). This maneuver leads to the second-order linear differential equation for the radial form factor [image: there is no content]:


−r2g[fn2(r)]d2snk(r)dr2+rg[fn2(r)](−1+2n−2nβn(r))+2nfn2(r)(1−βn(r))g′[fn2(r)]dsnk(r)dr++[g[fn2(r)](1+k−n)(1+k+n−2nβn(r))+r2fn2(r)(g[fn2(r)])2++2n(1−βn(r))(k+1−n)fn2(r)g′[fn2(r)]]snk(r)=0



(33)







In order to analyze the structure of zero mode vortex fluctuations, we must study thus the properties of the [image: there is no content]-integrable solutions of (33). We start this task by analyzing the behavior of the solutions of (33) near the origin, and subsequently, we shall examine its asymptotic behavior far away from the vortex center:

	
Regularity of the function [image: there is no content] at the origin: The Frobenius method can be applied to the linear differential Equation (33) at the regular singular point [image: there is no content]. We expand the function [image: there is no content] as a power series:


snk(r)=rs∑j=0∞cj(n,k)rj=rshnk(r),hnk(r)=∑j=0∞cj(n,k)rj



(34)




where the power s is chosen as the minimum value, such that [image: there is no content], i.e., [image: there is no content] is regular and does not vanish at the origin. The norm (31) is now rewritten in terms of the power series [image: there is no content]:


∥ξ(x→,n,k)∥2=2π∫drr2s+1hnk2(r)+(hnk′(r))2g[fn2(r)]fn2(r)



(35)




by using the relation (32) and (34). By plugging the power series expansion (34) into (33), we obtain the following recurrence relation between the coefficients [image: there is no content]:


∑j=02n+1(1+j+k−n+s)(1−j+k+n−2)g(0)cj(n,k)rj++∑j=22n+1−g(0)2ne2(−1+j+k−n+s)cj−2(n,k)rj+∑j=2n2n+1g′(0)dn2(−1+4n)(s+j−2n)+(1+k−n)(1+k+3n)cj−2n(n,k)rj+O(r2n+2)=0



(36)




where we have used the power series expansion (13) and (15) of the n-vortex radial form factors [image: there is no content] and [image: there is no content] together with the expansion of the metric factor evaluated at the vortex solution near its center:


g[fn2(r)]=g(0)+g′(0)r2n∑ℓ=0∞dn+2ℓr2ℓ2











Notice that in (36), the recurrences are cut at order [image: there is no content]; we will see shortly that there is no need for taking into account more terms to ensure regularity at the origin and, henceforth, [image: there is no content]-integrability, accounting for only the dominant terms near the vortex center.



For [image: there is no content], the recurrence (36) is simply:


[image: there is no content]



(37)







From hypothesis [image: there is no content], the indicial Equation (37) with [image: there is no content] fixes the value of the characteristic exponents: [image: there is no content] and [image: there is no content]. Both possibilities are equivalent: simply redefine k, [image: there is no content]. Thus, we shall stick to the first option in the sequel. This choice of s in Equation (37) for the index [image: there is no content] implies that, necessarily, [image: there is no content]. Near the origin, the first summand in the integrand of (35) (recall that [image: there is no content]) is therefore:


r2(n−k)−1hnk2(r)≃(c0(n,k))r2(n−k)−1+o(r2(n−k)+1)











Poles at the origin in the integrand are skipped if:


2(n−k)−1≥0⇒k≤n−1,



(38)




a condition that implies that the integer number k is bounded by the vorticity n.



The two-term recurrence relations for the next group of indices [image: there is no content], and the characteristic exponent [image: there is no content] becomes:


j(2k+2−j)cj(n,k)=2ne2(j−2)cj−2(n,k)



(39)







Starting from [image: there is no content], it is easily checked that (39) implies [image: there is no content] for all of the odd indices [image: there is no content] in the range [image: there is no content]. The recurrence (39) for even indices, however, [image: there is no content] reads:


i(k−i+1)c2i(n,k)=e2(i−1)nc2i−2(n,k)



(40)







Insertion of the values [image: there is no content] in (40) means that all of the coefficients [image: there is no content] vanish. [image: there is no content] is zero because the factor [image: there is no content] appearing in the left-hand side of (40) is non-null, while [image: there is no content] present in the right-hand side is zero, for [image: there is no content]. If [image: there is no content], a similar situation happens: all of the right side members in (40) are zero because the coefficients are zero, but the left-hand sides must be also zero, restricting the values of the coefficients up to [image: there is no content] to be zero. The first non-null coefficient after [image: there is no content] is [image: there is no content] because [image: there is no content] in this case. The first two terms of the [image: there is no content]-power series expansion near [image: there is no content] are thus:


hnk(r)=c0(n,k)+c2k+2(n,k)r2k+2+O(r2k+3)








where [image: there is no content] and [image: there is no content] are arbitrary non-null constants. Together with the bound (38), this means that it is enough to identify the even coefficients up to [image: there is no content] in order to describe the zero mode wave functions near the origin, a fact that justifies the truncation assumed in the recurrence relations (36). We finally pass to analyze the second summand in the integrand of (35) near the origin:


r2(n−k)−1(hnk′(r))2g[fn2(r)]fn2(r)=(c2k+2(n,k))2(2k+2)2g(0)r2k+1+O(r2k+3)








seeing that it is regular at the origin if and only if [image: there is no content], i.e., [image: there is no content]. Therefore, the regularity at the origin restricts the values of k to the first n natural numbers [image: there is no content], such that there are at most n zero modes, or rather, [image: there is no content], if the orthogonal zero modes to these null potential eigenfunctions are accounted for.



	
Asymptotic behavior of the function [image: there is no content]: For large values of r, the modulus of the scalar complex field tends to a constant value [image: there is no content] that belongs to the vacuum circle [image: there is no content], whereas the radial profile of the vector field tends to one: [image: there is no content]. Bearing this asymptotic behavior in mind, we see that at large r, the ODE equation (33) reduces to the modified Bessel differential equation:


−r2d2snk(r)dr2−rdsnk(r)dr+(1+k−n)2+r2f∞2g(f∞)snk(r)=0











The general solution of this second-order ODE is well known:


snk(r)≃C1I1+k−nf∞g(f∞)r+C2K1+k−nf∞g(f∞)r≃C¯11ref∞g(f∞)r+C¯21re−f∞g(f∞)r,



(41)




where [image: there is no content] and [image: there is no content] are modified Bessel functions, respectively, of the first and second kind. It is crystal clear that we must choose [image: there is no content] in Formula (41) in order to obtain zero mode eigenfunctions with an exponential decaying tail that satisfy the [image: there is no content]-integrability condition.



	
Intermediate regime: After describing analytically the eigenfunctions in the kernel of [image: there is no content] near and far away from the vortex center, the Sturm–Liouville theory guarantees the existence of a regular solution at the origin [image: there is no content] of Equation (33) for every [image: there is no content], which has a decreasing exponential tail by simply tuning the values of the constants [image: there is no content] and [image: there is no content] in order to obtain a solution with the adequate asymptotic behavior. In conclusion, there exists n zero modes [image: there is no content] of the generic form (29) whose radial profiles [image: there is no content] and [image: there is no content] are solutions of the linear first-order ODE system (30). Moreover, all of these zero modes characterized by the wave number k are linearly independent. Integration in the angular variable shows that these eigenfunctions are orthogonal:


∫02πdθξT(r,θ;k1)·ξ(r,θ;k2)=δk1k2·FT(r;k1)F(r;k2)











Together with their corresponding orthogonal partners [image: there is no content], this whole set of [image: there is no content] zero modes forms a basis in the tangent space to the moduli space of BPS vortices.



Sturm–Liouville theory is enough to ensure the existence of these null eigenfunctions in the intermediate range between a neighborhood of the origin and another one close to the infinite point. Nevertheless, there is no way of analytically finding the vortex solutions at intermediate range. It is possible, however, to gather good information about the BPS vortex zero mode profiles by using numerical methods. In this sense, it is better than directly attacking Equation (33) for [image: there is no content] simply to solve by numerical procedures the simpler equation in terms of the function [image: there is no content]. Plugging:


[image: there is no content]



(42)




in (33), we end with the second-order linear ODE:


−rg[fn2(r)]d2hnk(r)dr2+g[fn2(r)](1+2k−2nβn(r))+2nfn2(r)g′[fn2(r)](1−βn(r))dhnk(r)dr++rfn2(r)[g(fn2(r))]2h(r)=0



(43)




which will be our starting point to generate the zero mode fluctuation by means of the numerical scheme by some variant of a shooting procedure using the known solution near the origin as the initial condition.









3.2. Deformations of BPS Cylindrically-Symmetric Vortices of the Two Species by Their Zero Mode Fluctuations


The perturbed fields up to first-order in the fluctuations:


ψ˜(x→;n,k)=ψ(x→;n)+ϵφ(x→,k)andV˜(x→;n,k)=V(x→;n)+ϵa(x→,k)








are deformed vortex solutions of the general BPS Equation (8). Recall that [image: there is no content] and [image: there is no content] stand respectively for the cylindrically-symmetric self-dual vortex scalar and vector field profiles obtained through the ansatz (10) and the solution of the BPS equation (11). [image: there is no content] and [image: there is no content] are the vortex zero mode fluctuations determined by using the ansatz (29) to solve (32), a procedure simplified by assuming (42) to end with the solution of (43), as explained in the previous section. The main role in the description of these perturbed solutions is played by the scalar field profile. In cylindrical coordinates adapted to the symmetry of the vortex flux lines, the perturbed vortex complex field profile reads:


ψ˜(x→;n,k)=fn(r)einθ−ϵrn−k−1hnk′(r)g[fn2(r)]fn(r)eikθ











Sufficiently close to the origin, this profile is analytically known in terms of the integration constants [image: there is no content] and [image: there is no content] plus the value of the metric at the origin [image: there is no content]:


[image: there is no content]



(44)







Because, if:


rk=0andrn−k=ϵ(2k+2)c2k+2(n,k)g(0)dn2e−i(n−k)θ








the perturbed vortex scalar field profile (44) exhibits one zero of multiplicity k situated at the origin. We observe that the multiplicity of the zero at the origin decrease from n to k with respect to that of the unperturbed vortex scalar field. [image: there is no content] new zeroes appear located at the vertices of a regular k-polygon:


rn−k=ϵ(2k+2)|c2k+2(n,k)|g(0)dn2andei(n−k)θ=sign(c2k+2(n,k))=−1r=ϵ(2k+2)|c2k+2(n,k)|g(0)dn21n−kandθj=2j+1n−kπ,j=0,1,2,⋯,n−k−1








slightly displaced from the single zero of multiplicity n of the cylindrically-symmetric vortex profiles placed at the vortex center. In sum, under the [image: there is no content] zero mode perturbation, one quantum of magnetic flux moves away from the origin along the x-axis, while the remaining [image: there is no content] quanta stay at the origin. Under the next zero mode perturbation [image: there is no content], two quanta move respectively along the half-axis forming angles [image: there is no content] and [image: there is no content] with the [image: there is no content]-axis, the other [image: there is no content] quanta staying at the origin. Under the generic [image: there is no content] zero mode [image: there is no content], quanta of magnetic flux depart from the origin along the half-axis forming respectively angles [image: there is no content] with the [image: there is no content]-axis, the other k quanta remaining at the origin.



Perturbations of BPS cylindrically-symmetric [image: there is no content]-vortices in the [image: there is no content]-sigma model undergoing zero mode fluctuations are illustrated in Figure 2 and Figure 3, where the parameters [image: there is no content] and [image: there is no content] are chosen. On BPS vortices with [image: there is no content] quanta of magnetic flux, there exist six zero modes of fluctuation [image: there is no content] and [image: there is no content], characterized by the “polarizations” [image: there is no content]. We recall that in the gauged [image: there is no content][image: there is no content]-model, there are two species of BPS cylindrically-symmetric vortices taking values respectively in the south and north charts of the target manifold. In Figure 2, the graphical information relative to the zero mode fluctuations [image: there is no content] corresponding to the south species of BPS three-vortices is collected. In the first row, the [image: there is no content] zero mode fluctuation [image: there is no content] of the generic form (29) is described. The scalar and vector field profiles [image: there is no content] and [image: there is no content] of this null eigenmode [image: there is no content] are respectively depicted in the first and the third graphics by means of a vectorial plot. In the second and fourth pictures of the same row, it is plotted the way in which the scalar and vector fields of the circularly symmetric BPS three-vortex configuration are deformed by the zero mode fluctuation [image: there is no content]. One of the three single quanta of magnetic flux superimposed at the origin in the unperturbed solution is displaced along the [image: there is no content]-axis, while the remaining ones are untouched; see Figure 2 (first row, second plot). The same pattern is shown in the second row where the main features of the [image: there is no content] zero mode fluctuation [image: there is no content] around a cylindrically-symmetric BPS 3-vortex belonging to the south chart are graphically described. In the first and third plots of this second row, we see vectorial graphs of the scalar and vector fluctuations. Perturbations where two quanta of magnetic flux are ejected from the vortex center are shown in the second and fourth graphs. Finally, the third row in Figure 2 includes the plots corresponding to the [image: there is no content] zero modes [image: there is no content]. It is remarkable to notice that the three single vortices initially situated at the origin are expelled in the directions determined by the vertices of a equilateral triangle; see Figure 2 (third row, second plot).


Figure 2. Graphical representations of the scalar and vector components of the south class three-vortex zero mode fluctuations [image: there is no content] (displayed in the first and third columns, respectively) and the perturbed scalar and vector fields [image: there is no content] and [image: there is no content] (displayed in the second and fourth columns, respectively) for the values [image: there is no content] (first row), [image: there is no content] (second row) and [image: there is no content] (third row).



[image: Symmetry 08 00091 g002]





Figure 3. Graphical representations of the scalar and vector components of the north class three-vortex zero mode fluctuations [image: there is no content] (displayed in the first and third columns, respectively) and the perturbed scalar and vector fields [image: there is no content] and [image: there is no content] (displayed in the second and fourth columns, respectively) for the values [image: there is no content] (first row), [image: there is no content] (second row) and [image: there is no content] (third row).



[image: Symmetry 08 00091 g003]






In Figure 3, the same graphical information is collected and offered for the zero mode fluctuations [image: there is no content] of the BPS cylindrically-symmetric three-vortex belonging to the north chart species, as well as the associated perturbed fields [image: there is no content] and [image: there is no content]. The zero mode structure in this chart is almost identical to the structure shown in Figure 2 corresponding to the south species of vortices. The only important difference is the fact that the north species of vortices described in Figure 3 exhibits a smaller core than the south chart ones displayed in Figure 2, in agreement with the same discrepancy unveiled in Section 2 between the south and north vortex cores.



Despite the similarity between the structures described in Figure 2 and Figure 3, the differences offer relevant information about how the two species of vortices behave when they suffer a zero mode fluctuation. For the sake of comparison, we have employed the same magnitude of the perturbation parameter ϵ in the graphics representing perturbed fields in Figure 2 and Figure 3. It is clear that the effect of the zero mode fluctuation in the north class of vortices is smaller than in the south class. In the context of adiabatic vortex dynamics, we can claim that the thick (south class) self-dual n-vortices are split in the single constituents faster than the thin (north class) self-dual n-vortices by zero mode fluctuations, as we can see by comparing Figure 2 and Figure 3.





4. Outlook


In this work, we have thoroughly described the zero modes of fluctuation around cylindrically-symmetric BPS vortices of the two species existing in a gauge [image: there is no content] non-linear [image: there is no content] model that were discovered in [5]. Besides their role in the scrutiny of low energy dynamics as achieved, e.g., in [14], zero modes have a strong impact on the evaluation of one-loop shifts to classical masses of BPS topological defects. It is conceivable to apply the method developed in [15] to the kinks discovered in [16] in order to improve the results obtained in [17] about the one loop correction to the [image: there is no content]-kink masses. In a similar vein, it seems highly plausible that the calculations performed on the one-loop string tension shifts of the BPS vortices in the Abelian Higgs model in [10] may be repeated successfully for the two species of BPS vortices in the [image: there is no content] gauge non-linear [image: there is no content] model profiting from the results described in this paper. It is also tempting to extend this work to the [image: there is no content] and [image: there is no content] generalizations of the model treated here. In this case, besides Abelian vortices, semi-local topological defects also appear, and one might follow the developments in [18] in this non-linear context.



Finally, we remark that a linearization of the model analyzed in this paper, where the target manifold is [image: there is no content] instead of [image: there is no content], is the bosonic sector of [image: there is no content] extended supersymmetric planar gauge theory. Replacement of the Maxwell kinetic term by the Chern–Simons density is also susceptible to being generalized to an extended supersymmetric gauge theory; see, e.g., [19]. In [20,21], the topological defects and structures of this last model have been thoroughly described. Moreover, this framework has been proven to play a role as an effective theory in describing graphene physics at Dirac points in [22].



Besides the topological vortices of the standard nonlinear gauged model, we also discovered in [5] similar self-dual vortices existing in the Chern–Simons version of our model. It is thus suggestive of the task of computing the zero modes of these last extended solitons. In fact, because this last bosonic model can be promoted to the status of [image: there is no content] supersymmetry, fermionic zero modes akin to those arising around superconducting strings (see [23]) should also exist. It is thus our purpose to perform the task of describing also fermionic zero modes in our models in some future research (fermionic zero modes around domain walls are also interesting; see, e.g., [24]).
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