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Abstract:



We derive a Hamiltonian version of the [image: there is no content]-symmetric discrete nonlinear Schrödinger equation that describes synchronized dynamics of coupled pendula driven by a periodic movement of their common strings. In the limit of weak coupling between the pendula, we classify the existence and spectral stability of breathers (time-periodic solutions localized in the lattice) supported near one pair of coupled pendula. Orbital stability or instability of breathers is proved in a subset of the existence region.
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1. Introduction


Synchronization is a dynamical process where two or more interacting oscillatory systems end up with identical movement. In 1665, Huygens experimented with maritime pendulum clocks and discovered the anti-phase synchronization of two pendulum clocks mounted on the common frame [1]. Since then, synchronization has become a basic concept in nonlinear and complex systems [2]. Such systems include, but are not limited to, musical instruments, electric power systems, and lasers. There are numerous applications in mechanical [3] and electrical [4] engineering. New applications are found in mathematical biology such as synchronous variation of cell nuclei, firing of neurons, forms of cooperative behavior of animals and humans [5].



Recently, Huygen’s experiment has been widely discussed and several experimental devices were built [6,7,8]. It was shown that two real mechanical clocks when mounted to a horizontally moving beam can synchronize both in-phase and anti-phase [9]. In all these experiments synchronization was achieved due to energy transfer via the oscillating beam, supporting Huygen’s intuition [6].



One of the rapidly developing areas in between physics and mathematics, is the topic of [image: there is no content]-symmetry, which has started as a way to characterize non-Hermitian Hamiltonians in quantum mechanics [10]. The key idea is that a linear Schrödinger operator with a complex-valued potential, which is symmetric with respect to combined parity ([image: there is no content]) and time-reversal ([image: there is no content]) transformations, may have a real spectrum up to a certain critical value of the complex potential amplitude. In nonlinear systems, this distinctive feature may lead to existence of breathers (time-periodic solutions localized in space) as continuous families of their energy parameter.



The most basic configuration having [image: there is no content] symmetry is a dimer, which represents a system of two coupled oscillators, one of which has damping losses and the other one gains some energy from external sources. This configuration was studied in numerous laboratory experiments involving electric circuits [11], superconductivity [12], optics [13,14] and microwave cavities [15].



In the context of synchronization of coupled oscillators in a [image: there is no content]-symmetric system, one of the recent experiments was performed by Bender et al. [16]. These authors considered a [image: there is no content]-symmetric Hamiltonian system describing the motion of two coupled pendula whose bases were connected by a horizontal rope which moves periodically in resonance with the pendula. The phase transition phenomenon, which is typical for [image: there is no content]-symmetric systems, happens when some of the real eigenvalues of the complex-valued Hamiltonian become complex. The latter regime is said to have broken [image: there is no content] symmetry.



On the analytical side, dimer equations were found to be completely integrable [17,18]. Integrability of dimers is obtained by using Stokes variables and it is lost when more coupled nonlinear oscillators are added into a [image: there is no content]-symmetric system. Nevertheless, it was understood recently [19,20] that there is a remarkable class of [image: there is no content]-symmetric dimers with cross-gradient Hamiltonian structure, where the real-valued Hamiltonians exist both in finite and infinite chains of coupled nonlinear oscillators. Analysis of synchronization in the infinite chains of coupled oscillators in such class of models is a subject of this work.



In the rest of this section, we describe how this paper is organized. We also describe the main findings obtained in this work.



Section 2 introduces the main model of coupled pendula driven by a resonant periodic movement of their common strings. See Figure 1 for a schematic picture. By using an asymptotic multi-scale method, the oscillatory dynamics of coupled pendula is reduced to a [image: there is no content]-symmetric discrete nonlinear Schrödinger (dNLS) equation with gains and losses. This equation generalizes the dimer equation derived in [16,20].


Figure 1. A schematic picture for the chain of coupled pendula connected by torsional springs, where each pair is hung on a common string.
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Section 3 describes symmetries and conserved quantities for the [image: there is no content]-symmetric dNLS equation. In particular, we show that the cross-gradient Hamiltonian structure obtained in [19,20] naturally appears in the asymptotic reduction of the original Hamiltonian structure of Newton’s equations of motion for the coupled pendula.



Section 4 is devoted to characterization of breathers, which are time-periodic solutions localized in the chain with the frequency parameter E and the amplitude parameter A. We show that depending on parameters of the model (such as detuning frequency, coupling constant, driving force amplitude), there are three possible types of breather solutions. For the first type, breathers of small and large amplitudes A are connected to each other and do not extend to symmetric synchronized oscillations of coupled pendula. In the second and third types, large-amplitude and small-amplitude breathers are connected to the symmetric synchronized oscillations but are not connected to each other. See Figure 2 with branches (a), (b), and (c), where the symmetric synchronized oscillations correspond to the value [image: there is no content].


Figure 2. Solution branches for the stationary dimer.
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Section 5 contains a routine analysis of linear stability of the zero equilibrium, where the phase transition threshold to the broken [image: there is no content]-symmetry phase is explicitly found. Breathers are only studied for the parameters where the zero equilibrium is linearly stable.



Section 6 explores the Hamiltonian structure of the [image: there is no content]-symmetric dNLS equation and characterizes breathers obtained in Section 4 from their energetic point of view. We show that the breathers for large value of frequency E appear to be saddle points of the Hamiltonian function between continuous spectra of positive and negative energy, similar to the standing waves in the Dirac models. Therefore, it is not clear from the energetic point of view if such breathers are linearly or nonlinearly stable. On the other hand, we show that the breathers for smaller values of frequency E appear to be saddle points of the Hamiltonian function with a negative continuous spectrum and finitely many (either three or one) positive eigenvalues.



Section 7 is devoted to analysis of spectral and orbital stability of breathers. For spectral stability, we use the limit of small coupling constant between the oscillators (the same limit is also used in Section 4 and Section 6) and characterize eigenvalues of the linearized operator. The main analytical results are also confirmed numerically. See Figure 3 for the three types of breathers. Depending on the location of the continuous spectral bands relative to the location of the isolated eigenvalues, we are able to prove nonlinear orbital stability of breathers for branches (b) and (c). We are also able to characterize instabilities of these types of breathers that emerge depending on parameters of the model. Regarding branch (a), nonlinear stability analysis is not available by using the energy method. Our follow-up work [21] develops a new method of analysis to prove the long-time stability of breathers for branch (a).


Figure 3. The spectrum of the stability problem for different branches of breathers.
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The summary of our findings is given in the concluding Section 8, where the main results are shown in the form of Table 1.



Table 1. A summary of results on breather solutions for small ϵ. Here, IB is a narrow instability bubble seen on panel (b) of Figure 3.







	
Parameter Intervals

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Existence on Figure 2

	
point 1 on branch (a)

	
point 2 on branch (b)

	
point 3 on branch (b)

	
point 4 on branch (c)




	
Continuum

	
Sign-indefinite

	
Sign-indefinite

	
Negative

	
Negative




	
Spectral stability

	
Yes

	
Yes (IB)

	
Yes (IB)

	
Depends on parameters




	
Orbital stability

	
No

	
No

	
Yes if [image: there is no content]

	
Yes if spectrally stable











2. Model


A simple yet universal model widely used to study coupled nonlinear oscillators is the Frenkel-Kontorova (FK) model [22]. It describes a chain of classical particles coupled to their neighbors and subjected to a periodic on-site potential. In the continuum approximation, the FK model reduces to the sine-Gordon equation, which is exactly integrable. The FK model is known to describe a rich variety of important nonlinear phenomena, which find applications in solid-state physics and nonlinear science [23].



We consider here a two-array system of coupled pendula, where each pendulum is connected to the nearest neighbors by linear couplings. Figure 1 shows schematically that each array of pendula is connected in the longitudinal direction by the torsional springs, whereas each pair of pendula is connected in the transverse direction by a common string. Newton’s equations of motion are given by


x¨n+sin(xn)=Cxn+1−2xn+xn−1+Dyn,y¨n+sin(yn)=Cyn+1−2yn+yn−1+Dxn,n∈Z,t∈R



(1)




where [image: there is no content] correspond to the angles of two arrays of pendula, dots denote derivatives of angles with respect to time t, and the positive parameters C and D describe couplings between the two arrays in the longitudinal and transverse directions, respectively. The type of coupling between the two pendula with the angles [image: there is no content] and [image: there is no content] is referred to as the direct coupling between nonlinear oscillators (see Section 8.2 in [5]).



We consider oscillatory dynamics of coupled pendula under the following assumptions.



	(A1)

	
The coupling parameters C and D are small. Therefore, we can introduce a small parameter μ such that both C and D are proportional to [image: there is no content].




	(A2)

	
A resonant periodic force is applied to the common strings for each pair of coupled pendula. Therefore, D is considered to be proportional to [image: there is no content], where ω is selected near the unit frequency of linear pendula indicating the [image: there is no content] parametric resonance between the force and the pendula.







Mathematically, we impose the following representation for parameters C and [image: there is no content]:


C=ϵμ2,D(t)=2γμ2cos(2ωt),ω2=1+μ2Ω



(2)




where [image: there is no content] are μ-independent parameters, whereas μ is the formal small parameter to characterize the two assumptions (A1) and (A2).



In the formal limit [image: there is no content], the pendula are uncoupled, and their small-amplitude oscillations can be studied with the asymptotic multi-scale expansion


[image: there is no content]



(3)




where [image: there is no content] are amplitudes for nearly harmonic oscillations and [image: there is no content] are remainder terms. In a similar context of single-array coupled nonlinear oscillators, it is shown in [24] how the asymptotic expansions (3) can be justified. From the conditions that the remainder terms [image: there is no content] remain bounded as the system evolves, the amplitudes [image: there is no content] are shown to satisfy the discrete nonlinear Schrödinger (dNLS) equations, which bring together all the phenomena affecting the nearly harmonic oscillations (such as cubic nonlinear terms, the detuning frequency, the coupling between the oscillators, and the amplitude of the parametric driving force). A similar derivation for a single pair of coupled pendula is reported in [20].



Using the algorithm in [24] and restricting the scopes of this derivation to the formal level, we write the truncated system of equations for the remainder terms:


X¨n+Xn=Fn(1)eiωt+Fn(1)¯e−iωt+Fn(3)e3iωt+Fn(3)¯e−3iωt,Y¨n+Yn=Gn(1)eiωt+Gn(1)¯e−iωt+Gn(3)e3iωt+Gn(3)¯e−3iωt,n∈Z,t∈R



(4)




where [image: there is no content] and [image: there is no content] are uniquely defined. Bounded solutions to the linear inhomogeneous Equation (4) exist if and only if [image: there is no content] for every [image: there is no content]. Straightforward computations show that the conditions [image: there is no content] are equivalent to the following evolution equations for slowly varying amplitudes [image: there is no content]:


2iA˙n=ϵAn+1−2An+An−1+ΩAn+γB¯n+12|An|2An,2iB˙n=ϵBn+1−2Bn+Bn−1+ΩBn+γA¯n+12|Bn|2Bn,n∈Z,t∈R



(5)







The System (5) takes the form of coupled parametrically forced dNLS equations. There exists an invariant reduction of System (5) given by


An=Bn,n∈Z



(6)




to the scalar parametrically forced dNLS equation. Existence and stability of breathers in such scalar dNLS equations was considered numerically by Susanto et al. in [25,26].



The Reduction (6) corresponds to the symmetric synchronized oscillations of coupled pendula of the Model (1) with


xn=yn,n∈Z



(7)







In what follows, we consider a more general class of synchronized oscillations of coupled pendula of the Model (1). The solutions we consider also generalize the breather solutions of the coupled parametrically forced dNLS Equation (5).



When [image: there is no content], the System (5) is equivalent to an uncoupled system of dNLS equations, which have many applications in physics, including nonlinear optics. In the optics context, the system describes two arrays of optical waveguides with Kerr nonlinearity and nearest-neighbor interactions (see the review and references in [27]). The γ term realizes a cross-phase linear coupling between the two arrays of optical waveguides. This type of coupling occurs typically due to parametric resonance in the optical systems (see [28] and references therein).



The System (5) can be cast to the form of the parity–time reversal ([image: there is no content]) dNLS equations [20]. Using the variables


un:=14An−iB¯n,vn:=14An+iB¯n



(8)




the System (5) is rewritten in the equivalent form


[image: there is no content]



(9)




which is the starting point for our analytical and numerical work. The invariant Reduction (6) for System (5) becomes


Im(eiπ4un)=0,Im(e−iπ4vn)=0,n∈Z



(10)







Without loss of generality, one can scale parameters Ω, ϵ, and γ by a factor of two in order to eliminate the numerical factors in the System (9). Also in the context of hard nonlinear oscillators (e.g., in the framework of the [image: there is no content] theory), the cubic nonlinearity may have the opposite sign compared to the one in the System (9). However, given the applied context of the system of coupled pendula, we will stick to the specific form given by Equation (9) in further analysis.




3. Symmetries and Conserved Quantities


The System (9) is referred to as the [image: there is no content]-symmetric dNLS equation because the solutions remain invariant with respect to the action of the parity [image: there is no content] and time-reversal [image: there is no content] operators given by


Puv=vu,Tu(t)v(t)=u¯(−t)v¯(−t)



(11)







The parameter γ introduces the gain–loss coefficient in each pair of coupled oscillators due to the resonant periodic force. In the absence of all other effects, the γ-term of the first equation of System (9) induces the exponential growth of amplitude [image: there is no content], whereas the γ-term of the second equation induces the exponential decay of amplitude [image: there is no content], if [image: there is no content].



The System (9) truncated at a single site (say [image: there is no content]) is called the [image: there is no content]-symmetric dimer. In the work of Barashenkov et al. [20], it was shown that all [image: there is no content]-symmetric dimers with physically relevant cubic nonlinearities represent Hamiltonian systems in appropriately introduced canonical variables. However, the [image: there is no content]-symmetric dNLS equation on a lattice does not typically have a Hamiltonian form if [image: there is no content].



Nevertheless, the particular nonlinear functions arising in the System (9) correspond to the [image: there is no content]-symmetric dimers with a cross–gradient Hamiltonian structure [20], where variables [image: there is no content] are canonically conjugate. As a result, the System (9) on the chain [image: there is no content] has additional conserved quantities. This fact looked like a mystery in the recent works [19,20].



Here we clarify the mystery in the context of the derivation of the [image: there is no content]-symmetric dNLS Equation (9) from the original System (1). Indeed, the System (1) of classical Newton particles has a standard Hamiltonian structure with the energy function


Hx,y(t)=∑n∈Z12(x˙n2+y˙n2)+2−cos(xn)−cos(yn)+12C(xn+1−xn)2+12C(yn+1−yn)2−D(t)xnyn



(12)







Since the periodic movement of common strings for each pair of pendula result in the time-periodic coefficient [image: there is no content], the energy [image: there is no content] is a periodic function of time t. In addition, no other conserved quantities such as momenta exist typically in lattice differential systems such as the System (1) due to broken continuous translational symmetry.



After the System (1) is reduced to the coupled dNLS Equation (5) with the asymptotic Expansion (3), we can write the evolution Problem (5) in the Hamiltonian form with the standard straight-gradient symplectic structure


2idAndt=∂HA,B∂A¯n,2idBndt=∂HA,B∂B¯n,n∈Z



(13)




where the time variable t stands now for the slow time [image: there is no content] and the energy function is


HA,B=∑n∈Z14(|An|4+|Bn|4)+Ω(|An|2+|Bn|2)+γ(AnBn+A¯nB¯n)−ϵ|An+1−An|2−ϵ|Bn+1−Bn|2



(14)







The energy function [image: there is no content] is conserved in the time evolution of the Hamiltonian System (13). In addition, there exists another conserved quantity


[image: there is no content]



(15)




which is related to the gauge symmetry [image: there is no content] with [image: there is no content] for solutions to the System (5).



When the transformation of Variables (8) is used, the [image: there is no content]-symmetric dNLS Equation (9) is cast to the Hamiltonian form with the cross-gradient symplectic structure


2idundt=∂Hu,v∂v¯n,2idvndt=∂Hu,v∂u¯n,n∈Z



(16)




where the energy function is


Hu,v=∑n∈Z(|un|2+|vn|2)2+(unv¯n+u¯nvn)2+Ω(|un|2+|vn|2)−ϵ|un+1−un|2−ϵ|vn+1−vn|2+iγ(unv¯n−u¯nvn)



(17)







The gauge-related function is written in the form


[image: there is no content]



(18)







The functions [image: there is no content] and [image: there is no content] are conserved in the time evolution of the System (9). These functions follow from Equations (14) and (15) after the Transformation (8) is used. Thus, the cross-gradient Hamiltonian structure of the [image: there is no content]-symmetric dNLS Equation (9) is inherited from the Hamiltonian structure of the coupled oscillator Model (1).




4. Breathers (Time-Periodic Solutions)


We characterize the existence of breathers supported by the [image: there is no content]-symmetric dNLS Equation (9). In particular, breather solutions are continued for small values of coupling constant ϵ from solutions of the dimer equation arising at a single site, say the central site at [image: there is no content]. We shall work in a sequence space [image: there is no content] of square integrable complex-valued sequences.



Time-periodic solutions to the [image: there is no content]-symmetric dNLS Equation (9) are given in the form [29,30]:


u(t)=Ue−12iEt,v(t)=Ve−12iEt



(19)




where the frequency parameter E is considered to be real, the factor [image: there is no content] is introduced for convenience, and the sequence [image: there is no content] is time-independent. The Breather (19) is a localized mode if [image: there is no content], which implies that [image: there is no content] as [image: there is no content]. The Breather (19) is considered to be [image: there is no content]-symmetric with respect to the operators in Equation (11) if [image: there is no content].



The Reduction (10) for symmetric synchronized oscillations is satisfied if


E=0:Im(eiπ4Un)=0,Im(e−iπ4Vn)=0,n∈Z



(20)







The time-periodic Breathers (19) with [image: there is no content] generalize the class of symmetric synchronized Oscillations (20).



The time-independent sequence [image: there is no content] can be found from the stationary [image: there is no content]-symmetric dNLS equation:


[image: there is no content]



(21)







The [image: there is no content]-symmetric breathers with [image: there is no content] satisfy the following scalar difference equation


[image: there is no content]



(22)







Note that the Reduction (20) is compatible with Equation (22) in the sense that if [image: there is no content] and [image: there is no content], then R satisfies a real-valued difference equation.



Let us set [image: there is no content] for now and consider solutions to the dimer equation at the central site [image: there is no content]:


[image: there is no content]



(23)







The parameters γ and Ω are considered to be fixed, and the breather parameter E is thought to parameterize continuous branches of solutions to the nonlinear algebraic Equation (23). The solution branches depicted on Figure 2 are given in the following lemma.



Lemma 1. 

Assume [image: there is no content]. The algebraic Equation (23) admits the following solutions depending on γ and Ω:

	(a) 

	
[image: there is no content] - two symmetric unbounded branches exist for [image: there is no content],




	(b) 

	
[image: there is no content] - an unbounded branch exists for every [image: there is no content],




	(c) 

	
[image: there is no content] - a bounded branch exists for [image: there is no content],






where [image: there is no content].





Proof. 

Substituting the decomposition [image: there is no content] with [image: there is no content] and [image: there is no content] into the algebraic Equation (23), we obtain


sin(2θ)=γ4A2+Ω,cos(2θ)=E8A2+Ω



(24)







Excluding θ by using the fundamental trigonometric identity, we obtain the explicit parametrization of the solutions to the algebraic Equation (23) by the amplitude parameter A:


[image: there is no content]



(25)







The zero-amplitude limit [image: there is no content] is reached if [image: there is no content], in which case [image: there is no content], where [image: there is no content]. If [image: there is no content] , the solution branches (if they exist) are bounded away from the zero solution.



Now we analyze the three cases of parameters γ and Ω formulated in the lemma.

	(a)

	
If [image: there is no content], then the Parametrization (25) yields a monotonically increasing map [image: there is no content] because


[image: there is no content]



(26)




In the two asymptotic limits, we obtain from Equation (25):


E2=E02+O(A2)asA→0andE2=64A4+O(A2)asA→∞.








See Figure 2a.




	(b)

	
If [image: there is no content], the Parametrization (25) yields a monotonically increasing map [image: there is no content], where


[image: there is no content]



(27)




Indeed, we note that [image: there is no content] and


[image: there is no content]








so that the derivative in Equation (26) is positive for every [image: there is no content]. We have


E2→0asA2→A+2andE2=64A4+O(A2)asA→∞.








See Figure 2b.




	(c)

	
If [image: there is no content], then the Parametrization (25) yields a monotonically decreasing map [image: there is no content], where


[image: there is no content]



(28)




In Equation (28), the first choice is made if [image: there is no content] and the second choice is made if [image: there is no content]. Both choices are the same if [image: there is no content]. We note that [image: there is no content], therefore, the Derivative (26) needs to be rewritten in the form


[image: there is no content]



(29)




where [image: there is no content] for both [image: there is no content] and [image: there is no content]. In the two asymptotic limits, we obtain from Equation (25):


E2=E02+O(A2)asA→0andE2→0asA2→A−2








See Figure 2c.









Note that branches (b) and (c) coexist for [image: there is no content]. ☐





Remark 1. 

The Reduction (20) corresponds to the choice:


E=0,θ=−π4,4A2+Ω+γ=0








If [image: there is no content], this choice corresponds to [image: there is no content] for [image: there is no content], that is, the point [image: there is no content] on branch (c). If [image: there is no content], it corresponds to [image: there is no content] for any [image: there is no content], that is, the point [image: there is no content] on branch (b).





Every solution of Lemma 1 can be extended to a breather on the chain [image: there is no content] which satisfies the spatial symmetry condition in addition to the [image: there is no content] symmetry:


U−n=Un=V¯n=V¯−n,n∈Z



(30)







In order to prove the existence of the symmetric breather solution to the difference Equation (22), we use the following implicit function theorem.



Implicit Function Theorem (Theorem 4.E in [31]). Let [image: there is no content] and Z be Banach spaces and let [image: there is no content] be a [image: there is no content] map on an open neighborhood of the point [image: there is no content]. Assume that


[image: there is no content]








and that


DxF(x0,y0):X→Zisone-to-oneandonto








There are [image: there is no content] and [image: there is no content] such that for each y with [image: there is no content] there exists a unique solution [image: there is no content] of the nonlinear equation [image: there is no content] with [image: there is no content]. Moreover, the map [image: there is no content] is [image: there is no content] near [image: there is no content].



With two applications of the implicit function theorem, we prove the following main result of this section.



Theorem 1. 

Fix [image: there is no content], [image: there is no content], and [image: there is no content], where [image: there is no content] if [image: there is no content]. There exists [image: there is no content] sufficiently small and [image: there is no content] such that for every [image: there is no content], there exists a unique solution [image: there is no content] to the difference Equation (22) satisfying the Symmetry (30) and the bound


[image: there is no content]



(31)




where A and θ are defined in Lemma 1. Moreover, the solution U is smooth in ϵ.





Proof. 

In the first application of the implicit function theorem, we consider the following system of algebraic equations


EUn=ϵU¯n+1−2U¯n+U¯n−1+ΩU¯n+iγUn+6|Un|2U¯n+2Un3,n∈N



(32)




where [image: there is no content] is given, in addition to parameters γ, Ω, and E.



Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. Then, we have [image: there is no content] and the Jacobian operator [image: there is no content] is given by identical copies of the matrix


[image: there is no content]








with the eigenvalues [image: there is no content]. By the assumption of the lemma, [image: there is no content], so that the Jacobian operator [image: there is no content] is one-to-one and onto. By the implicit function theorem, for every [image: there is no content] and every [image: there is no content] sufficiently small, there exists a unique small solution [image: there is no content] of the System (32) such that


[image: there is no content]



(33)




where the positive constant [image: there is no content] is independent from ϵ and [image: there is no content].



Thanks to the symmetry of the difference Equation (22), we find that [image: there is no content], [image: there is no content] satisfy the same System (32) for [image: there is no content], with the same unique solution.



In the second application of the implicit function theorem, we consider the following algebraic equation


[image: there is no content]



(34)




where [image: there is no content] depends on [image: there is no content], γ, Ω, and E, satisfies the Bound (33), and is uniquely defined by the previous result.



Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. Then, we have [image: there is no content], where A and θ are defined in Lemma 1. The Jacobian operator [image: there is no content] is given by the matrix


E−iγ−6U02−6U¯02−Ω−12|U0|2−Ω−12|U0|2E+iγ−6U02−6U¯02|U0=Aeiθ=E−iγ−12EA2Ω+8A2−Ω−12A2−Ω−12A2E+iγ−12EA2Ω+8A2



(35)







We show in Lemma 2 below that the matrix given by Equation (35) is invertible under the conditions [image: there is no content] and [image: there is no content]. By the implicit function theorem, for every [image: there is no content] sufficiently small, there exists a unique solution [image: there is no content] to the algebraic Equation (34) near [image: there is no content] such that


[image: there is no content]



(36)




where the positive constant [image: there is no content] is independent from ϵ. The Bound (31) holds thanks to the Bounds (33) and (36). Since both Equations (32) and (34) are smooth in ϵ, the solution U is smooth in ϵ. ☐





In the following result, we show that the matrix given by Equation (35) is invertible for every branch of Lemma 1 with an exception of a single point [image: there is no content] on branch (c) for [image: there is no content].



Lemma 2. 

With the exception of the point [image: there is no content] on branch (c) of Lemma 1 for [image: there is no content], the matrix given by Equation (35) is invertible for every [image: there is no content].





Proof. 

The matrix given by Equation (35) has zero eigenvalue if and only if its determinant is zero, which happens at


[image: there is no content]











Eliminating [image: there is no content] by using Parametrization (25) and simplifying the algebraic equation for nonzero [image: there is no content], we reduce it to the form


[image: there is no content]



(37)







We now check if this constraint can be satisfied for the three branches of Lemma 1.

	(a)

	
If [image: there is no content], the Constraint (37) is not satisfied because the left-hand side


[image: there is no content]








exceeds the right-hand side [image: there is no content].




	(b)

	
If [image: there is no content] and [image: there is no content], where [image: there is no content] is given by Equation (27), the Constraint (37) is not satisfied because the left-hand side


[image: there is no content]








exceeds the left-hand side [image: there is no content] both for [image: there is no content] and for [image: there is no content].




	(c)

	
If [image: there is no content] and [image: there is no content], where [image: there is no content] is given by Equation (28), the Constraint (37) is not satisfied because the left-hand side is estimated by


[image: there is no content]








In the first case, we have [image: there is no content], so that the left-hand side is strictly smaller than [image: there is no content]. In the second case, we have [image: there is no content], so that the left-hand side is also strictly smaller than [image: there is no content]. Only if [image: there is no content], the Constraint (37) is satisfied at [image: there is no content], when [image: there is no content] and


[image: there is no content]

















Hence, the Matrix (35) is invertible for all parameter values with one exceptional case. ☐





Remark 2. 

In the asymptotic limit [image: there is no content] as [image: there is no content], see Lemma 1, the Matrix (35) is expanded asymptotically as


−12E3|E|3|E|E+O(1)as|E|→∞



(38)




with the two eigenvalues [image: there is no content] and [image: there is no content]. Thus, the matrix given by Equation (38) is invertible for every branch extending to sufficiently large values of E.






5. Stability of Zero Equilibrium


Here we discuss the linear stability of the zero equilibrium in the [image: there is no content]-symmetric dNLS Equation (9). The following proposition yields a simple result.



Proposition 1. 

The zero equilibrium of the [image: there is no content]-symmetric dNLS Equation (9) is linearly stable if [image: there is no content], where


[image: there is no content]



(39)




The zero equilibrium is linearly unstable if [image: there is no content].





Proof. 

Truncating the [image: there is no content]-symmetric dNLS Equation (9) at the linear terms and using the Fourier transform


[image: there is no content]



(40)




we obtain the linear homogeneous system


D^(k)U^(k)V^(k)=00,whereD^(k):=−2ω(k)−iγ−Ω+4ϵsin2(k/2)−Ω+4ϵsin2(k/2)−2ω(k)+iγ











The determinant of [image: there is no content] is zero if and only if [image: there is no content] is found from the quadratic equation


[image: there is no content]



(41)







For any [image: there is no content], where [image: there is no content] is given by Equation (39), the two branches [image: there is no content] found from the quadratic Equation (41) are real-valued and non-degenerate for every [image: there is no content]. Therefore, the zero equilibrium is linearly stable.



On the other hand, for any [image: there is no content], the values of [image: there is no content] are purely imaginary either near [image: there is no content] if [image: there is no content] or near [image: there is no content] if [image: there is no content]. Therefore, the zero equilibrium is linearly unstable. ☐





Remark 3. 

The value [image: there is no content] given by Equation (39) represents the phase transition threshold and the [image: there is no content]-symmetric dNLS Equation (9) is said to have broken [image: there is no content]-symmetry for [image: there is no content].





If [image: there is no content], the zero equilibrium is only linearly stable for [image: there is no content]. Since the localized breathers cannot be stable when the zero background is unstable, we shall study stability of breathers only for the case when [image: there is no content], that is, in the regime of unbroken [image: there is no content]-symmetry.




6. Variational Characterization of Breathers


It follows from Theorem 1 that each interior point on the solution branches shown on Figure 2 generates a fundamental breather of the [image: there is no content]-symmetric dNLS Equation (9). We shall now characterize these breathers as relative equilibria of the energy function.



Thanks to the cross-gradient symplectic Structure (16), the stationary [image: there is no content]-symmetric dNLS Equation (21) can be written in the gradient form


EUn=∂Hu,v∂V¯n,EVn=∂Hu,v∂U¯n,n∈Z



(42)







Keeping in mind the additional conserved quantity [image: there is no content] given by Equation (18), we conclude that the stationary solution [image: there is no content] is a critical point of the combined energy function given by


[image: there is no content]



(43)







If we want to apply the Lyapunov method in order to study nonlinear stability of stationary solutions in Hamiltonian systems, we shall investigate convexity of the second variation of the combined energy functional [image: there is no content] at [image: there is no content]. Using the expansion [image: there is no content], [image: there is no content] and introducing extended variables Φ and ϕ with the blocks


Φn:=(Un,U¯n,Vn,V¯n),ϕn:=(un,u¯n,vn,v¯n)



(44)




we can expand the smooth function [image: there is no content] up to the quadratic terms in ϕ:


[image: there is no content]



(45)




where [image: there is no content] is the self-adjoint (Hessian) operator defined on [image: there is no content] and the scalar product was used in the following form:


[image: there is no content]











Using Equations (17) and (18), the Hessian operator can be computed explicitly as follows


[image: there is no content]



(46)




where blocks of [image: there is no content] at each lattice node [image: there is no content] are given by


[image: there is no content]








and Δ is the discrete Laplacian operator applied to blocks of ϕ at each lattice node [image: there is no content]:


[image: there is no content]








In the expression for [image: there is no content], we have used the [image: there is no content]-symmetry condition [image: there is no content] for the given stationary solution [image: there is no content].



We study convexity of the combined energy functional [image: there is no content] at [image: there is no content]. Since the zero equilibrium is linearly stable only for [image: there is no content] (if [image: there is no content]), we only consider breathers of Theorem 1 for [image: there is no content]. In order to study eigenvalues of [image: there is no content] for small values of ϵ, we use the following perturbation theory.



Perturbation Theory for Linear Operators (Theorem VII.1.7 in [32]). Let [image: there is no content] be a family of bounded operators from Banach space X to itself, which depends analytically on the small parameter ϵ. If the spectrum of [image: there is no content] is separated into two parts, the subspaces of X corresponding to the separated parts also depend analytically on ϵ. In particular, the spectrum of [image: there is no content] is separated into two parts for any [image: there is no content] sufficiently small.



With an application of the perturbation theory for linear operators, we prove the following main result of this section.



Theorem 2. 

Fix [image: there is no content], Ω, and E along branches of the [image: there is no content]-symmetric breathers [image: there is no content] given by Theorem 1 such that [image: there is no content] and [image: there is no content], where [image: there is no content]. For every [image: there is no content] sufficiently small, the operator [image: there is no content] admits a one-dimensional kernel in [image: there is no content] spanned by the eigenvector [image: there is no content] due to the gauge invariance, where the blocks of the eigenvector are given by


[image: there is no content]



(47)




In addition,

	
If [image: there is no content], the spectrum of [image: there is no content] in [image: there is no content] includes infinite-dimensional positive and negative parts.



	
If [image: there is no content] and [image: there is no content], the spectrum of [image: there is no content] in [image: there is no content] includes an infinite-dimensional negative part and either three or one simple positive eigenvalues for branches (b) and (c) of Lemma 1 respectively.










Proof. 

If [image: there is no content], the breather solution of Theorem 1 is given by [image: there is no content] for every [image: there is no content] and [image: there is no content], where A and θ are defined by Lemma 1. In this case, the linear operator [image: there is no content] decouples into 4-by-4 blocks for each lattice node [image: there is no content].



For [image: there is no content], the 4-by-4 block of the linear operator [image: there is no content] is given by


[image: there is no content]











Using Relations (24) and (25), as well as symbolic computations with MAPLE, we found that the 4-by-4 matrix block [image: there is no content] admits a simple zero eigenvalue and three nonzero eigenvalues [image: there is no content], [image: there is no content], and [image: there is no content] given by


[image: there is no content]



(48)






[image: there is no content]



(49)







For each branch of Lemma 1 with [image: there is no content] and [image: there is no content], we have [image: there is no content], so that [image: there is no content]. Furthermore, either [image: there is no content] or [image: there is no content] if and only if


[image: there is no content]











Expanding this equation for nonzero A yields Constraint (37). With the exception of a single point [image: there is no content] at [image: there is no content], we showed in Lemma 2 that the Constraint (37) does not hold for any of the branches of Lemma 1. Therefore, [image: there is no content] and [image: there is no content] along each branch of Lemma 1 and the signs of [image: there is no content], [image: there is no content], and [image: there is no content] for each branch of Lemma 1 can be obtained in the limit [image: there is no content] for branches (a) and (b) or [image: there is no content] for branch (c). By means of these asymptotic computations as [image: there is no content] or [image: there is no content], we obtain the following results for the three branches shown on Figure 2:

	(a)

	
[image: there is no content].




	(b)

	
[image: there is no content].




	(c)

	
[image: there is no content], [image: there is no content], and [image: there is no content].









For [image: there is no content], the 4-by-4 block of the linear operator [image: there is no content] is given by


[image: there is no content]



(50)







Each block has two double eigenvalues [image: there is no content] and [image: there is no content] given by


μ+=Ω+E2+γ2,μ−=Ω−E2+γ2











Since there are infinitely many nodes with [image: there is no content], the points [image: there is no content] and [image: there is no content] have infinite multiplicity in the spectrum of the linear operator [image: there is no content]. Furthermore, we can sort up the signs of [image: there is no content] and [image: there is no content] for each point on the three branches shown on Figure 2:

	(1),(3)

	
If [image: there is no content], then [image: there is no content] and [image: there is no content].




	(2),(4)

	
If [image: there is no content] and [image: there is no content], then [image: there is no content].









By using the perturbation theory for linear operators, we argue as follows:

	
Since [image: there is no content] is Hermitian on [image: there is no content], its spectrum is a subset of the real line for every [image: there is no content].



	
The zero eigenvalue persists with respect to [image: there is no content] at zero because the Eigenvector (47) belongs to the kernel of [image: there is no content] due to the gauge invariance for every [image: there is no content].



	
The other eigenvalues of [image: there is no content] are isolated away from zero. The spectrum of [image: there is no content] is continuous with respect to ϵ and includes infinite-dimensional parts near points [image: there is no content] and [image: there is no content] for small [image: there is no content] (which may include continuous spectrum and isolated eigenvalues) as well as simple eigenvalues near [image: there is no content] (if [image: there is no content] are different from [image: there is no content]).








The statement of the theorem follows from the perturbation theory and the count of signs of [image: there is no content] and [image: there is no content] above. ☐





Remark 4. 

In the asymptotic limit [image: there is no content] as [image: there is no content], we can sort out eigenvalues of [image: there is no content] asymptotically as:


μ1≈|E|,μ2≈2|E|,μ3≈|E|,μ+≈|E|,μ−≈−|E|



(51)




where the remainder terms are [image: there is no content] as [image: there is no content]. The values [image: there is no content], [image: there is no content], and [image: there is no content] are close to each other as [image: there is no content].





Remark 5. 

It follows from Theorem 2 that for [image: there is no content], the breather [image: there is no content] is a saddle point of the energy functional [image: there is no content] with infinite-dimensional positive and negative invariant subspaces of the Hessian operator [image: there is no content]. This is very similar to the Hamiltonian systems of the Dirac type, where stationary states are located in the gap between the positive and negative continuous spectrum. This property holds for points 1 and 3 on branches (a) and (b) shown on Figure 2.





Remark 6. 

No branches other than [image: there is no content] exist for [image: there is no content]. On the other hand, points 2 and 4 on branches (b) and (c) shown on Figure 2 satisfy [image: there is no content] and [image: there is no content]. The breather [image: there is no content] is a saddle point of [image: there is no content] for these points and it only has three (one) directions of positive energy in space [image: there is no content] for point 2 (point 4).






7. Spectral and Orbital Stability of Breathers


Spectral stability of breathers can be studied for small values of coupling constant ϵ by using the perturbation theory [30]. First, we linearize the [image: there is no content]-symmetric dNLS Equation (9) at the Breather (19) by using the expansion


u(t)=e−12iEtU+u(t),v(t)=e−12iEtV+v(t)








where [image: there is no content] is a small perturbation satisfying the linearized equations


[image: there is no content]



(52)







The spectral stability problem arises from the linearized Equation (52) after the separation of variables:


u(t)=φe12λt,u¯(t)=ψe12λt,v(t)=χe12λt,v¯(t)=νe12λt








where [image: there is no content] is the eigenvector corresponding to the spectral parameter λ. Note that [image: there is no content] and [image: there is no content] are no longer complex conjugate to each other if λ has a nonzero imaginary part. The spectral problem can be written in the explicit form


[image: there is no content]



(53)




where we have used the condition [image: there is no content] for the [image: there is no content]-symmetric breathers. Recalling definition of the Hessian operator [image: there is no content] in Equation (46), we can rewrite the spectral Problem (53) in the Hamiltonian form:


[image: there is no content]



(54)




where [image: there is no content] is a symmetric matrix with the blocks at each lattice node [image: there is no content] given by


[image: there is no content]



(55)







We note the Hamiltonian symmetry of the eigenvalues of the spectral Problem (54).



Proposition 2. 

Eigenvalues of the spectral Problem (54) occur either as real or imaginary pairs or as quadruplets in the complex plane.





Proof. 

Assume that [image: there is no content] is an eigenvalue of the spectral Problem (54) with the eigenvector [image: there is no content]. Then, [image: there is no content] is an eigenvalue of the same problem with the eigenvector [image: there is no content], whereas [image: there is no content] is also an eigenvalue with the eigenvector [image: there is no content]. ☐





If [image: there is no content] and [image: there is no content] (points 2 and 4 shown on Figure 2), Theorem 2 implies that the self-adjoint operator [image: there is no content] in [image: there is no content] is negative-definite with the exception of either three (point 2) or one (point 4) simple positive eigenvalues. In this case, we can apply the following Hamilton–Krein index theorem in order to characterize the spectrum of [image: there is no content].



Hamilton–Krein Index Theorem (Theorem 3.3 in [33]). Let L be a self-adjoint operator in [image: there is no content] with finitely many negative eigenvalues [image: there is no content], a simple zero eigenvalue with eigenfunction [image: there is no content], and the rest of its spectrum is bounded from below by a positive number. Let J be a bounded invertible skew-symmetric operator in [image: there is no content]. Let [image: there is no content] be a number of positive real eigenvalues of [image: there is no content], [image: there is no content] be a number of quadruplets [image: there is no content] that are neither in [image: there is no content] nor in [image: there is no content], and [image: there is no content] be a number of purely imaginary pairs of eigenvalues of [image: there is no content] whose invariant subspaces lie in the negative subspace of L. Let [image: there is no content] be finite and nonzero. Then,


KHAM=kr+2kc+2ki−=n(L)−1,D<0n(L),D>0



(56)







Lemma 3. 

Fix [image: there is no content], [image: there is no content], and [image: there is no content], where [image: there is no content]. For every [image: there is no content] sufficiently small, [image: there is no content] for branch (b) of Lemma 1 and [image: there is no content] for branch (c) of Lemma 1 with [image: there is no content]. For branch (c) with [image: there is no content], there exists a value [image: there is no content] such that [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content].





Proof. 

If [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] is sufficiently small, Theorem 2 implies that the spectrum of [image: there is no content] in [image: there is no content] has finitely many positive eigenvalues and a simple zero eigenvalue with eigenvector [image: there is no content]. Therefore, the Hamilton–Krein index theorem is applied in [image: there is no content] for [image: there is no content], [image: there is no content], and [image: there is no content]. We shall verify that


HE″(σΦ)=0,SHE″(∂EΦ)=σΦ



(57)




where [image: there is no content] is given by Equation (47) and [image: there is no content] denotes derivative of Φ with respect to parameter E. The first equation [image: there is no content] follows by Theorem 2. By differentiating Equation (21) in E, we obtain [image: there is no content] for every E, for which the solution Φ is differentiable in E. For [image: there is no content], the limiting solution of Lemma 1 is differentiable in E for every [image: there is no content] and [image: there is no content]. Due to smoothness of the continuation in ϵ by Theorem 2, this property holds for every [image: there is no content] sufficiently small.



By using Equation (57) with [image: there is no content], we obtain


[image: there is no content]



(58)




where we have used the definition of [image: there is no content] in Equation (18). We compute the slope condition at [image: there is no content]:


[image: there is no content]



(59)




where Relations (24) and (25) have been used.



For branch (b) of Lemma 1 with [image: there is no content], we have [image: there is no content] and [image: there is no content], so that [image: there is no content]. By continuity, [image: there is no content] remains strictly positive for small [image: there is no content]. Thus, [image: there is no content] and [image: there is no content] by the Hamilton–Krein index theorem.



For branch (c) of Lemma 1 with [image: there is no content], we have [image: there is no content] and [image: there is no content]. Therefore, we only need to inspect the sign of the expression [image: there is no content]. If [image: there is no content], then for every [image: there is no content], we have


[image: there is no content]








therefore, [image: there is no content] and [image: there is no content] by the Hamilton–Krein index theorem.



On the other hand, if [image: there is no content], we have [image: there is no content] at [image: there is no content] ([image: there is no content]) and [image: there is no content] at [image: there is no content] ([image: there is no content]). Since the dependence of A versus E is monotonic, there exists a value [image: there is no content] such that [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content]. ☐





If [image: there is no content] and [image: there is no content], orbital stability of a critical point of [image: there is no content] in space [image: there is no content] can be proved from the Hamilton–Krein theorem (see [33] and references therein). Orbital stability of breathers is understood in the following sense.



Definition 1. 

We say that the breather Solution (19) is orbitally stable in [image: there is no content] if for every [image: there is no content] sufficiently small, there exists [image: there is no content] such that if [image: there is no content] satisfies [image: there is no content], then the unique global solution [image: there is no content], [image: there is no content] to the [image: there is no content]-symmetric dNLS Equation (9) satisfies the bound


infα∈R∥eiαψ(t)−Φ∥ℓ2≤ν,foreveryt∈R



(60)









The definition of instability of breathers is given by negating Definition 1. The following result gives orbital stability or instability for branch (c) shown on Figure 2.



Theorem 3. 

Fix [image: there is no content], [image: there is no content], and [image: there is no content]. For every [image: there is no content] sufficiently small, the breather [image: there is no content] for branch (c) of Lemma 1 is orbitally stable in [image: there is no content] if [image: there is no content]. For every [image: there is no content], there exists a value [image: there is no content] such that the breather [image: there is no content] is orbitally stable in [image: there is no content] if [image: there is no content] and unstable if [image: there is no content].





Proof. 

The theorem is a corollary of Lemma 3 for branch (c) of Lemma 1 and the orbital stability theory from [33]. ☐





Orbital stability of breathers for branches (a) and (b) of Lemma 1 does not follow from the standard theory because [image: there is no content] for [image: there is no content] and [image: there is no content] for branch (b) with [image: there is no content]. Nevertheless, by using smallness of parameter ϵ and the construction of the breather [image: there is no content] in Theorem 1, spectral stability of breathers can be considered directly. Spectral stability and instability of breathers is understood in the following sense.



Definition 2. 

We say that the breather Solution (19) is spectrally stable if [image: there is no content] for every bounded solution of the spectral Problem (54). On the other hand, if the spectral Problem (54) admits an eigenvalue [image: there is no content] with an eigenvector in [image: there is no content], we say that the breather Solution (19) is spectrally unstable.





The following theorem gives spectral stability of breathers for branches (a) and (b) shown on Figure 2.



Theorem 4. 

Fix [image: there is no content], [image: there is no content], and E along branches (a) and (b) of Lemma 1 with [image: there is no content] and [image: there is no content]. For every [image: there is no content] sufficiently small, the spectral Problem (54) admits a double zero eigenvalue with the generalized eigenvectors


HE″(σΦ)=0,SHE″(∂EΦ)=σΦ



(61)




where the eigenvector [image: there is no content] is given by Equation (47) and the generalized eigenvector [image: there is no content] denotes derivative of Φ with respect to parameter E. For every E such that the following non-degeneracy condition is satisfied,


[image: there is no content]



(62)




the breather [image: there is no content] is spectrally stable.





Proof. 

If [image: there is no content], the breather solution of Theorem 1 is given by [image: there is no content] for every [image: there is no content] and [image: there is no content], where A and θ are defined by Lemma 1. In this case, the spectral Problem (53) decouples into 4-by-4 blocks for each lattice node [image: there is no content]. Recall that [image: there is no content] at [image: there is no content].



For [image: there is no content], eigenvalues λ are determined by the 4-by-4 matrix block [image: there is no content]. Using Relations (24) and (25), as well as symbolic computations with MAPLE, we found that the 4-by-4 matrix block [image: there is no content] has a double zero eigenvalue and a pair of simple eigenvalues at [image: there is no content], where


[image: there is no content]



(63)







For [image: there is no content], eigenvalues λ are determined by the 4-by-4 matrix block [image: there is no content], where [image: there is no content] is given by Equation (50). If [image: there is no content], [image: there is no content], and [image: there is no content], where [image: there is no content], each block has four simple eigenvalues [image: there is no content] and [image: there is no content], where


[image: there is no content]



(64)




so that [image: there is no content]. Since there are infinitely many nodes with [image: there is no content], the four eigenvalues are semi-simple and have infinite multiplicity.



If [image: there is no content] is sufficiently small, we use perturbation theory for linear operators from Section 6.

	
The double zero eigenvalue persists with respect to [image: there is no content] at zero because of the gauge invariance of the breather [image: there is no content] (with respect to rotation of the complex phase). Indeed, [image: there is no content] follows from the result of Theorem 2. The generalized eigenvector is defined by equation [image: there is no content], which is equivalent to equation [image: there is no content]. Differentiating Equation (21) in E, we obtain [image: there is no content]. Since [image: there is no content] and


[image: there is no content]



(65)




the second generalized eigenvector [image: there is no content] exists as a solution of equation [image: there is no content] if and only if [image: there is no content]. It follows from the explicit Computation (59) that if [image: there is no content], then [image: there is no content] for every E along branches (a) and (b) of Lemma 1. By continuity, [image: there is no content] for small [image: there is no content]. Therefore, the zero eigenvalue of the operator [image: there is no content] is exactly double for small [image: there is no content].



	
Using the same Computation (59), it is clear that [image: there is no content] for every E along branches (a) and (b) of Lemma 1. Assume that [image: there is no content] and [image: there is no content], which is expressed by the non-degeneracy Condition (62). Then, the pair [image: there is no content] is isolated from the rest of the spectrum of the operator [image: there is no content] at [image: there is no content]. Since the eigenvalues [image: there is no content] are simple and purely imaginary, they persist on the imaginary axis for [image: there is no content] because they cannot leave the imaginary axis by the Hamiltonian symmetry of Proposition 2.



	
If [image: there is no content], [image: there is no content], and [image: there is no content], the semi-simple eigenvalues [image: there is no content] and [image: there is no content] of infinite multiplicity are nonzero and located at the imaginary axis at different points for [image: there is no content]. They persist on the imaginary axis for [image: there is no content] according to the following perturbation argument. First, for the central site [image: there is no content], the spectral Problem (53) can be written in the following abstract form


[image: there is no content]








where [image: there is no content] denotes a continuation of [image: there is no content] in ϵ. Thanks to the non-degeneracy Condition (62) as well as the condition [image: there is no content], the matrix [image: there is no content] is invertible. By continuity, the matrix [image: there is no content] is invertible for every ϵ and λ near [image: there is no content] and [image: there is no content]. Therefore, there is a unique [image: there is no content] given by


[image: there is no content]








which satisfies [image: there is no content] near [image: there is no content] and [image: there is no content], where C is a positive ϵ- and λ-independent constant. Next, for either [image: there is no content] or [image: there is no content], the spectral Problem (53) can be represented in the form


SLn(ϵ)ϕn+ϵS(Δϕ)n−iλϕn=−δn,±1ϵSϕ0,±n∈N








where [image: there is no content] denotes a continuation of [image: there is no content] given by Equation (50) in ϵ, whereas the operator Δ is applied with zero end-point condition at [image: there is no content]. We have [image: there is no content] and [image: there is no content] near [image: there is no content] and [image: there is no content]. Therefore, up to the first order of the perturbation theory, the spectral parameter λ near [image: there is no content] is defined from the truncated eigenvalue problem


SLnϕn+ϵS(Δϕ)n=iλϕn,±n∈N



(66)




which is solved with the discrete Fourier Transform (40). In order to satisfy the Dirichlet end-point condition at [image: there is no content], the sine–Fourier transform must be used, which does not affect the characteristic equation for the purely continuous spectrum of the spectral Problem (66). By means of routine computations, we obtain the characteristic equation in the following form, see also Equation (41):


[image: there is no content]



(67)




where [image: there is no content] is the parameter of the discrete Fourier Transform (40). Solving the characteristic Equation (67), we obtain four branches of the continuous spectrum


[image: there is no content]



(68)




where the two sign choices are independent from each other. If [image: there is no content] is fixed and [image: there is no content] is small, the four branches of the continuous spectrum are located on the imaginary axis near the points [image: there is no content] and [image: there is no content] given by Equation (64).



In addition to the continuous spectrum given by Equation (67), there may exist isolated eigenvalues near [image: there is no content] and [image: there is no content], which are found from the second-order perturbation theory [34]. Under the condition [image: there is no content] and [image: there is no content], these eigenvalues are purely imaginary. Therefore, the infinite-dimensional part of the spectrum of the operator [image: there is no content] persists on the imaginary axis for [image: there is no content] near the points [image: there is no content] and [image: there is no content] of infinite algebraic multiplicity.








The statement of the lemma follows from the perturbation theory and the fact that all isolated eigenvalues and the continuous spectrum of [image: there is no content] are purely imaginary. ☐





Remark 7. 

In the asymptotic limit [image: there is no content] as [image: there is no content], the eigenvalues [image: there is no content] and [image: there is no content] defined by Equations (63) and (64) are given asymptotically by


λ0≈i|E|,λ+≈iE,λ−≈iE



(69)




where the remainder terms are [image: there is no content] as [image: there is no content]. The values [image: there is no content], [image: there is no content], and [image: there is no content] are close to each other as [image: there is no content].





Remark 8. 

Computations in the proof of Theorem 4 can be extended to the branch (c) of Lemma 1. Indeed, [image: there is no content] for branch (c) with either [image: there is no content] or [image: there is no content], and E near [image: there is no content]. On the other hand, [image: there is no content] if [image: there is no content] and E near 0. As a result, branch (c) is spectrally stable in the former case and is spectrally unstable in the latter case, in agreement with Theorem 3.





Remark 9. 

Observe in the proof of Theorem 4 that [image: there is no content] if [image: there is no content]. In this case, branch (b) of Lemma 1 is spectrally unstable. This instability corresponds to the instability of the zero equilibrium for [image: there is no content], in agreement with the result of Proposition 1.





Before presenting numerical approximations of eigenvalues of the spectral Problem (54), we compute the Krein signature of wave continuum. This helps to interpret instabilities and resonances that arise when isolated eigenvalues [image: there is no content] cross the continuous bands near points [image: there is no content] and [image: there is no content]. The Krein signature of simple isolated eigenvalues is defined as follows.



Definition 3. 

Let [image: there is no content] be an eigenvector of the spectral Problem (54) for an isolated simple eigenvalue [image: there is no content]. Then, the energy quadratic form [image: there is no content] is nonzero and its sign is called the Krein signature of the eigenvalue [image: there is no content].





Definition 3 is used to simplify the presentation. Similarly, one can define the Krein signature of isolated multiple eigenvalues and the Krein signature of the continuous spectral bands in the spectral Problem (54) [33]. The following lemma characterizes Krein signatures of the spectral points arising in the proof of Theorem 4.



Lemma 4. 

Fix [image: there is no content], [image: there is no content], and [image: there is no content] with [image: there is no content]. Assume the non-degeneracy Condition (62). For every [image: there is no content] sufficiently small, we have the following for the corresponding branches of Lemma 1:

	(a)

	
the subspaces of [image: there is no content] in [image: there is no content] near [image: there is no content], [image: there is no content], and [image: there is no content] have positive, negative, and positive Krein signature, respectively;




	(b)

	
the subspaces of [image: there is no content] in [image: there is no content] near [image: there is no content], [image: there is no content], and [image: there is no content] have negative, positive (if [image: there is no content]) or negative (if [image: there is no content]), and positive Krein signature, respectively;




	(c)

	
all subspaces of [image: there is no content] in [image: there is no content] near [image: there is no content], [image: there is no content], and [image: there is no content] (if [image: there is no content]) have negative Krein signature.











Proof. 

We proceed by the perturbation arguments from the limit [image: there is no content], where [image: there is no content] is a block-diagonal operator consisting of [image: there is no content] blocks. In particular, we consider the blocks for [image: there is no content], where [image: there is no content] is given by Equation (50). Solving (53) at [image: there is no content] and [image: there is no content], we obtain the eigenvector


φn=−Ω,ψn=0,χn=±E0+iγ,νn=0,n∈Z∖{0}











As a result, we obtain for the eigenvector [image: there is no content]:


Kn:=⟨Lnϕn,ϕn⟩ℓ2=Ω(|φn|2+|χn|2)−(E+iγ)χnφ¯n−(E−iγ)φnχ¯n=2ΩE0(E0±E)











For branch (a), [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content].



For branch (b), [image: there is no content] and either [image: there is no content] or [image: there is no content]. In either case, [image: there is no content] for [image: there is no content]. On the other hand, for [image: there is no content], [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content].



For branch (c), [image: there is no content] and [image: there is no content]. In this case, [image: there is no content] for either [image: there is no content] or [image: there is no content].



Finally, the Krein signature for the eigenvalue [image: there is no content] denoted by [image: there is no content] follows from the computations of eigenvalues [image: there is no content] in the proof of Theorem 2. We have [image: there is no content] for branches (a) and (b) because [image: there is no content] and we have [image: there is no content] for branch (c) because [image: there is no content], whereas the eigenvalue [image: there is no content] is controlled by the result of Lemma 3.



The signs of all eigenvalues are nonzero and continuous with respect to parameter ϵ. Therefore, the count above extends to the case of small nonzero ϵ. ☐





The spectrum of [image: there is no content] is shown at Figure 3. Panels (a), (b) and (c) correspond to branches shown at Figure 2.



	(a)

	
We can see on panel (a) of Figure 3 that [image: there is no content] do not intersect for every [image: there is no content] and are located within fixed distance [image: there is no content], as [image: there is no content]. Note that the upper-most [image: there is no content] and [image: there is no content] have positive Krein signature, whereas the lowest [image: there is no content] has negative Krein signature, as is given by Lemma 4.




	(b)

	
We observe on panel (b) of Figure 3 that [image: there is no content] intersects [image: there is no content], creating a small bubble of instability in the spectrum. The insert shows that the bubble shrinks as [image: there is no content], in agreement with Theorem 4. There is also an intersection between [image: there is no content] and [image: there is no content], which does not create instability. These results are explained by the Krein signature computations in Lemma 4. Instability is induced by opposite Krein signatures between [image: there is no content] and [image: there is no content], whereas crossing of [image: there is no content] and [image: there is no content] with the same Krein signatures is safe of instabilities. Note that for small E, the isolated eigenvalue [image: there is no content] is located above both the spectral bands near [image: there is no content] and [image: there is no content]. The gap in the numerical data near [image: there is no content] indicates failure to continue the breather solution numerically in ϵ, in agreement with the proof of Theorem 1.




	(c)

	
We observe from panel (c) of Figure 3 that [image: there is no content] and [image: there is no content] intersect but do not create instabilities, since all parts of the spectrum have the same signature, as is given by Lemma 4. In fact, the branch is both spectrally and orbitally stable as long as [image: there is no content], in agreement with Theorem 3. On the other hand, there is [image: there is no content], if [image: there is no content], such that [image: there is no content] for [image: there is no content], which indicates instability of branch (c), again, in agreement with Theorem 3.







As we see on panel (b) of Figure 3, [image: there is no content] intersects [image: there is no content] for some [image: there is no content]. In the remainder of this section, we study whether this crossing point is always located on the right of [image: there is no content]. In fact, the answer to this question is negative. We shall prove for branch (b) that the intersection of [image: there is no content] with either [image: there is no content] or [image: there is no content] occurs either for [image: there is no content] or for [image: there is no content], depending on parameters γ and Ω.



Lemma 5. 

Fix [image: there is no content], [image: there is no content], and [image: there is no content] along branch (b) of Lemma 1. There exists a resonance [image: there is no content] at [image: there is no content] with [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content], where


[image: there is no content]



(70)




Moreover, if [image: there is no content], there exists a resonance [image: there is no content] at [image: there is no content] with [image: there is no content].





Proof. 

Let us first assume that there exists a resonance [image: there is no content] at [image: there is no content] and find the condition on γ and Ω, when this is possible. From the Definitions (63) and (64), we obtain the constraint on [image: there is no content]:


[image: there is no content]











After canceling [image: there is no content] since [image: there is no content] with [image: there is no content] given by Equation (27), we obtain


[image: there is no content]








which has two roots


[image: there is no content]











Since [image: there is no content], the lower sign is impossible because this leads to a contradiction


[image: there is no content]











The upper sign is possible if [image: there is no content]. Using the Parametrization (25), we substitute the root for [image: there is no content] to the equation [image: there is no content] and simplify it:


Ω2−γ2=2|Ω|+Ω2−4γ221−4γ2|Ω|+Ω2−4γ22=2Ω2−4γ22|Ω|+Ω2−4γ22|Ω|+Ω2−4γ2











This equation further simplifies to the form:


[image: there is no content]











Squaring it up, we obtain


[image: there is no content]








which has only one positive root for [image: there is no content] given by


[image: there is no content]











This root yields a formula for [image: there is no content] in Equation (70). Since there is a unique value for [image: there is no content], for which the case [image: there is no content] is possible, we shall now consider whether [image: there is no content] or [image: there is no content] for [image: there is no content] or [image: there is no content].



To inspect the range [image: there is no content], we consider a particular case, for which the intersection [image: there is no content] happens at [image: there is no content]. In this case, [image: there is no content] given by Equation (27), so that the condition [image: there is no content] can be rewritten as


[image: there is no content]











There is only one negative root for Ω and it is given by [image: there is no content]. By continuity, we conclude that [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], both cases correspond to [image: there is no content].



Finally, we verify that the case [image: there is no content] occurs for [image: there is no content] if [image: there is no content]. Indeed, [image: there is no content] and [image: there is no content] as [image: there is no content], so that [image: there is no content] as [image: there is no content]. On the other hand, the previous estimates suggest that [image: there is no content] for every [image: there is no content] if [image: there is no content]. Therefore, there exists at least one intersection [image: there is no content] for [image: there is no content] if [image: there is no content]. ☐





Remark 10. 

The existence of the resonance at [image: there is no content] for some parameter configurations predicted by Lemma 5 is in agreement with the numerical results in [25,26] on the scalar parametrically forced dNLS equation that follows from System (5) under the Reduction (6). It was reported in [25,26] that the instability bubble for breather solutions may appear for every nonzero coupling constant ϵ in a narrow region of the parameter space.






8. Summary


We have reduced Newton’s equation of motion for coupled pendula shown on Figure 1 under a resonant periodic force to the [image: there is no content]-symmetric dNLS Equation (9). We have shown that this system is Hamiltonian with conserved Energy (17) and an additional conserved Quantity (18). We have studied breather solutions of this model, which generalize symmetric synchronized oscillations of coupled pendula that arise if [image: there is no content]. We showed existence of three branches of breathers shown on Figure 2. We also investigated their spectral stability analytically and numerically. The spectral information on each branch of solutions is shown on Figure 3. For branch (c), we were also able to prove orbital stability and instability from the energy method. The technical results of this paper are summarized in Table 1 and described as follows.



For branch (a), we found that it is disconnected from the symmetric synchronized oscillations at [image: there is no content]. Along this branch, breathers of small amplitudes A are connected to breathers of large amplitudes A. Every point on the branch corresponds to the saddle point of the energy function between two wave continua of positive and negative energies. Every breather along the branch is spectrally stable and is free of resonance between isolated eigenvalues and continuous spectrum. In the follow-up work [21], we will prove long-time orbital stability of breathers along this branch.



For branch (b), we found that the large-amplitude breathers as [image: there is no content] are connected to the symmetric synchronized oscillations at [image: there is no content], which have the smallest (but nonzero) amplitude [image: there is no content]. Breathers along the branch are spectrally stable except for a narrow instability bubble, where the isolated eigenvalue [image: there is no content] is in resonance with the continuous spectrum. The instability bubble can occur either for [image: there is no content], where the breather is a saddle point of the energy function between two wave continua of opposite energies or for [image: there is no content], where the breather is a saddle point between the two negative-definite wave continua and directions of positive energy. When the isolated eigenvalue of positive energy [image: there is no content] is above the continuous spectrum near [image: there is no content] and [image: there is no content], orbital stability of breathers can be proved by using the technique in [35], which was developed for the dNLS equation.



Finally, for branch (c), we found that the small-amplitude breathers at [image: there is no content] are connected to the symmetric synchronized oscillations at [image: there is no content], which have the largest amplitude [image: there is no content]. Breathers are either spectrally stable near [image: there is no content] or unstable near [image: there is no content], depending on the detuning frequency Ω and the amplitude of the periodic resonant force γ. When breathers are spectrally stable, they are also orbitally stable for infinitely long times.
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