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Abstract: We consider nonlinear modes of the nonlinear Schrödinger equation with nonlocal
nonlinearities and and PT -symmetric parabolic potential. We show that there exists a set
of continuous families of nonlinear modes and study their linear stability in the limit of
small nonlinearity. It is demonstrated that either PT symmetry or the nonlocality can be used
to manage the stability of the small-amplitude nonlinear modes. The stability properties are also
found to depend on the particular shape of the nonlocal kernel. Numerical simulations show that the
stability results remain valid not only for the infinitesimally small nonlinear modes, but also for the
modes of finite amplitude.
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1. Introduction

Nonlocal nonlinearities are known to be of relevance for numerous physical applications.
In optical applications, nonlocal nonlinearity emerges in description of beam propagation in thermal
media [1] or in atomic vapors [2,3]. Nonlocal nonlinearities have been shown to support optical
solitons [4–7] and to alter their properties, such as, for instance, stability [4], the collapse dynamics [8],
or the interactions between solitons [9].

Nonlocality is also relevant in the theory of Bose-Einstein condensates (BECs) [10–12] in view
of the intrinsically nonlocal nature of the inter-atomic interactions [13–17], and in the theory of hot
atomic gases, where the diffusion processes are taken into account [18]. Nonlocal nonlinearities are
also inherent for plasma problems [19], for the theory on nematic crystals [20,21], and for optics of
Rydberg gases [22].

In many relevant situations, nonlocal nonlinearity is accompanied by a certain potential which
models a confining trap for a BEC or a refractive index modulation in an optical waveguide. Presence of
the external potential or nonlocality enriches the variety of possible nonlinear modes allowing to
observe the so-called higher (alias multi-pole or excited) nonlinear modes [6,23–28] apart from the
best studied fundamental (alias ground state) nonlinear modes [5,29–32]. Nonlocal nonlinearities
have been considered in combination with the double-well [33,34] and the periodic potentials [35–38].
It appears, however, that a systematic study of nonlocal nonlinear modes in a parabolic potential
has not been performed yet. In our present study, we make a step towards filling this gap and
investigate nonlocal nonlinear modes in a complex parabolic PT -symmetric potential of the form
V(x) = x2 − 2iαx, where α is a real coefficient (for a recent review of the available results on nonlinear
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PT -symmetric systems see [39]). For α = 0 the potential is reduced to the real parabolic potential
whose modes are fairly well studied in the local case [23–28,40], but have attracted much less attention
in the nonlocal context.

For a nonzero α, the potential V(x) is complex and PT symmetric [41], which is
reflected by the fact that the real and imaginary parts of V(x) are even and odd functions
of x, respectively. PT symmetry can be implemented in diverse physical setting, including optics [42],
atomic gases [43–45], and BECs [46].

Nonlinear modes and solitons have been studied in various PT -symmetric potentials with
local [47–55] and nonlocal [56–63] nonlinearities, but the present work has a slightly peculiar focus.
We are particularly interested in the combined effect of the parabolic trapping, nonlocality and PT
symmetry on the excited (higher-order) nonlinear modes. The focus of our study is additionally shifted
towards the existence and stability of small-amplitude nonlinear modes, whose properties can be studied
by means of asymptotic expansions describing bifurcations of nonlinear modes from the eigenstates of
the underlying linear model. The linear spectrum of the PT -symmetric parabolic potential is available
in the analytical, which makes it possible to reduce the stability problem to computing the real zeros
of certain analytical expressions. Our analysis shows that either the degree of the nonlocality or the
strength of the PT symmetry can be used to manage the stability of the excited modes. On the other
hand, we reveal a dependence of the stability properties on the particular shape of the nonlocal kernel.
We also touch upon the properties of nonlinear modes of finite amplitude and illustrate numerically
that the stability results hold not only for the infinitesimally small nonlinear modes but also remain
valid in a finite range of the amplitudes of nonlinear modes.

The paper is organized as follows. In the next section, we present a model to be considered
throughout the paper. In Section 3 we describe the linear properties of the model and introduce the
families of small-amplitude nonlinear modes. In Section 4 we describe the methodology of the linear
stability analysis. The main results of stability analysis are presented in Sections 5 and 6 for the
conservative and PT -symmetric cases, respectively. In Section 7 we demonstrate numerically that
the presented asymptotical stability results persist in a finite range of the amplitude of the modes.
Concluding Section 8 outlines the main results of the work.

2. The Models

We use the dimensionless nonlocal nonlinear Schrödinger equation with an additional parabolic
potential and nonlocal nonlinearity:

i
∂q(x, z)

∂z
= −∂2q(x, z)

∂x2 + (x2 − 2iαx)q(x, z)− σq(x, z)
∫ ∞

−∞
K(x− x′)|q(x′, z)|2dx′. (1)

The case α = 0 corresponds to the real parabolic potential, while nonzero α governs the strength
of the PT symmetry. The system is subject to gain in the domain x < 0 and is subject to losses for
x > 0. In the optical context, Equation (1) models beam guidance in a medium whose refractive index
n(x) = nr(x) + ini(x) has parabolic modulation of the real part nr(x) = x2, and linear modulation of
the imaginary part ni = 2αx. Equation (1) with α = 0 also arises as a Gross-Pitaevskii equation [10–12]
in the mean-field theory the harmonically trapped a quasi-one-dimensional BEC [11,13–16,38,64].
In this case, q(x, z) is a quasi-one-dimensional wavefunction [17], and z plays a role of time.

Sign σ = ±1 corresponds to attractive (focusing) and repulsive (defocusing) nonlinearities,
respectively. Nonlocal properties of the model are described by the kernel K(x) which is a positive
function with normalization

∫
K(x)dx = 1 (hereafter all the integrals are taken over the whole real

axis). Following to the previous studies on the subject [6,7,33,34,36,37], we pay the primary attention
to the following three kernels:
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(i) The smooth Gaussian kernel

K(x) =
1√
πλ

e−x2/λ2
(2)

where λ > 0 governs strength of nonlocality.
(ii) Exponential kernel with the singularity at x = 0:

K(x) =
1

2λ
e−|x|/λ. (3)

(iii) It will be also interesting to compare the obtained results with a slowly (algebraically)
decaying kernel. While some studies (for example, [33,34,65]) deal with the so-called cut-off (CO)
kernel which decays as |x|−3 as x → ±∞, in our study we choose the algebraically decaying Lorentzian
kernel (the Lorentzian)

K(x) =


λ

π(λ2 + x2)
if λ > 0,

δ(x) if λ = 0.
(4)

This choice is motivated by the fact that the Lorentzian kernel (4) allows for the relatively simple
analytical evaluation of the convolution integrals that arise in what follows (convenience of the
analytical treatment of the Lorentzian (4) was recently used in [66] to regularize solitons pinned to the
PT -symmetric dipole).

3. Bifurcations of Nonlinear Modes

The stationary nonlinear modes for Equation (1) admit the representation q(x, z) = eiβzw(x),
where β is a real parameter. It is convenient to introduce the shifted parameter b defined through the
relation β = b− α2, which allows to rewrite the equation for the nonlinear modes in the following form:

wxx − bw− (x− iα)2w + σw(x)
∫ ∞

−∞
K(x− x′)|w(x′)|2dx′ = 0, (5)

subject to the zero boundary conditions at the infinity: limx→±∞ w(x) = 0.
Let us first recall the properties of the underlying linear problem which formally corresponds

to σ = 0 in Equation (5). The resulting equation which is considered as a linear eigenvalue problem
for b and w(x), has a purely real and discrete spectrum [55,67,68]. The eigenvalues b̃n can be listed as
b̃n = −(2n + 1), n = 0, 1, . . .. The corresponding eigenfunctions w̃n(x) read

w̃n(x) = cn Hn(x− iα)e−(x−iα)2/2, (6)

cn =
e−α2/2√√

π2nn!Gn(−2α2)
, (7)

where Hn(x) and Gn(x) are Hermite and Laguerre polynomials [69], respectively. The choice of the
coefficients cn implies normalization

∫
|w̃n|2dx = 1. Each Hermite polynomial Hn(x) contains only

powers of x of the same parity as the number n. This implies that in the conservative limit (α = 0)
the eigenfunctions are real-valued functions which have exactly n zeros and have the same parity
as the number n. For α 6= 0, each eigenfunction w̃n(x) possesses real even part and odd imaginary
part for even n and odd real part and even imaginary part for odd n (see Figure 1). Note that the
linear eigenvalues b̃n are all real regardless the value of the gain-and-loss parameter α. In other words,
PT symmetry is always unbroken. This is a peculiar feature of the chosen parabolic potential;
the possibility of the broken PT symmetry can, in principle, encountered in modified parabolic
potentials of various forms [45,51].
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Returning now to the nonlinear problem, we look for bifurcations of small-amplitude nonlinear
modes from the linear eigenstates. To this end, we introduce the formal asymptotic expansions which
describe nonlinear modes wn(x) branching off from the zero solution w(x) ≡ 0 at the eigenvalues
b̃n [55]:

wn(x) = εw̃n + ε3w(3)
n +O(ε5), bn = b̃n + σε2b(2)n + o(ε2), (8)

where ε � 1 is a formal small real parameter (for the rigorous analysis of the bifurcations of
small-amplitude modes see [70]).

Figure 1. L2-normalized linear modes (6) for n = 0, 1, 2 and α = 0, 1/2, 1. Red, magenta and black lines
correspond to Re w̃n, Im w̃n, and |w̃n|, respectively. For all panels the axes boxes correspond to the
interval [−5, 5] (horizontal axes) and [−0.8, 0.8] (vertical axes).

Since w̃n(x) are normalized, the squared L2-norm of the nonlinear modes U =
∫
|wn(x)|2dx

(which is also associated with the total energy flow in the optical applications of the model) is
approximately equal to ε2: U ≈ ε2 for ε � 1. Substituting expansions (8) into Equation (5) and
collecting the terms of the ε3-order, one arrives at an inhomogeneous linear differential equation with
respect to the function w(3)

n . The solvability condition for the latter equation yields the expression for
the coefficient b(2)n :

b(2)n =

∫
w̃2

n(x)
(∫

K(x− x′)|w̃n(x′)|2dx′
)

dx∫
w̃2

n(x)dx
. (9)

For the conservative case (α = 0) the eigenfunctions w̃n(x) are real, and hence the coefficients
b(2)n are obviously real too for any n. For α 6= 0, the eigenfunctions w̃n(x) possess nontrivial real and
imaginary parts as described above. However, parities of real and imaginary parts of w̃n(x) imply
that for a real and even kernel function K(x) = K(−x) = K∗(x) the coefficients b(2)n are also real,
which shows that continuous families of nonlinear modes can exist in the PT -symmetric model
with α > 0. The family with n = 0 represents the fundamental nonlinear modes, and the families
n = 1, 2, . . . contain the higher-order modes.
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4. Linear Stability of Nonlinear Modes

4.1. Statement of the Problem

Following the the standard procedure of the linear stability analysis, we consider a perturbed
nonlinear mode wn(x) in the form q(x, z) = eiβz[wn(x) + u(x)eiωz + v∗(x)e−iω∗z] which after
linearization with respect to small functions u(x) and v(x) gives the linear stability eigenvalue problem

L p = ω p, p =

(
u
v

)
, (10)

with the linear operator L given as

L =

(
A σwnKwn

−σw∗nKw∗n −A†

)
,

where

A = L+ σ(K|wn|2) + σwnKw∗n , A† = L† + σ(K|wn|2) + σw∗nKwn , (11)

L = d2/dx2 − b− (x− iα)2, L† = d2/dx2 − b− (x + iα)2, (12)

K is the convolution operator, i.e.,

Kp =
∫

K(x− x′)p(x′)dx′ (13)

and Kp is the operator of “weighted” convolution, i.e.,

Kp q = K(p q) =
∫

K(x− x′)p(x′)q(x′)dx′. (14)

The nonlinear mode wn(x) is said to be linearly unstable if operator L has at least one eigenvalue
ω such that Im ω < 0. Otherwise, wn(x) is linearly stable.

4.2. Linear Stability of Small-Amplitude Modes

Let us now analyze the spectrum of the operator L for small-amplitude nonlinear modes belonging
to the nth family and situated in the vicinity of the bifurcation from the linear limit. For nonlinear
modes of zero amplitude (i.e., for ε = 0) the operator L acquires the diagonal form

L = L̃n =

(
Ln 0
0 −L†

n

)
, (15)

where

Ln =
d2

dx2 − b̃n − (x− iα)2, L†
n =

d2

dx2 − b̃n − (x + iα)2. (16)

Since the spectrum of the operator Ln + b̃n is known from the discussion in Section 3, it is easy to
deduce that the spectrum of the operator L̃n consists of two subsets. Eigenvalues and eigenvectors
of the first subset read ω

(I)
n,k = 2(n− k), p(I)

n,k = (w̃k(x), 0)T , k = 0, 1, . . .. The second sequence reads

ω
(I I)
n,k = −2(n− k), p(I I)

n,k = (0, w̃∗k (x))T , k = 0, 1, . . ..

Thus, operator L̃n has a double zero eigenvalue ω
(I)
n,n = ω

(I I)
n,n = 0 which remains zero and double

when passing from the linear limit ε = 0 to ε > 0 [55]. The operator L̃n also has 2n double nonzero
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eigenvalues: Ωn,k = ω
(I)
n,k = ω

(I I)
n,2n−k, where k runs from 0 to 2n except for k = n. Each double

eigenvalue Ωn,k is semi-simple; the two corresponding linearly independent eigenvectors are given as

p(I)
n,k =

(
w̃k
0

)
and p(I I)

n,2n−k =

(
0

w̃∗2n−k

)
. (17)

Passing from the linear limit ε = 0 to small nonzero ε, each double eigenvalue Ωn,k generically
splits into two simple eigenvalues which will be either both real or complex conjugated. If each double
eigenvalue splits into two real ones, then the small-amplitude modes belonging to the nth family are
stable for both attractive and repulsive nonlinearities. Vice versa, if at least one double eigenvalue splits
into a pair of two complex-conjugated simple eigenvalues, then the small-amplitude nonlinear modes
of the nth family are unstable (note that real parts of the unstable eigenvalues resulting from such a
splitting are nonzero, i.e., the ensuing instability is of the oscillatory type). Notice also that for n = 0
no double eigenvalues Ωn,k exists. Therefore the fundamental solutions from family n = 0 are always
stable in the small-amplitude limit.

It is easy to check that the eigenvalue Ωn,k splits in exactly the same way as the opposite double
eigenvalue Ωn,2n−k = −Ωn,k, i.e., if Ωn,k splits into two real eigenvalues then Ωn,2n−k also splits
into two real eigenvalues and vice versa. Therefore, in order to examine stability of small-amplitude
nonlinear modes that belong to the nth family, it is sufficient to analyze only n positive double
eigenvalues Ωn,k with k = 0, . . . , n− 1.

In order to examine splitting of the double eigenvalues Ωn,k, we employ Equation (8) which yield

the following asymptotic expansion for the linear stability operator: L = L̃n + σε2L(2)
n + o(ε2), where

L(2)
n =

(
−b(2)n + (K|w̃n|2) + w̃nKw̃∗n w̃nKw̃n

−w̃∗nKw̃∗n b(2)n − (K|w̃n|2)− w̃∗nKw̃n

)
.

Following the standard arguments of the perturbation theory for linear operators [67], in order to
address the splitting of the double eigenvalue Ωn,k we consider a 2× 2 matrix defined as

Mn,k =


〈L(2)

n p(I)
n,k, p(I)∗

n,k 〉

〈p(I)
n,k, p(I)∗

n,k 〉

〈L(2)
n p(I I)

n,2n−k, p(I)∗
n,k 〉

〈p(I)
n,k, p(I)∗

n,k 〉

〈L(2)
n p(I)

n,k, p(I I)∗
n,2n−k〉

〈p(I I)
n,2n−k, p(I I)∗

n,2n−k〉

〈L(2)
n p(I I)

n,2n−k, p(I I)∗
n,2n−k〉

〈p(I I)
n,2n−k, p(I I)∗

n,2n−k〉

 ,

where 〈a, b〉 =
∫

b†(x)a(x)dx for any two column vectors a and b (here † means the transposition and
complex conjugation). If both the eigenvalues of matrix Mn,k are real, then the double eigenvalue Ωn,k
splits into two real and simple eigenvalues. If such a situation takes place for all k = 0, 1, . . . , n− 1,
then the small-amplitude nonlinear modes wn(x) from the nth family are stable. On the other hand,
if for some k the matrix Mn,k has a complex eigenvalue, then the double eigenvalue Ωn,k splits into
a pair of complex-conjugated eigenvalues. This is sufficient to conclude that the small-amplitude
nonlinear modes from the nth family are unstable.

Recall that real and imaginary parts of w̃n(x) have opposite parities. Using this fact, one can
establish that all the entries of the matrices Mn,k are real numbers which read
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(Mn,k)1,1 = −b(2)n +

∫
w̃k{w̃kKw̃∗n w̃n + w̃nKw̃∗n w̃k} dx∫

w̃2
kdx

, (18)

(Mn,k)2,2 = b(2)n −
∫

w̃2n−k{w̃2n−kKw̃∗n w̃n + w̃nKw̃∗n w̃2n−k} dx∫
w̃2

2n−kdx
, (19)

(Mn,k)2,1 = −
∫

w̃nw̃2n−kKw̃n w̃∗k dx∫
w̃2

2n−kdx
, (Mn,k)1,2 =

∫
w̃nw̃kKw̃n w̃∗2n−k dx∫

w̃2
kdx

. (20)

Thus in order to check reality of the eigenvalues of the matrix Mn,k, it is sufficient to consider the
discriminant of its quadratic characteristic equation, i.e., the quantity Dn,k = [(Mn,k)1,1 + (Mn,k)2,2]

2 −
4 det Mn,k. For Dn,k > 0 the eigenvalues of Mn,k are real while a situation with Dn,k < 0 corresponds
to a pair of complex conjugated eigenvalues. The situation Dn,k = 0 requires a more delicate
analysis as in this case behavior of the double eigenvalue Ωn,k is determined by the next terms
of the asymptotic expansions.

Using analytical expressions for the eigenfuctions w̃n(x), the entries of matrices Mn,k and hence the
determinant Dn,k can be computed analytically with a computer algebra program (at least, for several
relevant shapes of the kernel function K(x)). The resulting analytical expressions are too bulky to be
presented in the paper. However, for an interested reader to have an idea of how the expressions for
the determinants Dn,k read, in Appendix A we provide two expressions for D1,0 and D2,0 obtained
for the Gaussian kernel and α = 0. Complexity of the expressions for Dn,k increases drastically if
larger numbers n or nonzero values of α are involved. Nevertheless, these expressions are available
analytically and can be used for finding the domains of positivity and negativity of the determinants
Dn,k which are considered as functions of λ and α.

5. Results for the Real Parabolic Potential

Let us start presentation of our results with an important particular case α = 0,
when PT -symmetric contribution is absent, and the model is conservative. First, it is relevant to notice
that for α = 0 the eigenvalue problem (10) admits an exact solution with eigenvalue ω = 2 and the
respective eigenvector given as

p =

(
xwn + w′n
−xwn + w′n

)
. (21)

Notice, however, that this exact solution does not hold for nonzero α.
Results of linear stability analysis of small-amplitude nonlinear modes from several first families

for the Gaussian kernel (2) are summarized in Table 1. For n = 1, 2, . . . 6 and for k = 0, 1, . . . , n− 1,
Table 1 reports sign of the determinant Dn,k in the local limit λ = 0 and the approximated values of
positive zeros of determinants Dn,k being considered as functions of λ (at the same time, those are
the values of λ at which functions Dn,k = Dn,k(λ) change their signs). From Table 1 one can recover
information on stability or instability of the small-amplitude nonlinear modes bifurcating from the
nth linear eigenstate for the given value of the nonlocality parameter λ: the stability takes place if
Dn,k(λ) > 0 for each k = 0, 1, . . . , n− 1.

It follows from Table 1 that for n = 1 and k = 0 the respective determinant D1,0(λ) is
positive for any λ ≥ 0 (see also the explicit expression (A1) for D1,0 in Appendix A). Therefore,
the small-amplitude nonlinear modes bifurcating from the linear eigenstate n = 1 are stable for any
λ ≥ 0. The small-amplitude modes with n = 2 are unstable for 0 ≤ λ . 1.82 but become stable for
λ & 1.82. For n > 2 the stability situation might be more complex with the half-axis λ ≥ 0 divided into
several alternating intervals of stability and instability. In the local case (λ = 0) all the higher-order
small-amplitude mode are unstable for n ≥ 2 [40]. However, from Table 1 one observes that for each
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n there exists a threshold value Λn such that the small-amplitude modes become stable for the sufficiently
strong nonlocality λ > Λn. The specific values of Λn can be recovered from Table 1: Λ1 = 0, Λ2 ≈ 1.82,
Λ3 ≈ 2.36, etc. Thus the sufficiently strong nonlocality essentially alters (enhances) stability of the
excited modes.

We additionally mention that for each n one has Dn,n−1(λ) > 0 for all λ. This is a consequence of
the exact solution (21) which implies that the spectrum of operator L always contains an eigenvalue
equal to 2. Therefore, the double eigenvalue Ωn,n−1 = 2 always splits in the pair of real eigenvalues
(one of which is equal to 2). As a result, the eigenvalue Ωn,n−1 can not cause instability of
small-amplitude nonlinear modes.

Table 1. Results of linear stability analysis for α = 0 and the Gaussian kernel.

n k Sign Dn,k(λ)
∣∣
λ=0 Zeros of Dn,k(λ) Interval of Stability in λ

1 0 + no zeros λ ∈ [0, ∞)

2 0 − 1.82
λ ∈ (1.82, ∞)1 + no zeros

3
0 − 2.36

λ ∈ (2.36, ∞)1 − 2.04
2 + no zeros

4

0 + 2.61 2.85

λ ∈ (2.85, ∞)
1 − 2.64
2 − 2.26
3 + no zeros

5

0 + 3.23 3.25

λ ∈ (3.12, 3.23) ∪ (3.25, ∞)
1 − 3.12
2 − 2.90
3 − 2.45
4 + no zeros

6

0 + 3.566 3.568

λ ∈ (3.37, 3.45) ∪ (3.51, 3.566) ∪ (3.568, ∞)

1 + 3.45 3.51
2 − 3.37
3 − 3.13
4 − 2.64
5 + no zeros

The general trend to the stabilization of strongly nonlocal higher-order modes can be understood
by noticing that the increasing nonlocality λ reduces the nonlocal factor in (1) to the squared norm of
the wave function, i.e., U. Since in the conservative case U does not depend on z, the strongly
nonlocal model becomes effectively linear, and the stabilization of of higher-order modes can,
in principle, be expected (these arguments were used in [11] to explain physically the arrest of collapse
by nonlocality). However, this simple intuition does not work for an arbitrary choice of the kernel
functions K(x). In order to illustrate this fact, let us consider the results of linear stability analysis for
the exponential kernel (3) are reported in Table 2 which features an essentially different stability picture
comparing to that for the Gaussian kernel. Specifically, we observe that for the exponential kernel
in the limit of strong nonlocality λ→ ∞, only the small-amplitude modes with n = 0, 1, 2 are stable,
whereas the modes with n ≥ 3 are unstable both in the local limit λ = 0 and for all positive λ.

To summarize the intermediate results obtained so far, we have encountered different stability
situations for two different shapes of the kernel K(x). In the case of the smooth Gaussian kernel,
small-amplitude nonlinear modes bifurcating from the nth linear state become stable in the limit of
high nonlocality for any n. On contrary, for the exponential kernel the small-amplitude modes are
stable in the strongly nonlocal limit only for n ≤ 2 and unstable for n ≥ 3. The found difference in
stability situation of strongly nonlocal modes reveals certain correspondence to the previous results
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on the stability of the higher-order nonlocal nonlinear states, such as multipole-mode 1D solitons [6]
and 2D spatial solitons [7]. Both [6,7] report that stable higher-order states can be found in the case
of the Gaussian kernel, while the exponential kernel results in instability of all higher-order solitons,
starting from some threshold order. It has been also suggested in [7] that the mentioned difference
between Gaussian and exponential kernels is related to the singularity which the exponential kernel
has at the origin x = 0. Our approach allows to substantiate the above suggestion. Indeed, for the
Gaussian kernel one can establish asymptotic behavior of entries of the matrix Mn,k in the limit λ→ ∞.
Specifically, for λ→ ∞ one has

(Mn,k)1,1, (Mn,k)2,2, ∝ λ−3, (Mn,k)2,1, (Mn,k)1,2 ∝ λ−(2n−2k+1). (22)

Technical details on computing the asymptotics (22) are presented in Appendix D. Additionally,
in Appendices B and C we provide auxiliary relations necessary for the derivation of (22).

Table 2. Results of linear stability analysis for α = 0 and the exponential kernel.

n k Sign Dn,k(λ)
∣∣
λ=0 Zeros of Dn,k(λ) Interval of Stability in λ

1 0 + no zeros λ ∈ [0, ∞)

2 0 − 1.31
λ ∈ (1.31, ∞)1 + no zeros

3
0 − no zeros

always unstable1 − 1.54
2 + no zeros

4

0 + 7.25

always unstable1 − no zeros
2 − 1.70
3 + no zeros

5

0 + no zeros

always unstable
1 − no zeros
2 − no zeros
3 − 1.84
4 + no zeros

6

0 + no zeros

always unstable

1 + no zeros
2 − no zeros
3 − no zeros
4 − 1.97
5 + no zeros

Relations (22) immediately imply that in the limit of large λ for k = 0, 1, . . . , n− 2 the diagonal
elements of the matrix Mn,k dominate the off-diagonal elements, which guarantees reality of the
eigenvalues of Mn,k. Since the instability never occurs for k = n− 1 (due to the presence of the exact
solution (21), as discussed above), we confirm that for the Gaussian kernel (or, more generally, for an
infinitely differentiable kernel) the small-amplitude modes of arbitrarily high order n are stable in the
limit of the strong nonlocality.

At the same time, asymptotic results (22), generically speaking, do not hold for a
non-differentiable kernel. For example, for the exponential kernel we have computed that for n = 3
and k = 0 all the entries of the matrix Mn,k behave as ∝ λ−2 for λ→ ∞, i.e., the diagonal domination
in the strongly nonlocal limit is not guaranteed.

Table 3 which presents the stability analysis for the algebraically decaying kernel (4) further
confirms the stability of strongly nonlocal high-order small-amplitude modes for an infinitely
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differentiable kernel. Besides of this, we have also performed the same linear stability analysis for
several nonphysical but still illustrative nonlocal kernels such as a rectangular kernel with finite support

K(x) =


1

2λ
for x ∈ (−λ, λ)

0 otherwise,
(23)

a triangular shaped kernel with finite support

K(x) =


x

λ2 +
1
λ

for x ∈ (−λ, 0)

−x
λ2 +

1
λ

for x ∈ (0, λ)

0 otherwise,

(24)

and a smooth exponentially decaying kernel

K(x) =
e−1/4

4λ

(
erfc

(
−x
λ

)
e−x/λ + erfc

( x
λ

)
ex/λ

)
(25)

(the particular choice of the kernels (23)–(25) is motivated by convenience of analytical evaluation of
the respective convolution integrals). Kernels (23) and (25) also feature stabilization of all higher-order
strongly nonlocal modes, whereas for the triangular kernel (24) the higher-order strongly nonlocal
modes are unstable. This allows to conclude that the main feature responsible for the stability is not
the very presence of the singularity of the kernel, but the location of the singularity: the rectangular
kernel (23) features two discontinuities at x = ±λ but its behavior is nevertheless similar to that of the
Gaussian and Lorentzian. The singularity at x = 0 (the exponential and triangular kernels) does not
allow for the stabilization of the higher-order small-amplitude modes.

Table 3. Results of linear stability analysis for α = 0 and the Lorentzian kernel.

n k Sign Dn,k(λ)
∣∣
λ=0 Zeros of Dn,k(λ) Interval of Stability in λ

1 0 + no zeros λ ∈ [0, ∞)

2 0 − 1.52
λ ∈ (1.52, ∞)1 + no zeros

3
0 − 2.70

λ ∈ (2.70, ∞)1 − 1.66
2 + no zeros

4

0 + 2.77 3.45

λ ∈ (3.45, ∞)
1 − 2.96
2 − 1.77
3 + no zeros

5

0 + 3.88 3.99

λ ∈ (3.74, 3.88) ∪ (3.99, ∞)
1 − 3.74
2 − 3.21
3 − 1.87
4 + no zeros

6

0 + 4.39 4.42

λ ∈ (4.28, 4.39) ∪ (4.42, ∞)

1 + 3.98 4.28
2 − 4.00
3 − 3.44
4 − 1.97
5 + no zeros
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6. Results for the PT -Symmetric Parabolic Potential

The linear stability analysis conducted above can be naturally extended on the case of nonzero
PT -symmetric modulation α > 0. In this case, the stability results can be conveniently represented
in the plane (α, λ). Then the axis α = 0 recovers the results of the previous section, whereas the
horizontal axis λ = 0 corresponds to the case of local PT -symmetric parabolic potential studied in [55].
The origin, i.e., the point λ = α = 0 is “the most standard” case of the real potential with the local
nonlinearity [40].

Similar to the previous section, we focus our attention on the Gaussian, exponential and
Lorentzian kernels. According to results of our analysis, for n = 1 the small-amplitude nonlinear
modes are stable for any values of λ and α from the considered range. For the families with n ≥ 2,
however, the stability situation becomes more complex and the (α, λ)-diagrams turn out to be divided
into the domains of stability and instability. Such stability diagrams for the families with n = 2 and
n = 3 are presented in Figure 2.

Figure 2. Linear limit stability diagrams for n = 2 and n = 3 in the plane (α, λ). Darker domains
correspond to instability. Labels “k = 0”, “k = 1”, etc. at the unstable domains show the number of the
double eigenvalue Ωn,k responsible for the instability.
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Turning to the local limit (λ = 0), one can observe that for sufficiently large α the small-amplitude
modes become stable. Notice also that in the limit λ → 0 all the considered kernels tend to the
delta-function δ(x) and therefore display the identical behavior. However, in accordance with results
of the previous subsection, the considered kernels feature different behavior in the limit α = 0. As one
can see in the panels of the first and the third rows, for the Gaussian and Loretzian kernels, in the
limit α = 0 large values of λ lead to stabilization of the modes both for n = 2 and n = 3. For the
exponential kernel (panels in the second row) the stabilization occurs for n = 2 only, while for
n = 3 the modes remain unstable for any arbitrarily large λ. However, this situation changes
drastically when a nonzero PT symmetry α > 0 is brought into consideration: say, already for
α = 0.5 the nonlinear modes for the exponential kernel and n = 3 become stable for any λ (from the
considered range). The enhancement of stability by the increase of the gain-and-loss strength α is
sufficiently remarkable, even though similar phenomena have been reported in the previous literature,
for instance, for the PT -symmetric potential with local nonlinearity [55] or for the subwavelength
propagation in PT -symmetric optics [71]. Overall, we can conclude that the diagrams presented
in Figure 2 feature nontrivial and fairly interesting structure. In particular, one can observe that in
some cases increase of α can lead either to stabilization or destabilization of the modes. The same
remains true if one considers increase or decrease of λ. The stability diagrams allow to conjecture that
for any given λ the small-amplitude modes eventually become stable in the limit α→ ∞. However,
in order to verify this conjecture, an additional study must be undertaken.

Notice also that for the case α > 0 allows for instability caused by the eigenstate with k = n− 1
(i.e., k = 1 for n = 2 and k = 2 for n = 3). No such instabilities is possible in the case α = 0 due to the
exact solution (21).

7. Nonlinear Modes of Finite Amplitude

The stability results of the previous sections apply to nonlinear modes of infinitesimally
small amplitude. One can check persistence of the stability results by constructing numerically the
families of nonlinear modes of finite amplitude and computing the eigenvalues of the corresponding
linear stability problem. The families of nonlinear modes can be visualized in the form of continuous
curves on the plane σU vs. b where U =

∫
|wn(x)|2dx is the total energy flow. Then the small-amplitude

modes are situated in the vicinity of the points bn = −(2n + 1), σU = 0.
Let us first recall the results related to the local case (λ = 0). The corresponding diagrams

for the conservative case [40] and for the PT -symmetric case [55] are presented in the two upper
panels of Figure 3. The panels show several families that bifurcate from the lowest linear eigenvalues
n = 0, 1, 2, 3. In the conservative case, only the two lowest families (n = 0, 1) are stable in the
small-amplitude limit, whereas the small-amplitude modes with n = 2, 3 are unstable. In the
PT -symmetric case, all the four shown families are stable in the linear limit, but at least three of the
four families lose stability as the strength of nonlinearity becomes sufficiently large.

The diagrams for the nonlocal case λ = 4 (with the Gaussian kernel) are shown in the lower
panels of Figure 3. According to Table 1 and Figure 2, at the chosen value of the nonlocality parameter,
the nonlinear modes with n = 0, 1, 2, 3 are stable in the small-amplitude limit. The numerical results
in Figure 3 indicate that the stability persists at least for small and moderate strengths of the nonlinearity
(|σU| . 40). Notice also that in the panel with (α = 1, λ = 4) the nonlocality cancels the merging
between the subsequent families which can be observed in the panel with (α = 1, λ = 0). We, however,
emphasize that an accurate description of the limit of strong nonlinearity |σU| → ∞ should be
elaborated by means of a proper asymptotic technique. While in the local case such studies have been
already initiated [72,73], analysis of the nonlocal PT -symmetric case in the limit of strong nonlinearity
remains the open issue at the moment. Another potential question for future studies is the dynamical
behavior of unstable nonlocal modes.
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Figure 3. The families of nonlinear modes with n = 0, 1, 2, 3 for different α and λ (the Gaussian kernel).
Stable modes correspond to the bold fragments of the curves.

8. Conclusions

In this study, we have demonstrated that the combined effect of the parabolic potential,
nonlocality and PT symmetry results in a nontrivial stability picture for higher-order small-amplitude
nonlinear modes. The specific results of our work can be outlined as follows:

• A set of continuous families of nonlinear modes exists in the nonlocal PT -symmetric nonlinear
Schrödinger equation. The spectrum of the corresponding linear eigenvalue problem is available
in the analytical form, and thus the stability problem for the small-amplitude nonlinear modes
can be reduced to the searching real roots of certain analytical expressions.

• In the conservative case, small-amplitude nonlinear modes of arbitrary order become stable for
sufficiently strong nonlocality, provided that the kernel is a sufficiently smooth function in the
vicinity of the origin. If the kernel feature a singularity at x = 0, no stabilization of higher-order
nonlinear modes is observed.

• Both the degree of nonlocality and the strength of the PT symmetry can be used to manage
stability of the small-amplitude modes.

• The above stability conclusions remain valid for nonlinear modes of finite amplitude.

Acknowledgments: D.A.Z. is grateful to Georgy Alfimov for helpful discussions during the work on this
project. V.V.K. acknowledges useful comments of Thomas Pohl on applications of nonlocal models. Authors also
acknowledge support of the FCT (Portugal) grant UID/FIS/00618/2013.

Author Contributions: D.A.Z. performed numerical simulations. Both authors have made substantial
contributions to the discussion of the results and preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PT Parity-Time
BEC Bose-Einstein condensate



Symmetry 2016, 8, 72 14 of 19

Appendix A. Examples of Expressions for Dn,k

Let us present expressions D1,0 and D2,0 computed for the Gaussian kernel and α = 0:

D1,0 =
1
4

(
2 λ2 + 1

)2

π (λ2 + 2)5 , (A1)

D2,0 = 13968 λ16−28032 λ14−584 λ12−177136 λ10−54255 λ8−7564 λ6+4306 λ4−948 λ2−207
64π(λ2+2)13 . (A2)

Obviously, D1,0 is positive for any λ, while D2,0 is negative for λ = 0, but becomes positive for
sufficiently large λ. Using the standard numerical tools for searching the roots of polynomials, we find
that D2,0 has two real zeros: λ ≈ ±1.82. The positive one is presented in the respective row (n = 2,
k = 0) of Table 1.

Appendix B. Definition and Some Properties of the Fourier Transform

We define the forward and backward Fourier transforms as

g(s) = F{ f } =
∫

f (x)eisxdx, f (x) = F−1{g} = 1
2π

∫
g(s)e−isxds. (B1)

Then the Plancherel theorem says that∫
f1(x) f ∗2 (x)dx =

1
2π

∫
g1(s)g∗2(s)ds, (B2)

where g1,2(s) = F{ f1,2}; and from the convolution theorem one has

F{h2} = F{K}F{h1}, (B3)

where h2(x) =
∫

K(x− x′)h1(x′) dx′.
Another well-known relation expresses the pth central moment of a function via the Fourier

transform (p = 0, 1, . . .): ∫
xp f (x) dx = (−i)p dp

dsp g(s)
∣∣∣∣
s=0

. (B4)

Appendix C. Some Properties of the Hermite—Gauss Eigenfunctions

Hereafter we assume the conservative case α = 0. The Hermite–Gauss eigenfunctions w̃n(x) are
defined by Equation (6), see [69] for definition of the Hermite and Laguerre polynomials. For α = 0
the modes w̃n(x) are real-valued and satisfy the normalization∫ ∞

−∞
w̃2

n(x) dx = 1. (C1)

The eigenfunctions are mutually orthogonal, i.e.,
∫

w̃nw̃k dx = 0 for any n and k 6= n. Moreover,
for any n and k < n: ∫

xpw̃n(x) w̃k(x) dx = 0, p = 0, 1, . . . , n− k− 1, (C2)∫
xn−kw̃n(x)w̃k(x) dx =

√
n!

k! 2n−k . (C3)

In particular, ∫
xw̃n(x)w̃n−1(x) dx =

√
n
2

. (C4)
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It is also useful to notice that ∫
x2w̃2

n(x) dx = n +
1
2

. (C5)

Appendix D. Asymptotics in the Strongly Nonlocal Limit

We assume the conservative case α = 0 and an infinitely differentiable kernel written down as

K(x) =
1
λ

K0

( x
λ

)
, (D1)

where function K0(x) is even, real, and infinitely differentiable for any x. Then one can adopt the
Taylor series

K(x) =
∞

∑
p=0

K(p)
0 (0)xp

λp+1 p!
. (D2)

For the sake of brevity, in what follows let us use the notation

Fn,k(s) = F{w̃nw̃k} =
∫

w̃n(x)w̃k(x)eisxdx. (D3)

Asymptotics for b(2)n . We start from Equation (9), use Equations (B2), (B3), (C1), and (D2), as well as
reality of the function Fnn(s), and evaluate b(2)n as follows:

b(2)n = (2π)−1
∫
F{K}F2

n,n(s) ds =
∫

K(x)F−1
{

F2
n,n(s)

}
dx

=
∞

∑
p=0

K(p)
0 (0)

λp+1 p!

∫
xpF−1{F2

n,n(s)} dx =
∞

∑
p=0

K(p)
0 (0)

λp+1 p!
(−i)p dp

dsp F2
nn(s)

∣∣∣∣
s=0

(in order to obtain the latter equality we also used (B4)).
From the definition of Fn,n(s) and from Equations (C1)–(C5), one can establish the

following expansion:

Fn,n(s) = 1− 1
2

(
n +

1
2

)
s2 + o(s2)s→0. (D4)

Therefore

b(2)n =
K0(0)

λ
+

K′′0 (0)(2n + 1)
2λ3 + O(λ−4)λ→+∞. (D5)

Asymptotics for (Mn,k)1,1. Since the asymptotics for b(2)n is known from Equation (D5), it is convenient

to consider the quantity (Mn,k)1,1 + b(2)n which can be evaluated as

∞

∑
p=0

K(p)
0 (0)

λp+1 p!
(−i)p dp

dsp

(
Fn,n(s)Fk,k(s) + |Fn,k(s)|2

)
s=0

.

Using (D4) and that

Fn,k(s) = is
∫

xw̃n(x)w̃k(x) dx + o(s)s→0, (D6)

one can find the resulting asymptotics

(Mn,k)1,1 = −
K′′0 (0)

(
n− k + 2(

∫
xw̃nw̃k dx)2)

2λ3 + O(λ−4)λ→+∞.

The terms decaying as λ−1 cancel each other.
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For k = 0, 1, . . . , n− 2 one has
∫

xw̃nw̃k dx = 0 and therefore

(Mn,k)1,1 = −
K′′0 (0)(n− k)

2λ3 + O(λ−4)λ→+∞,

while for k = n− 1 one can use Equation (C4) and obtain

(Mn,n−1)1,1 = −
K′′0 (0)(n + 1)

2λ3 + O(λ−4)λ→+∞.

Asymptotics for (Mn,k)2,1. Following the same ideas, we can write down

(Mn,k)2,1 = −
∞

∑
p=0

K(p)
0 (0)

λp+1 p!
(−i)p dp

dsp

(
Fn,2n−k(s)F∗n,k(s)

)
s=0

. (D7)

From definition of functions Fn,k(s) and Fn,2n−k(s) it follows that in vicinity of s = 0 they behave as

Fn,k(s) =
in−k

(n− k)!

√
n!

k! 2n−k sn−k + o(sn−k)s→0,

F2n−k,k(s) =
in−k

(n− k)!

√
(2n− k)!
n! 2n−k sn−k + o(sn−k)s→0.

Therefore several first terms of the series (D7) are zero, and the first nonzero term corresponds to
p = 2(n− k) (provided that K(2n−2k)

0 (0) 6= 0). Specifically,

(Mn,k)2,1 =
(−1)n−k+1K(2n−2k)

0 (0)
2n−k((n− k)!)2λ2n−2k+1

√
(2n− k)!

k!
+ O

(
1

λ2n−2k+2

)
λ→+∞

.

Finally we notice that proceeding in exactly the same way, one can prove analogous behavior
of the other two entries Mn,k. Namely, (Mn,k)2,2 decays as λ−3, while (Mn,k)1,2 decays as λ−(2n−2k+1)

for λ→ ∞.
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