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Abstract: We propose an efficient image-matching method for deformable-object image
matching using discrimination of deformable objects and geometric similarity clustering between
feature-matching pairs. A deformable transformation maintains a particular form in the whole image,
despite local and irregular deformations. Therefore, the matching information is statistically analyzed
to calculate the possibility of deformable transformations, and the images can be identified using
the proposed method. In addition, a method for matching deformable object images is proposed,
which clusters matching pairs with similar types of geometric deformations. Discrimination of
deformable images showed about 90% accuracy, and the proposed deformable image-matching
method showed an average 89% success rate and 91% accuracy with various transformations.
Therefore, the proposed method robustly matches images, even with various kinds of deformation
that can occur in them.
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1. Introduction

Computer vision lets a machine or computer see and understand objects, just like human
vision. The purpose of computer vision is to recognize object in an image and/or to understand
the relationships between objects. While recent research has focused on recognition based on big
data and deep learning (DL) [1], traditional computer vision methods are still widely used in some
specific areas. While DL is not yet used in many applications due to the requirement for high
computing power and big data, traditional research based on hand-craft techniques, like feature
detection and feature matching, are actively used in various applications, such as machine vision, image
stitching, object tracking, and augmented reality. Image matching is matching similar images or objects,
even under geometric transformations, such as translation; optical, scale, and rotation transformations;
affine transformations, which are complex transformations; and viewpoint change. The new current
challenge is image matching of deformable objects [2]. In the real world, deformable objects encompass
the majority of all objects. In particular, research related to fashion items, such as clothes, is conducted
because of the rapid growth in Internet shopping [3]. However, since deformable-object matching has
a different target than the existing image-matching methods, feature-detection and -matching methods
are not identical. As such, much research has been conducted into achieving both objectives at the
same time, but without substantial results. Since deformable models cannot be defined by a specific
transformation model, there are numerous difficulties in such research. Early deformable matching
methods were researched for augmented reality, remote exploration, and image registration for medical
images, and it was not until recently that research on deformable-object matching appeared.
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A good matching algorithm is characterized by robustness, independence, and a fast matching
speed [4]. Robustness is recognizing that two images are identical if they have exactly the same
objects in them. However, the algorithm must recognize identical objects even under transformation.
Independence is recognizing the differences between two images containing objects that are different.
Lastly, fast matching is the property of rapidly determining a match. Without fast matching,
an algorithm cannot process many images, and hence, cannot be a good algorithm. The biggest
disadvantage to previous deformable object-matching algorithms is slow matching. Therefore, in this
paper, as a solution to the problems of the aforementioned methods (and by considering these
characteristics), we propose an efficient algorithm that operates the same way for both rigid and
deformable objects.

The rest of this paper is composed as follows. Section 2 introduces the existing image-matching
methods. Section 3 introduces the proposed algorithm, followed by Section 4, where the experimental
results from image sets with various deformable objects are examined and analyzed. Finally, Section 5
evaluates the proposed algorithm, and concludes the paper.

2. Related Works

In this section, we introduce the known feature-matching methods for computer vision.
Image-matching methods can be largely classified into matching rigid objects and matching deformable
objects. Rigid object-matching methods mostly consist of those that examine geometric relationships
based on feature correspondence, and that show good performance under transformations like
viewpoint change and affine transformation. However, matching performance degrades when
deformable objects are the target. For deformable object-matching, various methods are used
depending on the specific image set. In other words, there is no generalized procedure. Moreover,
there is the common problem of generally slow execution time. We introduce three categories of
common feature-point matching methods, which are classified in terms of methodology [5].

2.1. Neighborhood-Based Matching

Early researchers used neighbor-pixel information around the points to find feature
correspondence. Neighborhood-based methods include threshold-based, nearest neighbor (NN),
and nearest neighbor distance ratio (NNDR) [6]. In the threshold-based method, if the distance
between the descriptors is below a predefined threshold value, the features are considered to be
matched. The problem in this method is that a single point in the source image may have several
matched points in the target image. In the NN approach, two points are matched if their descriptor is
in the nearest neighborhood and the distance is below a specific threshold. Therefore, the problem
with the threshold-based method is solved. However, this method may result in many false positives
between images, known as outliers. This is overcome by random sample consensus (RANSAC),
which was proposed by Fischler and Bolles [7]. RANSAC is a good outlier-removal method, and is
widely used for object detection and feature matching.

2.2. Statistical-Based Matching

Logarithmic distance ratio (LDR), proposed by Tsai et al. [8], is a technique for fast image
indexing, which calculates the similarities in feature properties, including scale, orientation and
position, and recognizes similar images based on lower similarity distance. This technique is effectively
used to rapidly search similar image candidates in large image datasets. Lepsøy et al. proposed the
distance ratio statistic (DISTRAT) method [9], which adopts LDR for image matching. They found that
the LDR of inlier matching pairs has a specific ratio when LDR is calculated using feature coordinates
only. Therefore, the final matching decision is based on a statistical analysis whereby the LDR histogram
is narrower with more inliers. This method has the advantage of performance equivalent to RANSAC
while having a faster matching speed, and was eventually selected as the standard in Moving Picture
Expert Group (MPEG)—Compact Descriptors for Visual Search (CDVS) [10].
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2.3. Deformable Object-Based Matching

The aforementioned matching algorithms are optimized for rigid objects. However, most
real-world objects are deformable. Previously proposed feature-based deformable object-matching
methods include transformation model-based [11], mesh-based [12], feature clustering [13],
and graph-matching [14] methods. Transformation model-based methods require high complexity,
because they operate under a pixel-based model. Therefore, feature-based methods that are not
pixel-based were proposed. Agglomerative correspondence clustering (ACC), proposed by Cho and
Lee [15], is a method that calculates the correspondence between each matching pair, and clusters
matching pairs with a similar feature correspondence. ACC defines feature correspondence as the
difference between the points calculated using the homograph model of matching pairs and the point
that was actually matched. Then, matching pairs with a small difference are considered to have a
locally similar homography, and are hierarchically clustered. Unlike previous methods, ACC will
cluster matching pairs with a similar homograph by calculating the geometric similarity between
each matching pair, rather than classifying matching pairs into inliers and outliers. While ACC has
the disadvantages of appreciably high complexity and a high false positive rate, it shows the best
performance when only the true rate is considered. As such, Improved ACC was introduced as an
enhanced version of ACC [16].

3. Proposed Algorithm

RANSAC shows robust performance against geometric transformation of rigid objects. However,
it does not offer good performance when matching deformable objects. Meanwhile, deformable
object-matching methods generally have high complexity, which presents difficulty in applications that
require fast matching. The easiest solution to this issue is to first perform rigid object-matching and
match the remaining non-matched points using deformable object-matching methods. However,
this is an inefficient solution. Therefore, it is more effective to selectively adopt the matching
method, as long as it can discriminate deformable objects. As a solution, we propose discrimination of
deformable transformations based on statistical analysis of matching pairs, and the subsequent use of
the corresponding matching method. For example, if there are no inliers at all from among numerous
matching pairs, then these are likely to be non-matching pairs. Moreover, even if there are some inliers,
they are unlikely to be a match if the inlier ratio is low. Since the inlier ratio is low for deformable objects,
it is impossible to obtain good results. This paper proposes discrimination of possible deformable
objects through statistical analysis of such matching information and supervised learning.

Figure 1 shows a diagrammatic representation of the proposed image-matching process.
First of all, features are detected from the image, and candidate matching pairs are found.
Final matching is examined through geometric verification. The algorithm is an adaptive matching
method wherein the possibility of the candidate matching pair being a deformable object is examined
through discrimination of the deformable object (using the proposed algorithm) within the candidate
matching pairs that do not satisfy geometric verification, Deformable object-matching is only
performed on matching pairs that are determined to be deformable objects. If the algorithm cannot
discriminate the deformable objects well, it is an inefficient algorithm. Therefore, how well the
algorithm discriminates deformable objects significantly affects the overall performance.
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Figure 1. Proposed method for image matching using discrimination of deformable object images. 

3.1. Feature Detection, and Making a Matched Pair 

The proposed method requires feature coordinates and properties for deformable-object 

matching. Therefore, a scale-invariant feature transform (SIFT) detector is used, which is a point-

based detector that includes the feature’s coordinates, scale, and dominant orientation [17]. Speeded 

up robust features (SURF), maximally stable extremal regions (MSER), and affine detectors, which 

have similar properties, can also be used. SIFT is a set of orientation histograms created on a 4 × 4-

pixel neighborhood with eight bins each. The descriptor then becomes a vector of all the values of 

these histograms. Since there are 4 × 4 = 16 histograms, each with eight bins, the vector has 128 

elements. The features extracted from each image are 𝐹(𝑖) = {𝑐𝑖 , 𝑠𝑖 , 𝑜𝑖 , 𝑑𝑒𝑠𝑐𝑖} (𝑖 = 0~𝑁) where 𝑐𝑖 is 

a coordinate, 𝑠𝑖  is the scale, 𝑜𝑖  is the dominant orientation, and 𝑑𝑒𝑠𝑐𝑖  denotes 128-dimensional 

descriptors. To form matching pairs, the features detected from each image are compared. The metric 

used for the comparison is Euclidean distance, which is given by Equation (1): 

𝑑(𝑓𝑅(𝑖), 𝑓𝑄(𝑗)) = √∑(𝑓𝑅(𝑖)
𝑘

128

𝑘=1

− 𝑓𝑄(𝑗)
𝑘 )2 (1) 

which obtains the Euclidean distance between the i-th feature vector of the reference image, 𝑓𝑅(𝑖), 

and the j-th feature vector of the query image, 𝑓𝑄(𝑗). The simplest feature matching sets a threshold 

(maximum distance) and returns all matches from other images within this threshold. However, the 

problem with using a fixed threshold is that it is difficult to set; the useful range of thresholds can 

vary greatly as we move to different parts of the feature space [18]. Accordingly, we used NNDR 

for feature matching [17] as follows: 

𝑁𝑁𝐷𝑅 =  
𝑑1

𝑑2
=

‖𝐷𝐴 − 𝐷𝐵‖

‖𝐷𝐴 − 𝐷𝐶‖
 (2) 

where, d1 and d2 are the nearest and second nearest neighbor distances, DA is the target descriptor, DB 

and DC are its closest two neighbors, and the symbol ‖•‖ denotes the Euclidean distance. Lowe 

demonstrated that the probability of a false match (e.g., a feature with a similar pattern) significantly 

increases when NNDR > 0.8 [17]. Thus, matching pairs with an NNDR higher than 0.8 are not 

employed. Numerous studies showed that forming 1:1 matching pairs using NNDR leads to the best 

performance. However, matching for deformable objects the single matching-pair can be outliers, 

which would disrupt performance. Therefore, considering deformable-object matching, up to k 

candidates are selected in decreasing order of ratio, rather than selecting a single candidate with 

NNDR. A feature point forms 1:k matching pairs using k-NNDR. For rigid-object matching, matching 

pairs with a k = 1 are used, and in the deformable object-matching method, k = 2 or 3 is used. 

The N × M matching pairs formed as such undergo an overlap check process, as follows: 

𝑜𝑣𝑙𝑝[𝑖, 𝑗] = {
 1 if 𝑀𝑖(𝑝𝑖) = 𝑀𝑗(𝑝𝑗),

 0 otherwise.
 (0 ≤ 𝑖, 𝑗 ≤ 𝑁𝑀) (3) 

Figure 1. Proposed method for image matching using discrimination of deformable object images.

3.1. Feature Detection, and Making a Matched Pair

The proposed method requires feature coordinates and properties for deformable-object matching.
Therefore, a scale-invariant feature transform (SIFT) detector is used, which is a point-based detector
that includes the feature’s coordinates, scale, and dominant orientation [17]. Speeded up robust features
(SURF), maximally stable extremal regions (MSER), and affine detectors, which have similar properties,
can also be used. SIFT is a set of orientation histograms created on a 4 ˆ 4-pixel neighborhood with
eight bins each. The descriptor then becomes a vector of all the values of these histograms. Since there
are 4 ˆ 4 = 16 histograms, each with eight bins, the vector has 128 elements. The features extracted
from each image are F piq “ tci, si, oi, desciu p i “ 0 „ Nq where ci is a coordinate, si is the scale, oi is
the dominant orientation, and desci denotes 128-dimensional descriptors. To form matching pairs,
the features detected from each image are compared. The metric used for the comparison is Euclidean
distance, which is given by Equation (1):

d
´

fRpiq, fQpjq

¯

“

g

f

f

e

128
ÿ

k“1

p f k
Rpiq ´ f k

Qpjqq
2 (1)

which obtains the Euclidean distance between the i-th feature vector of the reference image, fRpiq,
and the j-th feature vector of the query image, fQpjq. The simplest feature matching sets a threshold
(maximum distance) and returns all matches from other images within this threshold. However,
the problem with using a fixed threshold is that it is difficult to set; the useful range of thresholds can
vary greatly as we move to different parts of the feature space [18]. Accordingly, we used NNDR for
feature matching [17] as follows:

NNDR “
d1

d2
“
||DA ´DB||

||DA ´DC||
(2)

where, d1 and d2 are the nearest and second nearest neighbor distances, DA is the target descriptor,
DB and DC are its closest two neighbors, and the symbol || ‚ || denotes the Euclidean distance.
Lowe demonstrated that the probability of a false match (e.g., a feature with a similar pattern)
significantly increases when NNDR > 0.8 [17]. Thus, matching pairs with an NNDR higher than
0.8 are not employed. Numerous studies showed that forming 1:1 matching pairs using NNDR leads
to the best performance. However, matching for deformable objects the single matching-pair can be
outliers, which would disrupt performance. Therefore, considering deformable-object matching, up to
k candidates are selected in decreasing order of ratio, rather than selecting a single candidate with
NNDR. A feature point forms 1:k matching pairs using k-NNDR. For rigid-object matching, matching
pairs with a k = 1 are used, and in the deformable object-matching method, k = 2 or 3 is used.

The N ˆM matching pairs formed as such undergo an overlap check process, as follows:

ovlp ri, js “

#

1 if Mi ppiq “ Mj
`

pj
˘

,
0 otherwise.

p0 ď i, j ď NMq (3)
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Matching pairs (Mk) consist of each of the feature points from the reference and query images.
In Equation (3), Mk(pk) denotes the positions of the two feature points. Here, pk “

”

pR
k , pQ

k

ı

, where pR
k

is the position of the feature point extracted from the reference image, and pQ
k is the position of the

feature point extracted from the query image. If pR
i is equal to pR

j , or if pQ
i is equal to pQ

j when
comparing the i-th matching pair (Mi) with the j-th matching pair (Mj), it is recognized as a repetition,
and 1 is assigned to ovlp ri, js. In this manner, 1 or 0 is assigned to all ovlp ri, js, eventually generating
an NM ˆ NM overlap matrix, which has ovlp ri, js as elements. The generated overlap matrix is used
for clustering during deformable-object matching.

3.2. Geometric Verification for Rigid Object-Matching

After forming matching pairs, image matching is determined through geometric verification of
1:1 matching pairs. Letting the matching pairs be (x1,y1), . . . ,(xn,yn), the LDR set Z is obtained with
the following equation:

zij “ ln

˜

||xi ´ xj||

||yi ´ yj||

¸

, Z “ tzij|i ‰ ju (4)

where xi,j is a coordinate of the reference image, and yi,j and xi,j are the matched-feature coordinates.
Moreover, Z denotes the LDR sets of all matching pairs. A schematic of this process is in Figure 2.
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Let all features within one image follow the same bivariate normal distribution, with variance σ2
x

in the query image and σ2
y in the reference image. Let a2 be the proportion of the variances:
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σ2
x

σ2
y
“ a2 (5)

Then the LDR has the following probability distribution function (PDF):

fZ pz; aq “ 2
ˆ

aez

e2z ` a2

˙2
(6)

In addition, we examine the upper and lower bounds of the LDR for objects of this type.
This behavior is studied by first forming LDR histogram h(k) for the matching pairs by counting
the occurrences over each bin:

h pkq “ #pZX ζkq (7)

The bins ζ1, . . . , ζK are adjacent intervals. The inlier behavior can be expressed by the following
double inequality:

a||xi ´ yi|| ď ||yi ´ yj|| ď b||xi ´ xj|| (8)

where a and b define the boundaries of the LDR for inliers. The LDR is restricted to an interval.
The inliers would contribute to bins contained in (´lnb,´lna) which for most cases is a limited portion
of the histogram. We used the interval (a, bq, which is (´2.6, 2.6).

The comparison of LDR histograms between incorrectly matched images and correctly matched
images is presented in Figure 3. Since a geometric transform occurs mostly in rigid object images,
each matching-pair will have a similar logarithm distance and will become narrow. Exploiting this,
the match between two images can be determined.
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Pearson’s chi-square test is utilized to compare the correlation of h(k) and f(k). Let the LDR
histogram have k bins. The histogram will be compared to the discretized model function f(k). We used
these quantities to formulate the test. Equation (9) is a formula to calculate the goodness-of-fit
parameter for c. A high value for c if the shape of the LDR histogram differs much from that of f(k),
implied that many of the matches are inliers:

c “
K
ÿ

k“1

phk ´ n fkq
2

n fk
ě χ2

1´a,K´1 (9)

where n is the total number of matching pairs, and χ2
1´a,K´1 is the threshold of χ2 having K-1 degrees

of freedom. The threshold determination method is based on an experiment by Lepsøy [9]. To obtain
the false positive rate below, 1 ´ a = 0.01 (1%), set the threshold to 70. If c is higher than the threshold,
d(k) is computed using Equation (10) to find the inliers:

d pkq “ h pkq ´β f pkq , β “

řK
k“1 h pkq f pkq
řK

k“1 p f pkqq2
(10)

where β is a weight to normalize h(k) and f (k). Figure 4a shows the comparisons of h(k) to f (k) and
to d(k), respectively, between matching images and non-matching images. We can see that the LDR
of matching pairs is narrow with numerous inliers, and that a match can rapidly be identified by
calculating this difference.

Symmetry 2016, 8, 68 7 of 18 

 

𝑐 = ∑
(ℎ𝑘 − 𝑛𝑓𝑘)2

𝑛𝑓𝑘

𝐾

𝑘=1

≥  𝜒1−𝑎,𝐾−1
2  (9) 

where n is the total number of matching pairs, and 𝜒1−𝑎,𝐾−1
2  is the threshold of 𝜒2  having K-1 

degrees of freedom. The threshold determination method is based on an experiment by Lepsøy [9]. 

To obtain the false positive rate below, 1 − 𝑎 = 0.01 (1%), set the threshold to 70. If c is higher than 

the threshold, d(k) is computed using Equation (10) to find the inliers: 

𝑑(𝑘) = ℎ(𝑘) − β𝑓(𝑘), β =
∑ ℎ(𝑘)𝑓(𝑘)𝐾

𝑘=1

∑ (𝑓(𝑘))
2𝐾

𝑘=1

 (10) 

where β is a weight to normalize h(k) and f(k). Figure 4a shows the comparisons of h(k) to f(k) and to 

d(k), respectively, between matching images and non-matching images. We can see that the LDR of 

matching pairs is narrow with numerous inliers, and that a match can rapidly be identified by 

calculating this difference. 

  

(a) (b) 

Figure 4. Analysis for geometric verification based on LDR (k = 25): (a) example of LDR histogram h(k), 

model function f(k), and difference d(k) (top: correctly matched images, bottom: incorrectly matched 

images); and (b) eigenvector r for finding inliers (top), and the results in descending order (bottom). 

After geometric verification based on LDR, matrix D is formed by quantizing d(k) in order to 

predict the number of inliers, and eigenvalue u and dominant eigenvector r are calculated using  

Dr = ur, used in Equation (11). 

𝑖𝑛𝑙𝑖𝑒𝑟𝑛 = 1 +
μ

𝑚𝑎𝑥𝑘=1,…,𝐾 𝑑(𝑘)
 (11) 

Subsequently, eigenvector r is sorted in descending order, and the upper-range matching pairs 

corresponding to the calculated number of inliers are finally determined to be the inliers. Figure 4b 

shows a diagrammatic representation of this process. 

Lastly, the weights of the matching pairs and the inliers are calculated, and matches are 

determined by calculating the ratios of the weights. Weights are based on the conditional probability 

Figure 4. Analysis for geometric verification based on LDR (k = 25): (a) example of LDR histogram h(k),
model function f (k), and difference d(k) (top: correctly matched images, bottom: incorrectly matched
images); and (b) eigenvector r for finding inliers (top), and the results in descending order (bottom).

After geometric verification based on LDR, matrix D is formed by quantizing d(k) in order to
predict the number of inliers, and eigenvalue u and dominant eigenvector r are calculated using
Dr = ur, used in Equation (11).
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inliern “ 1`
µ

maxk“1,...,K d pkq
(11)

Subsequently, eigenvector r is sorted in descending order, and the upper-range matching pairs
corresponding to the calculated number of inliers are finally determined to be the inliers. Figure 4b
shows a diagrammatic representation of this process.

Lastly, the weights of the matching pairs and the inliers are calculated, and matches are determined
by calculating the ratios of the weights. Weights are based on the conditional probability of the inliers
when the ratio between the NN distance and second distance during feature matching is given.
Equation (12) shows the corresponding conditional probability function.

p pc|rq “
ppr|cq

p pr|cq ` ppr|cq
(12)

where c and c denote the probability of inliers and outliers, respectively, and r is the distance ratio.

3.3. Discrimination of Deformable Object Images

After generating matching pairs from the two images, x and y, and performing geometric
verification, the total number of matching pairs, the number of inliers, the matching-pair weight,
and the inliers’ weights are calculated using the results. These can be defined as matching information
M(x,y) = { matchn, inliern, weightu. We analyzed which statistical distribution M(x,y) has, using the
example images. Non-matching and deformable-object images were used as training images, and the
mean, µ, and standard deviation, σ, of each property were calculated to form normal distribution
Npµ,σ2q. However, since the non-matching and deformable-object images show similarity in M(x,y)
from numerous aspects, discrimination of the two classes is vague. Therefore, the following is proposed
to find the model that minimizes the error. Analyzing numerous training images, we observed that
deformable-object matching does not lead to good results if the number of inliers is less than a certain
number. In other words, there must be more than a certain number of inliers. Figure 5b was obtained
from experiment using more than four inliers corresponding to minimum error. Subsequently, the ratio
between the number of inliers with the greatest difference in mean between the two classes, and the
matching-pair weight with the least difference in variance is calculated, and t with the minimum error
is obtained using a Bayesian classifier.

Let the training set be X = (x1,c1), (x2,c2), . . . ,(xn,cn), xi for the i-th properties, and let ci be the
class index of xi, which represents non-matching (w1) and deformable-matching (w2). X is defined as
the ratio between the inlier number from matching information and matching-pair weight, as shown
in Equation (13):

x “
inliern

distn
(13)

Figure 5 shows the graph obtained by separating matching information into that of incorrectly
matched images and deformable matching images. Figure 5a–d shows each property of the matching
information; however, it is difficult to distinguish the deformable matching pairs from non-matching
pairs. Figure 5e shows the normal distribution of x for the matching pairs with more than four inliers
after rigid-object matching. We can see that the distinction is clearer than in the previous graphs.
Therefore, t with the minimum error was found and is used for the classifier.

However, discrimination of deformable objects does not exhibit good performance if it is based
on statistical analysis only. This is because a deformable transformation cannot be defined as a certain
model. Therefore, the pattern for d(k), which was used for geometric verification, was identified
through machine learning-based training, and the result was used. Figure 6 shows a graphical
illustration of d(k) from matching rigid-object, deformable-object, and non-matching-pair images.
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Figure 6c appears to be completely different from the case above. It exhibits irregular patterns
over the entire range, most of which are small in size. This implies that the LDR and the PDF are almost
identical. Exploiting this characteristic, d(k) of a deformable matching-pair and d(k) of a non-matching
pair were extracted from the training set, and the characteristics of each pattern were classified using
support vector machine (SVM) [19], which is one of the supervised learning algorithms.

The probability of a deformable transformation is determined from the results of the previous
statistical analysis and machine learning, and the deformable objects are finally discriminated through
voting. The voting method combines the results obtained from various conditions, rather than
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from using the results of the one with the best classification performance, which is appropriate
for unpredictable deformable transformations.

3.4. Deformable-Object Matching

Deformable-object images are discriminated, and finally, deformable object-matching is performed.
Rigid object-matching methods mostly calculate a homograph in order to examine the geometric
consistency of the features in the whole image. However, while deformable objects can have locally
similar geometry, it is difficult to calculate a single homograph from the whole image. Therefore,
we used a method to cluster matching pairs with similar geometric models, and we propose a method
with enhanced performance through the use of clustering validation.

Letting two matching pairs be Mi, and Mj, transformations Ti and Tj and translations ti, and tj
can be calculated from the characteristics of each matching pair, using the enhanced weak geometric
consistency (WGC) [20], as shown in Equation (14).

«

x1q
y1q

ff

“ s1
«

cosθ1 ´sinθ1
sinθ1 cosθ1

ff«

xp

yp

ff

, t “
ˇ

ˇq1
`

xq, yq
˘

´ q
`

xq, yq
˘
ˇ

ˇ (14)

where s denotes scale, θ is the dominant orientation, and tx and ty represent coordinate translations.
Using Equation (9), the matching pairs can be expressed as Mi “

`

pxi, yiq , px1i , y1iq, Ti
˘

and

Mj “
´

`

xj, yj
˘

, px1j, y1jq, Tj

¯

, and the geometric similarity of the two matching pairs is calculated using
Equation (15):

dgeo “
`

Mi, Mj
˘

“
1
2
p||X1j ´ TiXj|| ` ||X1i ´ TjXi||q “

1
2
`

dmi ` dmj
˘

(15)

where, Xk “ rxk, yks
t , X1k “

“

x1k, y1k
‰t , k “ i, j. If transformation models Ti and Tj are similar, dgeo(Mi,Mj)

will be close to 0. A graphical representation of this is shown in Figure 7.
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Using this relationship, it can be assumed that the matching pairs with a small dgeo(Mi,Mj)
have a similar geometric relation. Therefore, similarity is computed by calculating the geometric
transformation between each matching pair, rather than by defining a transformation model of the
whole image.

Figure 8 shows an example of an affine matrix where the geometric similarity between the
matching pairs is calculated. The matrix is formed by calculating the geometric similarity between
each matching pair, assuming there are 10 matching pairs. In the example, the matching pairs with
high geometric similarity are the 9th and 10th matching pairs. Deformable objects are found through
hierarchical clustering of matching pairs with high similarity in the calculated affine matrix.
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Figure 8. Example of an affinity matrix (10 matching pairs).

Hierarchical clustering will group the clusters through linkages by calculating the similarity
within each cluster. In order to minimize the chain effect during linkage, a k-NN method was used.
While this is similar to a single-linkage method, it was extended to have k linkages, and has the
advantage of robustness against the chain effect. Figure 9 shows the results of hierarchical clustering
based on geometric similarity between matching pairs. Figure 9a shows the matching result when there
is a geometric transformation in an image containing a rigid object. We can see from the figure that
the entire object is grouped into a single large cluster due to similar geometric relations. In Figure 9b,
we can see that the objects are matched separately, with each object clustered distinctly under a
deformable transformation.
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Figure 9. Deformable image-matching results using hierarchical clustering of geometric similarity:
(a) matching results for rigid objects with geometric transformation; and (b) matching results of a
deformable object.

Hierarchical clustering eventually forms a single cluster. Therefore, clustering must be stopped
at some point. During the linkage of clusters, clustering is stopped when the geometric similarity of
the matching pair exceeds a set threshold. However, if such a thresholding method is the only one
used, the number of clusters becomes excessive, with most of the clusters likely being false clusters.
Therefore, clustering validation is used to remove false clusters. If the number of matching pairs
that form the clusters is too low, it is less likely that the resulting clusters become objects. Hence,
two methods are used for clustering validation. First, a cluster is determined to be a valid cluster
only if the number of matching pairs that form the cluster is greater than τm. Secondly, a cluster is
determined to be a valid cluster if the area of the matching pairs that form the cluster is larger than a
certain portion of the entire area (τa). The area of the matching pairs that form the cluster is calculated
using a convex hull. Figure 10 shows the results of removing the invalid clusters through clustering
validation for each case of inlier matching and outlier matching. From inlier matching, it was observed
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that the clusters with a small area are removed, and for outlier matching, the accuracy was enhanced
by preventing the false positives that occur due to small clusters.
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(a) inlier-matching pairs; and (b) outlier-matching pairs.

4. Experiment Results

In order to evaluate the performance of the proposed matching method, the Stanford Mobile Visual
Search (SMVS) dataset from Stanford University was used [21]. SMVS includes images of CDs, DVDs,
books, paintings, and video clips, and is currently the standard image set for performance evaluation
of image matching under MPEG-7 CDVS. The annotations of matching pairs and non-matching
pairs were compiled in SMVS, through which true positives and false positives can be evaluated.
Additionally, in order to evaluate deformable object-matching, performance was evaluated with
varying intensities of deformation using thin plate spline (TPS) [22]. Deformation intensity was varied
in three levels (light, medium, and heavy), and 4200 query images from SMVS were extended to
12,800 images. Lastly, 600 clothing images, which are natural deformable objects without artificial
deformation, were collected and used. Figure 11 shows examples of SMVS images, deformed SMVS
images with each level of intensity, and clothing images.
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True positive rate (TPR) and false positive rate (FPR) were used to evaluate matching performance.
TPR is an equation that examines robustness from among the characteristics of matching algorithms,
with greater value implying better performance. In contrast, FPR examines independence from
among the characteristics of matching algorithms, with a smaller value implying better performance.
Moreover, for objective comparison, accuracy was used, which is defined in relation to TPR and FPR.

TPR “
TP

TP` FN
“

TP
P

FPR “
FP

FP` TN
“

FP
N

Accuracy “
TP` TN

P` N

For a speed performance test, we used an Intel Xeon E3-1275 (8 core) CPU and with a clock speed
of 3.5 GHz and 32 GB RAM running the Windows 7 (64-bit).

4.1. Geometric Verification Test for Rigid Object Matching

First, an NNDR higher than 0.8 was excluded in feature matching, and a Euclidean distance less
than 0.6 was not used for fast calculation. This method was verified by Mikolajczyk and has been
applied in most feature-matching cases [18]. Inliers were determined through LDR, while the matching
score for a matching decision was calculated as follows:

matching score “
ω

pω` Tmq
(16)

where, ω is the sum of inlier distances, and Tm is the threshold value. Matching was determined
for a matching score >0.5. Accordingly, the experiment was conducted by altering the Tm value.
The optimum value for Tm was determined through the receiver operating characteristic (ROC)
curve, and set at Tm = 3, allowing a comparison of the performances of standard matching methods.
A rigid-object image from the SMVS dataset was employed as an experimental image.

Figure 12 illustrates the ROC curves of Approximate Nearest Neighbor (ANN) [23], RANSAC [7],
and DISTRAT [9], which were employed in this study as rigid-object image-matching methods.
A superior performance is indicated by a position closer to the top-left of the graph. DISTRAT and
RANSAC exhibit similar performance in rigid-object matching. However, DISTRAT, which is based
on a statistical algorithm, has the advantage of a very fast matching speed compared to RANSAC,
which is based on an iteration algorithm.
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4.2. Discriminating Deformable Objects Using Voting Methods

The voting method was used for discrimination of deformable object images. Two additional
methods were used as conditions in each voting, as well as SVM and the statistical model described
in Section 3.3. The additional methods are the matching score used in rigid-object matching, and the
sum of inliers distance. Matching score employs Equation (16). A low matching score indicates a
small number of inliers or insufficient weight for an image-matching determination. However, it is
necessary to slightly lower the matching parameter for deformable object images. Thus, a value that is
lower than 0.5, which is used in rigid-object matching, was selected, and the probability of deformable
object-matching was determined. The value was set at 0.2 and employed for the experiment. Second,
the ratio of the total matching-pair weight and inlier weights was calculated. This value represents the
proportion of inlier weights in the total matching pairs, regardless of the number of inliers. A value
of 0.28 was selected through experiment as the method for determining matching-pairs having the
probability of a deformable object.

Results of the proposed discrimination process for deformable objects are shown in Figure 13.
The University of Kentucky (UKY) dataset was used as the training image set [23]. The UKY dataset
consists of 10,200 images of 2550 objects.

Four conditions were used for voting, and the voting value was varied throughout the
experiments, where voting > 0 implies conducting deformable-object matching for all cases that have
not been rigid-matched. In contrast, voting > 3 indicates no deformable-object matching in most cases.
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Figure 13. Performance per voting values (N: normal images; L: light deformable images; M: medium
deformable images; H: heavy deformable images; and C: clothing images): (a) true positive rate for
voting values; (b) false positive rate for voting values; (c) accuracy for voting values; and (d) execution
time for voting values.

While TPR is highest voting > 0, the execution time is inefficient, the FPR is high, and accuracy
is low, since all of the numerous deformable object-matching processes were run. If the voting value
increases, the TPR and accuracy decrease, overall, since the possibility of deformable objects decreases.
Therefore, the best performance for average accuracy was when voting > 1.
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4.3. Deformable Object-Matching Performance Test

Hierarchical clustering was used for deformable-object matching. Hierarchical clustering will
create a single cluster without cutoff. Figure 14a presents experimental results obtained by changing
the cutoff. As the cutoff value increases, TPR and FPR increase. Accuracy was calculated to find the
optimum cutoff value. It was confirmed through experiment that the best accuracy was found at a
cutoff of 30. Moreover, linkage for the clustering employed a strong k-NN in a chain effect, and an
experiment was conducted to determine the optimum k. The results are presented in Figure 14b.
For a higher k, the number of false positives is reduced, but complexity increases. Because there is no
significant effect on accuracy when k is higher than 10, a k value equal to 10 was employed.
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Figure 14. Experimental results according to parameters in clustering of geometric similarity for
deformable-object matching: (a) experimental result based on the cutoff of geometric similarity;
and (b) experimental result based on k of a k-NN linkage.

An experiment was conducted using the two proposed methods for clustering validation.
When clusters were formed using hierarchical clustering, the number of matching pairs contained
in each cluster and the area of each cluster consisting of matching pairs in the image are determined
as shown in Figure 15. Each cluster can be viewed as an object in an image. When the number of
matching pairs constituting an object is small, or the area is narrow, the resulting object has a low
value. Hence, cluster validation was performed using this result. Figure 15a illustrates the experiment
regarding false clusters when the number of matching pairs contained in a cluster has a small threshold
value (τm). The optimum value was determined through experiment to be τm = 5. Figure 15b shows
the calculated ratio of each cluster area and the entire image area. A false cluster was deemed to
occur when the ratio (τa) is low. From the experiment, the best value was confirmed to be τa = 0.01,
and hence, this value was employed.
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4.4. Performance Evaluation for the Proposed Matching Method

Lastly, performance evaluation using all test images was compared to that of various matching
methods. TPR, FPR, accuracy and execution time were compared, as shown in Table 1. The parameters
for performance evaluation were determined though the experiments described in the previous
Sections 4.1–4.3. The main parameters are as follows. A value of Tm = 3 for the matching score
was employed for rigid-object matching. Moreover, rigid matching was deemed to occur when the
calculated matching score was higher than 0.5; voting > 1, which determines the best performance,
was employed for voting on discrimination of deformable object images. Finally, cutoff = 30 was
employed for cluster matching in deformable-object matching, while values of τm = 5 and τa = 0.01
were employed for cluster validation. For the performance comparison, the same parameters were
employed for DISTRAT [9] and ACC [15].

Table 1. Performance results of image-matching methods (averages).

Methods TPR FPR Accuracy Matching Time (s)

DISTRAT [9] 83.51% 6.41% 88.55% 0.446
ANN [24] 70.27% 3.03% 83.62% 0.536
ACC [15] 86.45% 6.46% 89.99% 3.759

CDVS(Global) [10] 67.27% 0.35% 83.46% 0.003
CDVS(Local) [10] 74.94% 0.28% 87.33% 0.005

Proposed 89.78% 7.12% 91.33% 0.521

Compared to various matching methods, the average accuracy was highest with the proposed
method, with no significant difference in execution time. DISTRAT [9] and ANN [24] are representative
rigid object-matching methods, and show good results with normal images, where there is only
geometric transformation rather than deformable transformation. However, a dramatic decrease in
performance was seen with an increase in the intensity of deformable transformation. Moreover,
while the most recent method, CDVS [10], shows extremely fast execution time, since its objective is in
retrieval rather than matching (and hence, compressed descriptors are used), this method also shows a
decrease in performancebecause it is intended for rigid objects. While the clustering method [15] has a
TPR equivalent to the proposed method, its FPR and time complexity are high, which will present
difficulties in actual applications.

Figure 16 shows a comparison of various matching methods with different image types. TPR was
observed to be the best in the proposed method. While it can be seen that both TPR and accuracy with
the previous methods indicate a significant decrease in performance with an increasing intensity of
deformation, the proposed method shows the least amount of decrease, implying that it can be used
for robust matching of any transformation.
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5. Conclusions

This paper introduced a method of matching images with geometric transformation and
deformable transformations using the same features. Previous methods were specialized for certain
transformations, and do not show good performance with other transformations. As a solution to this
issue, we proposed an adaptive image-matching method that adopts discrimination of deformable
transformations. The possibility of the occurrence of a deformable transformation is discriminated
using the results from statistical analysis of the matching information and supervised learning.
The proposed method showed discrimination performance of more than 90% accuracy, on average.
Moreover, we proposed a method of calculating the geometric similarity of each matching pair,
matching the pairs by clustering those with high similarity. Previous clustering-based methods
have an issue with high time complexity. However, since the use of the aforementioned method
of discriminating deformable transformations leads to most non-matching images being removed,
and matching concerns only images with a deformable transformation, the discrimination method
brings an increase in efficiency to the overall matching method. While the proposed image-matching
method exhibits a TPR of 89%, since it can generate both rigid- and deformable-matching results, it was
observed that FPR does not increase, since most false positives are removed through discrimination of
deformable transformations.

Future research tasks include improving the accuracy of the deformable transformation
discrimination method, and developing a deformable image-matching method with a fast execution
time. The accuracy of the deformable transformation discrimination method greatly influences
performance. In addition to local features, which were used as a solution to the problem of accuracy,
the use of global features, like color or texture, can also be considered. Since this paper intends to use
single-feature detection, it is believed that the use of such additional information in actual applied
systems in the future can lead to improved performance. Moreover, if it is possible to perform fast
indexing that can also be used for deformable transformations, it is expected that the system can be
extended to an image-retrieval system that is also robust to image transformations.
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