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Abstract: In this paper, we proposed not only an extraction methodology of multiple feature
vectors from ultrasound images for carotid arteries (CAs) and heart rate variability (HRV) of
electrocardiogram signal, but also a suitable and reliable prediction model useful in the diagnosis
of cardiovascular disease (CVD). For inventing the multiple feature vectors, we extract a candidate
feature vector through image processing and measurement of the thickness of carotid intima-media
(IMT). As a complementary way, the linear and/or nonlinear feature vectors are also extracted from
HRV, a main index for cardiac disorder. The significance of the multiple feature vectors is tested
with several machine learning methods, namely Neural Networks, Support Vector Machine (SVM),
Classification based on Multiple Association Rule (CMAR), Decision tree induction and Bayesian
classifier. As a result, multiple feature vectors extracted from both CAs and HRV (CA+HRV) showed
higher accuracy than the separative feature vectors of CAs and HRV. Furthermore, the SVM and
CMAR showed about 89.51% and 89.46%, respectively, in terms of diagnosing accuracy rate after
evaluating the diagnosis or prediction methods using the finally chosen multiple feature vectors.
Therefore, the multiple feature vectors devised in this paper can be effective diagnostic indicators of
CVD. In addition, the feature vector analysis and prediction techniques are expected to be helpful
tools in the decisions of cardiologists.
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1. Introduction

According to the recent World Health Organization (WHO)’s report about the main
causes of death, the top two causes are still cardiovascular diseases (CVD) [1]. In
South Korea, CVD is ranked second in causes of death which turns the country into a
demographical structure of high incidence of the disease [2]. Consequently, early diagnosis
and the reliability of the diagnosis has been recognized as a very important social issue.
The current method of diagnosis for CVD at a hospital includes echocardiography cardiac ultrasound,
electrocardiogram (ECG) inspection, the magneto cardiogram (MEG) and the coronary angiography
inspection. However, the majority of inspections are invasive and unreliable [3,4].

Nowadays, early diagnosis of CVD has been realized after the introduction of a method
measuring carotid arterial intima-media thickness by ultrasound that can prescreen the CVD.
The thickness of the common carotid artery (CCA) has been identified to be related with CVD
in various studies and has become one of the typical cardiovascular risk factors together with
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hypertension of blood, hyperlipidemia, smoking and diabetes mellitus. It is also known as an
independent predictor of CVD [5–7].

The correlation between the autonomic nervous system and mortality of CVD including sudden
cardiac death has been proved as a significant factor during the past 30 years. The development of
indicators that can evaluate quantitatively the activity of the autonomic nervous system is urgently
required, and heart rate variability (HRV) has been one of the most promising indicators. The wide
variety of linear and nonlinear characteristics of HRV have been studied as indicators to improve the
diagnostic accuracy. Dynamic stability of the cardiovascular system is achieved by the heart rate’s
quick reactions and automatically adjusting to internal or external stimuli [8–10].

Heart rate changes are complexly reacted to these stimuli and are stimulated intensively
by the two systems: the sympathetic nervous system and the parasympathetic nervous system.
The activation of the sympathetic nervous system slows the heart rate and the activation of the
parasympathetic nervous system increases the speed of the heart beat with the growth of contractility.
By this difference, the two systems of the autonomic nervous systems operate on different frequencies,
and it allows us to know whether the variability of heart rate changes is dominantly related to
the sympathetic nervous system or the parasympathetic one [11]. The level of sympathetic and
parasympathetic nerve activity can be evaluated quantitatively through linear and/or nonlinear
feature analysis. For instance, if we analyze the variability of the heart rates of patients with coronary
artery disease (CAD), the regulatory role of the autonomic nervous system is reduced, and the risk
of death in the case of acute myocardial infarction is reduced when the autonomic nervous system is
actively interact. However, there is a problem with not directly introducing the developed algorithms
and feature vectors standardized for western patients because it is reportedly known that feature
vectors may cause different diagnosis results due to racial pathological and physiological deviations.

Therefore, the carotid artery (CA) and HRV diagnostic feature vectors need to be analyzed to
ensure the reliability and early diagnosis for CVD of South Koreans. In order to analyze diagnostic
feature vectors for South Korean CVD patients, we proposed an extraction methodology of multiple
feature vectors from CA and HRV. The details of the proposed methods and how to perform the steps
for the diagnosis of CVD are as follows:

(1) Extracting diagnostic feature vectors: the feature vectors significant to disease diagnosis are
extracted by applying image processing to the CA images taken by ultrasound;

(2) Evaluation on feature vector and classification method for diagnosis of CVD: some diagnostic
feature vectors that are significant by types of CVD through statistical analysis of the data should
be selected as a preprocessing step. Classification or prediction algorithm is applied to the
selected diagnostic feature vectors for CVD, and the vectors were evaluated.

For effective understanding of the paper, the paper is organized as follows. CA imaging and
HRV analysis through complex diagnostic feature vector extraction process will be explained in
Sections 2 and 3, respectively. In Section 4, a feature vector selection process as pre-processing
steps and experimental evaluations results using classification of forecasting techniques for disease
diagnosis will be described. Finally, concluding remarks will be shown in Section 5.

2. Carotid Artery Scanning and Image Processing

The CA consists of common carotid artery (CCA), carotid bifurcation (BIF), internal carotid
artery (ICA), and external carotid artery (ECA). The intima-media thickness (IMT) of the carotid can
be measured at the far wall CCA region 10 mm proximal to bifurcation of carotid rather than the ICA
or CA or BIF itself (see Figure 1). Intima is the high-density band-shaped and the media looks like
a band with a low brightness between intima and adventitia. Adventitia generally has the brightest
pixel value and it corresponds to the thick part below the intima-media having the high brightness.
In addition, since the intima is thinnest among the three floors and its brightness is so similar to that
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of media, the endometrial thickness is difficult to detect. Thus, In general, It is sufficient to measure
IMT including the intima and media.

The Common Carotid Arterial scanning using a high-resolution ultrasound system can acquire
the image by scanning the right side ICA longitudinally at R-peak of the electrocardiogram. At first,
we load the ultrasound image of target common carotid arterial scanning from computer hard-disc
memory in order to measure the carotid artery intima-media. Next, the calibration factor of pixel
length is determined using electronic range caliper in a B-mode ultrasound system. After we select
at least the 10 mm–long image of the Region of Interest (ROI) picture at 10 mm proximal around the
area of BIF transition to CCA, we can evaluate the quality of the selected ROI image and remove
speckle noise. After obtaining the edge image by applying the edge detection algorithm, IMT is
measured [12].

Figure 1. The measurement of intima-media thickness in the carotid artery using ultrasonograph.
IMT: intima-media thickness, CCA: common carotid artery, BIF: bifurcation, ICA: internal
carotid artery.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. Carotid artery image processing and feature vector extraction step. (a) acquisition of carotid
image and IMT measurement; (b) the acquired Region of Interest (ROI) image (64 × 100 pixels);
(c) graph for the trend of variation of each vertical line; and (d) computation of four basic feature
vectors (points).

After the acquisition of carotid image and IMT measurement, all of the diagnostic feature vectors
for CVDs are extracted. The feature vector extraction will be performed in the following eight
steps [13]:

(1) The ROI image with 64× 100 pixels is acquired by defining the area of two ’+’ markers (from a©
to b©) on the image of the carotid IMT in Figure 2a;

(2) Each pixel is expressed by a number in the range of 0–255(28) for the brightness (Figure 2b);
(3) The trend of variation is shown in a graph in a vertical line (Figure 2c);
(4) Thirty vertical lines are randomly selected as samples among a total of 100 vertical

lines (Figure 2d);
(5) The difference between V1 and V2 is calculated using the 30 random samples of vertical lines;
(6) Only IMT (V1 −V2) values within one sigma in Gaussian distribution are extracted;
(7) Four basic feature vectors are extracted and an average value is calculated;
(8) The other 18 additional feature vectors are extracted through a calculation using the four basic

feature vectors in Figure 2d, and the mean value is obtained.

All the feature vectors extracted from carotid image and IMT measurement are described in Table 1.

Table 1. All the extracted vectors of carotid arteries.

Feature vector Index Description

Carotid basic feature

V1 Starting point of intima
V2 Starting point of adventitia
V3 Max. point between V1 and V2
V4 Min. point between V1 and V2

Carotid calculated feature

V5 Distance between V1 and V2
V6 Area of the vector V5
V7 Value of the point V3
V8 Distance between V1 and V3
V9 Area of the vector V8
V10 Value of the point V4
V11 Distance between V1 and V4
V12 Area of the vector V11
V13 Slope between V1 and V3
V14 Slope between V3 and V4
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Table 1. Cont.

Feature vector Index Description

Carotid calculated feature

V15 Slope between V1 and V2
V16 V3 - V1
V17 V3 - V4
V18 Standard deviation between V1 and V4
V19 Variance between V1 and V4
V20 Skewness between V1 and V4
V21 Kurtosis between V1 and V4
V22 Moment between V1 and V4

IMT V23 Intima-media thickness

3. Linear and Non-Linear Feature Vectors of HRV

Extracting the linear and non-linear indicators of HRV, the main diagnostic indices for CVDs
such as angina pectoris or acute coronary syndrome, starts from ECG. The ECG signal is measured
during five minutes using a Lead II channel. The sampling frequency obtained from ECG signals
with such measurements show 500 Hz, and ectopic beats and artifacts are removed. HRV is the
physiological phenomenon of variation in the time interval between heartbeats. It is measured by
the variation in the beat-to-beat interval. Other terms used are RR variability. where R is a point
corresponding to the peak of the QRS complex which is the name for the combination of three of the
graphical deflections seen on a typical ECG. RR is the interval between successive Rs. To analyze HRV,
all RR intervals of the ECG signal are calculated by Thomkin’s algorithm [14], and time-series data is
generated as shown in Figure 3. RR interval times-series data are re-sampled at a rate of 4 Hz in order
to extract the indicators in the frequency domain, which is one of the linear analysis methods. We
extract linear feature vectors in the time and frequency domain and extract non-linear feature vectors
of HRV. The literature on HRV feature vector extraction was described in detail in [15].

Figure 3. RR interval extraction process in electrocardiogram (ECG) signals.
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3.1. Linear Feature Vectors in Time Domain

Time domain statistics are generally calculated on RR intervals without re-sampling. In a
continuous ECG record, each QRS complex was detected and the RR intervals or the instantaneous
heart rates were determined. RR intervals is denoted by RRn, with n = 0, ..., N. For practical
purposes, the following basic properties are true: E[RRn] = E[RRn+m] and E[RR2

n] = E[RR2
n+m].

The standard time domain measures of HRV are as follows [16].
The standard deviation of the RR intervals (SDRR) is often employed as a measure of overall

HRV. It is defined as the square root of the variance of the RR intervals as follows:

SDRR =

√
E[RR2

n]− RR2, (1)

where the mean of RR interval is denoted by RR = E[RRn]. The standard deviation of the successive
differences of the RR intervals (SDSD) is an important measure of short-term HRV. It is defined as the
square root of the variance of the sequence ∆RRn = RRn − RRn+1 (the delta-RR intervals):

SDSD =

√
E[∆RR2

n]− ∆RRn
2. (2)

Where, ∆RRn = E[RRn]− E[RRn+1] = 0 for stationary intervals. This means that the root mean
square (rms) of the successive differences is statistically equivalent to the standard deviation of the
successive differences as follows:

SDSD = rmsSD =
√

E[(RRn − RRn+1)2]. (3)

Linear feature vectors in time domains include the mean of RR intervals (RR), the standard
deviation of the RR Intervals (SDRR), and the standard deviation of successive differences of the RR
intervals (SDSD).

3.2. Linear Feature Vectors in Frequency Domain

The feature vectors in frequency mode use power spectral density (PSD) analysis and extract
seven types of feature vectors as follows [13,15]:

(1) Total power (TP), from 0 Hz to 0.4 Hz;
(2) Very Low Frequency (VLF) power, from 0 Hz to 0.04 Hz;
(3) Low Frequency (LF) power, from 0.04 Hz to 0.15 Hz;
(4) High Frequency (HF) power, from 0.15 Hz to 0.4 Hz;

(5) Normalized value of LF (nLF =
(TP−VLF)

LF
× 100);

(6) Normalized value of HF (nHF =
(TP−VLF)

HF
× 100);

(7) The ratio of LF and HF (LF/HF).

Diagnostic feature vector employs only three vectors; nLF to reflect sympathetic activity, nHF to
show parasympathetic activity and LF/HF ratio to mirror the sympathovagal balance (see Table 2).
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Table 2. Diagnostic indicators from heart rate variability (HRV) analysis.

Feature Vector Description

Linear
features

Frequency
domain

nLF Normalized low frequency power (nLF =
(TP−VLF)

LF
× 100).

nHF Normalized high frequency power (nHF =
(TP−VLF)

HF
× 100).

LF/HF The ratio of low- and high-frequency power.

Time
domain

RR The mean of RR intervals.
SDRR Standard deviation of the RR intervals.
SDSD Standard deviation of the successive differences RR intervals.

Nonlinear
features

SD1 Standard deviation of the distance of RR(i) from the line y = x in
the Poincare

SD2 Standard deviation of the distance of RR(i) from the line y = −x + 2RR
in the Poincare

SD2/SD1 The ratio SD2 to SD1
SD1 · SD2 SD1× SD2

ApEn Approximate Entropy
H Hurst Exponent
fα 1/ f scaling of Fourier spectra

3.3. Poincare Plot of Nonlinear Feature Vectors

The Poincare plot may be analyzed quantitatively by fitting an ellipse to the plotted shape.
The center of the ellipse is determined by the average RR intervals. SD1 refers to the standard
deviation of the distances of points from the y = x axis, SD2 stands for the standard deviation of
the distances of points from y = −x + 2RR axis, where RR is the mean of RR intervals as shown
in Figure 4. We also compute the features, SD2/SD1, and SD1 · SD2, describing the relationship
between SD1 and SD2 in our study.

Figure 4. Diagnostic indicators in a Poincare plot.

3.4. A Non-Linear Vector: Approximate Entropy (ApEn)

Defined as the rate of information production, entropy quantifies the chaos of motion. ApEn
quantifies the regularity of time series, and is also called a "regularity statistic". It is represented as
a simple index for the overall complexity and predictability of each time series. In this study, ApEn
quantifies the regularity of the RR intervals. The more regular and predictable the RRI series, the
lower will be the value of ApEn. First of all, we reconstructed the RRI time series in the n-dimensional
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phase space using Takens’ theorem [17]. Takens suggested the following time delay method for the
reconstruction of the state space as follows:

Dt = [RR(t), RR(t + τ), ..., RR(t + (n− 1)τ)], (4)

where n is the embedding dimension and τ is the time delay. In this study, the optimal value of τ

was 10. The mean of the fraction of patterns with length m that resembles the pattern with the same
length beginnings at interval i is defined by

Φm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln
[

number of |Dm(j)− Dm(i)| < r
N −m− 1

]
. (5)

In the equation above, Dm(i) and Dm(j) are state vectors in the embedding dimension m. Given
N data points, we can define ApEn as ApEn(m, r, N) = φm(r) − Φm+1(r), where ApEn estimates
the logarithmic likelihood that the next intervals after each of the patterns will differ. In general, the
embedding dimension m, and the tolerance, r are fixed at m = 2 and r = 0.2× SD in physiological
time series data.

3.5. Hurst Exponent (H) Non-Linear Vector)

The Hurst Exponent H is the measure of the smoothness of a fractal time series based on the
asymptotic behavior of the rescaled range of the process. H is defined as, log(R/S)

log(T) , where T is the
duration of the sample of data and R/S is the corresponding value of the rescaled range. If H = 0.5,
the behavior of the time series is similar to a random walk. If H < 0.5, the time series covers less
distance than a random walk. If H > 0.5, the time series covers more distance than a random walk.

3.6. Exponent α of the 1/ f Spectrum ( fα) Non-Linear Vector

Self-similarity is the most distinctive property of fractal signals. Fractal signals usually have
a power spectrum of the inverse power law form, 1/ f α, where f is frequency, and the amplitude
of the fluctuations is small at high frequencies and large at low frequencies. The exponent α is
calculated by a first least-squares fit in a log− log spectrum, after finding the power spectrum from
RR intervals. The exponent is clinically significant because it has different values for healthy and
heart rate failure patients.

All feature vectors extracted from linear and non-linear analysis of HRV are described in Table 2.

4. Evaluation of Diagnostic Feature Vectors

All the data used in our experiment were provided as a sample by the Bio-signal Research
Center of the Korea Research Institute of Standards and Science. In this experiment, after coronary
arteriography was performed for each of the 214 cardiovascular patients, patients showing more than
50% of stenosis are categorized as Coronary Artery Disease (CAD), whereas other patients having less
than 50% stenosis are designated as the control group. Furthermore, CAD patients are also re-sorted
by cardiologists into two groups, Angina Pectoris (AP) and Acute Coronary Syndrome (ACS). Clinical
characteristics of the studied patients are shown in Table 3.

Table 3. Clinical characteristics of the study subjects.

Group N Sex (Male/Female) Age (Years)

AP 102 50/52 59.98±8.41
Control 72 40/46 56.70±9.23

ACS 40 18/22 58.94±8.68
* AP: Angina Pectoris; ACS: Acute Coronary Syndrome.
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4.1. Data Preprocessing

The extracted vectors from carotid imaging and HRV are evaluated in order to determine
whether those vectors can be representative indicators of cardiovascular diseases or not by applying
typical classification or prediction models of machine learning.

As a pre-processing step, feature selection method is used for eliminating the improper
information to disease diagnosis. The performing steps are composed of feature ranking and feature
selection steps. Selection algorithms evaluate the redundancy in feature vectors and prediction
capability of each vector. Feature ranking considers one feature at a time to see how well each
feature alone predicts the target class. The features are ranked according to a user-defined criterion.
Available criteria depend on the measurement levels of the target class and feature. In the feature
vector selection problem, a ranking criterion is used to find feature vectors that discriminate between
healthy and diseased patients. The ranking value of each feature is calculated as (1− p), where p is
the p-value of appropriate statistical tests of association between the candidate features and the target
class. All diagnostic feature vectors are continuous-valued, and we use p-values based on F-statistics.
This method is to perform a one-way ANOVA F-test [18] for each continuous feature.

Let C denote a target class with J categories, N be a total number of cases and X is the feature
under consideration with I categories. The p-value based on F-statistics is calculated by;

Pr(F(J − 1, N − J) > F), F =

J
∑

j=1
Nj(xj−x̃)2

(J−1)
J

∑
j=1

(Nj−1)s2
j

(N−1)

, (6)

where Nj is the number of cases with C = j, xj is the mean of feature X for target class C = j, s2
j is the

sample variance of feature X for class C = j, x̃ is the grand mean of feature X and F(J − 1, N − J) is a
random variable follows a F-distribution with degrees of freedom J− 1 and N− J. If the denominator
for a feature is zero, set the p-value = 0 for the feature. Features are ranked by p-value in ascending
order. In this study, any p-value less than 0.1 significant test threshold was accepted as significant.
A feature relevance score (1− p) is calculated. The features having values less than 0.1 indicate that
they have low score and therefore they are removed. Afterwards, this subset of features is presented
as input to the classification methods. We perform feature selection only once for each dataset and
then different classification methods are evaluated. The results of feature selection and evaluation for
each dataset (CA, HRV and CA+HRV) are described in Table 4.

Table 4. Selected feature vectors of carotid artery (CA), HRV and CA+HRV.

Rank CA HRV CA+HRV

Feature RS(1− p) Feature RS(1− p) Feature RS(1− p)

1 V3 1.000 SD2 0.999 V3 1.000
2 V10 1.000 SDRR 0.998 V10 1.000
3 V18 0.998 fα 0.993 SD2 0.998
4 V2 0.997 SD2/SD1 0.991 SDRR 0.997
5 V8 0.997 SD1 0.986 fα 0.986
6 V21 0.995 H 0.984 SD2/SD1 0.985
7 V23 0.989 SD1× SD2 0.975 SD1 0.979
8 V20 0.989 nLF 0.968 V2 0.979
9 V4 0.975 nHF 0.967 V18 0.965

10 V11 0.968 ApEn 0.961 SD1× SD2 0.965
11 V6 0.968 RR 0.958 H 0.965
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Table 4. Cont.

Rank CA HRV CA+HRV

Feature RS(1− p) Feature RS(1− p) Feature RS(1− p)

12 V16 0.967 LF/HF 0.955 V8 0.963
13 V13 0.966 V21 0.962
14 V19 0.962 V23 0.962
15 V5 0.961 nLF 0.960
16 V17 0.953 nHF 0.958
17 ApEn 0.955
18 V20 0.954
19 V11 0.952
20 V16 0.951

* CA: Carotid Artery, HRV: Heart Rate Variability, RS: Relevance score.

4.2. Verification of Feature Vectors Using Classification Methods

In order to determine whether the combined 20 feature vectors extracted from both CA and
HRV (indicated as CA+HRV) can be effective diagnostic indicators of CVDs than feature vectors of
CA and HRV separately, the famous classification or prediction method of machine learning is used
as the way of evaluation. The classification method generates and compares several models including
Neural Networks (NNs), Bayesian classifiers, decision tree induction model, Support Vector Machine
(SVM) and Classification Based on Multiple Association Rules (CMAR).

4.2.1. Neural Networks

The NNs method uses back propagation to classify instances [19]. NNs are composed of nodes
(neurons) and their interconnections. In general, input values are converted into values ranging from
zero to one. Each input node is connected to an output node through the link with weight value. We
use the back-propagation multi-layer perceptron (MLP) consisting of three layers: input, hidden, and
output layers. An NNs learns through changes in the weight of each node, and its goal is to determine
the weight w that minimizes the sum of the squared error between target class y and predicted class
ŷ, which is calculated using in the following equation below:

E(w) =
1
2

N

∑
i=1

(yi − ŷ)2. (7)

4.2.2. Bayesian Network

The Bayesian Network chooses the highest posterior probability class using the prior probability
computed from the training data set. The Naïve Bayes classifier assumes that the effect of an attribute
on a given class is independent of the values of the other attributes. This assumption is called class
conditional independence. However, attribute values of CA and HRV data may not be entirely
independent from each other. In order to address this problem, we considered a set of extended
Bayesian classifiers known to work well with correlated data, including Tree Augmented Naïve Bayes
(TAN) [20].

4.2.3. Decision Tree Induction (C4.5)

C4.5 [21] is one of the most popular decision trees. A decision tree can be viewed as a partitioning
of the instance space. Each partition, called a leaf, represents a number of similar instances that
belong to the same class. C4.5 is also a decision tree generating algorithm based on the ID3 algorithm.
It contains several improvements especially needed for software implementation.
These improvements contain: (1) choosing an appropriate attribute selection measure; (2) handling
training data with missing attribute values; (3) handling attributes with differing costs; and
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(4) handling continuous attributes. In order to perform experiments, we used the j48.part method
that implemented the C4.5 algorithm [19].

4.2.4. Support Vector Machine (SVM)

The SVM is basically a two-class classifier and can be extended for multi-class classification.
The main reason for interest in support vector and kernel methods is their flexibility and remarkable
resistance to overfitting, and their simplicity and theoretical elegance, all appealing to practitioners
as well as theoreticians. In our model, each object is mapped to a point in a high dimensional space,
each dimension corresponding to features. The coordinates of the point are the frequencies of the
features in the corresponding dimensions. The SVM learns, in the training step, the maximum-margin
hyper-planes separating each class. In the testing step, it classifies a new object by mapping it to a
point in the same high-dimensional space divided by the hyper-plane learned in the training step.
For our experiments, we applied the sequential minimal optimization (SMO) algorithm by using the
radial basis function (RBF) kernel for training a support vector classifier [19].

4.2.5. Classification Based on Multiple Association Rules (CMAR)

CMAR classifiers [22] extend CBA by using more than one rule to classify a new case. It is
a two-step process: (1) rule generation and (2) classification. In rule generation, CMAR uses an
approache based on the FP-growth method [23] to find the complete set of rules satisfying the
minimum confidence and minimum support thresholds. FP-growth uses a tree structure called
FP-tree, which retains the item set association information contained in the given data set D. CMAR
uses an enhanced FP-tree that maintains the distribution of various class labels among tuples
satisfying frequent item sets. From the FP-tree, created rules can be generated immediately. Thus,
CMAR allows rule generation and frequent item set mining in a single step. Once a rule is generated,
it is stored in a CR-tree. The CR-tree is a prefix tree data structure. Its function is to store and retrieve
rules efficiently and prune rules based on confidence, correlation and database coverage. Whenever a
rule is inserted into the CR2-tree, it starts a pruning rule. Highly specialized rules with low confidence
can be pruned if more generalized rules with higher confidence exist. CMAR also prunes rules based
on χ2 and database coverage [22,24].

In our experiment, four classifiers, except for the CMAR classifier, utilize the following source
code provided by the Java WEKA project (University of Waikato, Hamiton, New Zealand) [19]. The
CMAR classifier utilizes CMAR software provided by the LUCS-KDD group (University of Liverpool,
Liverpool, England) [25].

• weka.classifiers.bayes.BayesNet (TAN)
• weka.classifiers.tree.j48.J48 (C4.5)
• weka.classifiers.funtions.SMO (SVM)
• weka.classifiers.functions.MultilayerPerceptron (MLP)

Through the statistical analysis of all the diagnostic feature vectors listed in Tables 1 and 2,
we apply each classification model to the data set that passed the feature selection step. We build
the above classifiers from the preprocessed training data. Accuracy was obtained by using the
methodology of stratified 10-fold cross-validation (CV-10) for three classes. To evaluate classification
performance with respect to the number of instances and class labels, we used a confusion matrix.
We also used Precision, Recall, F-measure and Accuracy to evaluate the classifiers’ performance for
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analyzing our training sets with imbalanced class distribution. Formal definitions of these measures
are given in the equations below [15,26,27]:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F−measure =
2× Precision× Recall

Precision + Recall

Accuracy =
TP + TN

TP + FP + TN + FN
,

(8)

where, TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative
in the confusion matrix. In the performance evaluation with Precision, Recall and F − measure,
Table 5 shows the features used for each data set which are CA, HRV and CA+HRV (combining
CA and HRV).

The parameters of the five classification methods were set as follows. For the CMAR algorithm,
the minimum support was set to 0.4%, the minimum confidence to 70%, and the database coverage
was set to 3.75 (critical threshold for a 5% “significance” level, assuming degree of freedom is
equivalent to one). For the SVM, the soft margin allowed errors during training. We set 0.1 for
the two-norm soft margin value. The Neural Networks (MLP), Bayesian classifier (TAN) and C4.5
parameters were default values.

Table 5. A description of summary results (all features).

Classifier
CA

(Using 16 Features)
HRV

(Using 12 Features)
CA+HRV

(Using 20 Features) Class

Precision Recall F1 Precision Recall F1 Precision Recall F1

NNs
(MLP)

0.701 0.754 0.727 0.681 0.749 0.713 0.763 0.913 0.831 AP
0.707 0.714 0.711 0.696 0.713 0.704 0.835 0.749 0.790 Control
0.519 0.409 0.457 0.480 0.336 0.395 0.833 0.568 0.675 ACS

BayesNet
(TAN)

0.627 0.782 0.696 0.589 0.749 0.659 0.660 0.871 0.751 AP
0.669 0.541 0.598 0.632 0.532 0.578 0.768 0.553 0.643 Control
0.595 0.425 0.496 0.501 0.297 0.373 0.725 0.499 0.591 ACS

C4.5
0.656 0.716 0.685 0.669 0.727 0.697 0.734 0.870 0.796 AP
0.722 0.706 0.714 0.727 0.711 0.719 0.846 0.742 0.790 Control
0.488 0.394 0.436 0.463 0.378 0.416 0.645 0.482 0.552 ACS

SVM
0.756 0.810 0.782 0.685 0.804 0.740 0.872 0.854 0.863 AP
0.795 0.735 0.764 0.803 0.745 0.773 0.864 0.926 0.894 Control
0.621 0.592 0.606 0.376 0.258 0.305 0.718 0.664 0.690 ACS

CMAR
0.719 0.814 0.764 0.617 0.818 0.703 0.839 0.945 0.889 AP
0.669 0.769 0.716 0.702 0.774 0.736 0.836 0.845 0.840 Control
0.694 0.462 0.554 0.542 0.235 0.328 0.855 0.692 0.765 ACS

* F1: F-measure; NNs: Neural networks; MLP: Multi-layer perceptron; BayesNet: Bayesian network; TAN: Tree
augmented naïve bayes; C4.5: Decision tree induction; SVM: Support vector machine; CMAR: Classification
based on multiple association rules.

In addition, summarizing classifiers’ performance with a single number would make it more
convenient to compare the performance of diffenent classifiers. This can be done using a performance
metric such as accuracy and Root Mean Squared Error (RMSE). The results of RMSE and the accuracy
for each classifier are shown in Table 6 and Figure 5, respectively.

According to the result, shown in Figure 5, the highest accuracy for CA (16 features) and HRV
(12 features) is 82.94% and 78.82%, respectively. However, both accuracies are lower than the highest
accuracy rate, 89.51%, obtained from various features of CA+HRV (20 features), considering CA
and HRV separately. Therefore, we anticipated that the use of the multi-features for CA+HRV will
produce more effective diagnostic indicators than using features of CA and HRV. In order to address
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this expectation, we used the confusion matrix of classification results for each feature in Table 7.
As SVM and CMAR give higher accuracy in comparison to other methods, we apply these two best
classifiers in the following experiment. Table 7 records the hit rates (correctly classified instance
rate) of SVM and CMAR in a confusion matrix, and the results are reasonably good. The hit rates
of SVM for AP, Control and ACS classes are 85.42%, 92.55% and 66.39%. The hit rates of CMAR are
also 94.51%, 84.51% and 69.23%, respectively. In particular, ACS class can not be correctly separated
from AP class when we used features for each CA and HRV (see Table 7). These results indicate that
using the multiple features of CA+HRV gives more effective results in discriminating between the groups.

Table 6. A comparison of the classifiers’ root mean squared error (RMSE).

Classifier CA (Using 16 Features) HRV (Using 12 Features) CA+HRV (Using 20 Features)

NNs (MLP) 0.405 0.442 0.293
BayesNet (TAN) 0.443 0.509 0.395

C4.5 0.422 0.426 0.342
SVM 0.301 0.437 0.216

CMAR 0.355 0.472 0.201

Figure 5. Accuracy comparison.

Table 7. Confusion matrix for SVM and CMAR (use of each feature for CA, HRV and CA+HRV).

Features Classifier Actual Class Predicted Class

AP (%) Control (%) ACS (%)

CA
(16 features)

SVM
AP 81.01 6.29 12.7

Control 24.4 73.51 2.09
ACS 22.66 18.12 59.22

CMAR
AP 81.37 7.84 10.79

Control 18.04 76.89 5.07
ACS 26.92 26.92 46.16

HRV
(12 features)

SVM
AP 80.4 6.05 13.55

Control 20.85 74.52 4.63
ACS 56.66 17.5 25.84

CMAR
AP 81.82 7.28 10.9

Control 18.13 77.43 4.44
ACS 53.94 22.57 23.49

CA+HRV
(20 features)

SVM
AP 85.42 4.6 9.98

Control 7.1 92.55 0.35
ACS 19.06 14.55 66.39

CMAR
AP 94.51 1.57 3.92

Control 9.27 84.51 6.22
ACS 16.39 14.38 69.23
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5. Conclusions

This paper suggests multiple diagnostic feature vectors with the CA and HRV analyses for
the purpose of more accurate prediction and early diagnosis of CVD, recently growing at a rapid
speed. Moreover, we performed experiments and evaluations to verify the reliability of the
prediction system and test the significance of diagnostic feature vectors. According to the results of
experiments, 20 types of feature vectors are determined as the essential elements for disease diagnosis
and SVM and CMAR show an excellent result in terms of the appropriate classification or prediction
algorithm. These kind of complex diagnostic indicators would be useful for the automatic diagnosis
of CVDs in Korea. The limitation of this paper is in the fact that the sample data provided by a certain
organization without collecting sufficient data from the domestic hospitals. Data accumulation of
various ages and genders is required to secure high reliability of the developed systems and play a
reference database role in this disease area.
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