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Abstract: Following recent technological advances in diverse mobile devices, including smartphones,
tablets and smartwatches, in-depth studies aimed at improving the quality of augmented reality (AR)
are currently ongoing. Smartphones feature the essential elements of AR implementation, such as a
camera, a processor and a display in a single device. As a result, additional hardware expansion for
AR implementation has become unnecessary, popularizing AR technology at the user level. In the
early stages, low-level AR technology was used mainly in limited fields, including simple road
guides and marker-based recognition. Due to advances in AR technology, the range of usage has
expanded as diverse technologies and purposes are combined. Users’ expectations of AR technology
have also increased with this trend, and a high quality of service (QoS), with high-resolution,
high-quality images, is now available. However, there are limitations in terms of processing
speed and graphic treatment with smart devices, which, due to their small size, have inferior
performance compared to the desktop environment when processing data for the implementation
of high-resolution, high-quality images. This paper proposes an optional frame-selection algorithm
(OFSA), which eliminates the unnecessary work involved with redundant frames during rendering
for adaptive symmetric service of augmented reality big data on smart devices. Moreover, the memory
read-write delay of the internally-operating OFSA, is minimized by adding an adaptive operation
function. It is possible to provide adaptive common AR images at an improved frame rate in
heterogeneous smart devices with different levels of performance.
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1. Introduction

Augmented reality (AR) provides additional information by overlaying virtual objects, created
by a computer, onto real objects. Tom Caudell coined the term AR in 1990, and its meaning was
defined by Milgram, Takemura, Utsumi and Kishino in 1994 [1–3]. Diverse research and development
of AR began after Klopfer expanded it in 2008 to combine information with the real world [4,5].
Recently, studies have been done on AR that are aimed at achieving the optimal performance of
diverse smart devices, including mobile phones, tablets iPods, iPads and iPhones [6–12]. Due to the
continuous growth of the application field of AR, continuous research and development aimed at
the provision of high-resolution, high-quality images are in progress [13–15]. However, AR images
with high resolution and high quality cause delays and sporadic frame drops in smart devices that
have generally used specifications, as they induce heavy loads at the processor level. Although there
have been many studies aimed at achieving a higher frame rate by creating an efficient mechanism,
problems arise due to the need for additional sensors and an Internet connection. This paper proposes
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an optional frame-selection algorithm (OFSA) to achieve a better frame rate in low-specification devices
for adaptive symmetric service of augmented reality big data on smart devices. OFSA involves the
differences between changing AR objects due to minute camera movements due to limited display
resolution or the human body’s recognition and acceptable errors [16,17]. Therefore, users cannot
distinguish a change in camera pose below a certain level. Hence, in cases of small frames with a
change of camera pose smaller than the threshold, the processing of each frame can be minimized by
maintaining the AR object of the previous frame without executing additional rendering. Figure 1
shows a frame processed by OFSA for adaptive symmetric service of augmented reality big data on
smart devices that are actually operational. The frames were processed without omissions on laptop
and desktop machines, which have better performance than the requirement. However, some frames
were omitted on tablet PCs and smartphones, falling short of the recommendation. The omitted frames
are those that differ from the previous frame at a level below the threshold; they are regarded as useless
frames that do not require rendering. In this way, OFSA is capable of common AR implementation in
smart devices that have diverse functions.
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Figure 1. Basic frame processed by the optional frame-selection algorithm (OFSA) for adaptive
symmetric service. AR, augmented reality.

This paper is structured as follows. Section 2 introduces related literature regarding the
achievement of higher frame rates in AR. Section 3 explains the OFSA scheme, similarity calculation,
unit correction and adaptive operation. Section 4 describes the design of monitoring OFSA (mo_OFSA)
for the applications of monitoring and reviewing. Section 5 implements mo_OFSA, and Section 6
proves the performance improvement by conducting a performance evaluation. Finally, the paper
concludes with an overall summary and future research topics.

2. Related Works

This section introduces studies that are focused on securing higher frame rates to enhance the
sense of immersion and reality of AR. Previous studies mainly tracked pre-processing, post-processing
or distributed processing. Data correction with measurements using sensors, the image process that
recognizes an object and predicts its movement, and distributed processing that uses multiple threads
or the cloud environment are used as schemes for achieving high frame rates applicable to diverse
smart devices. These are accompanied by a number of constraint conditions, such as the necessity of
an Internet connection or additional sensors. Table 1 summarizes the existing literature.
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Table 1. Comparison with exiting research.

Type of Research Functions and Operation Mechanisms

Motion State Estimation (MSE) [6]

‚ Proposes a scheme that addresses the problem of delays in tracking due to
motion blur that occur because of the movement of the AR marker.

‚ Capable of securing more frames than the SIFT and SURF algorithms
during the same amount of time in an environment of moving markers by
achieving faster tracking speed through a prediction of marker movement
divided into stable, slow, linear and non-linear.

‚ Applicable only in devices in which markers move in identical patterns.

Augmented reality with high frame
rate for low computational power
devices [7]

‚ Proposes a scheme for obtaining a fast camera pose of AR in devices with
low computing power.

‚ Parallel processing of three major works of AR (acquisition, tracking and
rendering) by using a thread.

‚ Proven effective performance from the aspect of frame rate and
temporal jitter.

‚ Requires an environment where multi-thread implementation is possible.

Model-based tracking [8]

‚ Proposes a 3D model-based estimation algorithm for the purpose of
securing more frames by diminishing the time in the tracking stage of
markerless AR.

‚ Estimates a complete 3D model by predicting the outline information of
the tracked object.

‚ Requires an additional process for 3D model estimation.

Real-time hybrid-based method for
tracking unknown environments in
markerless augmented reality [9]

‚ Proposes a scheme that enhances the speed of synchronization process
computation of the image received to the rendering of the AR model
and camera.

‚ Implements reinforcement in computer vision using the acceleration and
gyroscope sensors.

‚ Obtains results that are as much as five-times faster than the process
computation of computer vision-based tracking.

‚ Applicable only in devices that have accelerometer and gyroscope sensors.

Histogram of Intensity PatcheS
(HIPS) [10]

‚ Proposes a scheme that uses the distributed processing of the Kinect for
the purpose of constituting faster AR using the limited computing
performance of smart devices.

‚ Capable of collaboration between more than two devices.
‚ Internet environment and Kinect for rapid image processing are essential.

Mobile augmented reality based on
cloud computing [11]

‚ Achieves a high frame rate by moving the process of matching the tracked
object to the AR object in a markerless AR environment into a
cloud environment.

‚ The Internet environment for the cloud is essential.

This paper explains the problem of requiring an Internet environment and additional sensors.
As OFSA has better performance at the algorithm level, it can be applied to all smart devices without
requiring other sensors or environments.

3. Scheme of OFSA

OFSA, as proposed in this paper, compares the current frame to the previous frame and omits
rendering when the movement of the AR object is below the threshold. As a result, the level of
processing decreases, improving the frame rate. As more frequent image acquisition and tracking
becomes possible, more seamless AR can be provided to users. OFSA computes a camera pose matrix
based on a target object recognized in the frame and categorizes frames that require rendering and



Symmetry 2016, 8, 37 4 of 12

frames that do not. By comparing the current frame and the key frame, it categorizes frames with
significant movement as requiring rendering and those without significant movement as useless
and not requiring rendering. The criteria of significant movement are determined according to a
user-selected threshold. The fact that a camera pose matrix that constantly changes according to the
movement of the camera does not result in a significant difference between the current frame and the
key frame indicates that the change in the rotation angle and the location of the AR object is small.

Figure 2 shows non-OFSA and OFSA processing in an AR implementation through smart devices.
Non-OFSA refers to an AR implementation scheme without OFSA application, following the process
flow of the Vuforia API [18]. The process flow of AR implementation in the non-OFSA environment can
be divided into three stages: image acquisition, in which the image is received from the input device, such
as the camera; tracking, which derives the target object from the received image and computes the camera
pose matrix; and rendering, which creates the AR object in an appropriate form on the current frame
based on the camera pose matrix. In this process, OFSA comes after tracking and uses the camera pose
matrix computed in the tracking process. OFSA not only determines whether or not rendering should
be performed, but also stores a snapshot of the AR object after the rendering. Hence, the rendering
process is included in OFSA. In contrast to non-OFSA, OFSA performs an additional process for each
frame. However, it stores the OFSA value of the key frame and compares the OFSA value in each
frame to reduce the load on the processor based on this computation. As such, the processor overload
rate decreases by omitting the rendering of meaningless frames, achieving a higher frame rate. As the
omitted frames have very small changes in camera pose, which users cannot visibly detect, an identical
AR service can be provided without being restricted by the computing power.
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Figure 2. Processing of non-OFSA and OFSA.

The OFSA process consists of five steps (Figure 3):

Step 1: The current frame of the image is received from the smart device to obtain the camera
pose matrix.

Step 2: Whether there is a key frame that was previously announced is determined. In the first entry
to OFSA, there is no key frame, and hence, the current frame is registered as a key frame.

Step 3: The OFSA values of the current frame and the key frame are computed. This value
numerically interprets whether there was a significant difference of movement between
two frames.

Step 4: Rendering is determined by comparing the OFSA value and the selected threshold. If the
OFSA value exceeds the threshold, the process for adaptive operation takes place. If it is
smaller, it is regarded as a useless frame that does not have a large difference from the key
frame, and hence, the previous snapshot is maintained.

Step 5: Whether the previous frame is a key frame is checked, to decrease delays due to memory
read-writing by preventing frequent registration of key frames. If the previous frame is a key
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frame, the non-OFSA process is engaged to remove the snapshot, and each frame rendering
begins. Otherwise, the current frame is registered as a key frame.
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Figure 3. Pseudocode of OFSA.

The OFSA value of the subsequent frames is calculated using a single key frame as a standard.
The frame becomes a useless frame, and rendering is omitted when the value does not exceed the
threshold. Useless frames can be determined without restrictions on their number between key frames.
It is also possible to continuously determine only key frames, without useless frames. When a frame
satisfies the threshold, it becomes a new key frame, as a standard. The interval between repeats
continues until the received image finishes (Figure 3).

3.1. Similarity Calculation

The OFSA value numerically captures the range of movement between the key frame and the
current frame by using the camera pose matrix [19,20]. This is a parameter that explains the conversion
relationship between camera coordinates and world coordinates, which generally takes a three-row,
four-column form in which the first, second and third columns have a rotation value and the fourth
column has a translation value. OFSA searches for the target object in the tracking process every time
a current frame is received, based on how the camera pose matrix is computed and stored. The camera
pose matrix numerically captures the direction and angle of the camera shooting the image and consists
of rotation values and translation values. To obtain the OFSA value, the camera pose matrix of the
current frame and the key frame is divided into rotation and translation, and the difference of each
element is computed to obtain the sum of the absolute value of each element. Here, as the rotation
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and translation values have different units, the unit correction value is multiplied to minimize errors
resulting from the unit difference.
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Equation (1) shows the computation of the OFSA value. The calculated OFSA value contains
numerical information about the range of movement between two frames. In the equation above,
Key f rameRT and Current f rameRT refer to the camera pose matrix of the key frame and the current
frame, respectively, and VariationRT refers to the range of change of the current frame using a key
frame as a standard.

OFSA Value “
9
ÿ

i“1

|mi| `
12
ÿ

i“10

|mi| ˚ Correction Value (2)

Equation (2) converts the camera pose matrix into a single constant. Unit correction of rotation
and translation values in the element of VariationRT is also conducted. Correction Value is multiplied
by the sum of three elements of the matrix that indicate the translation, and the OFSA value is obtained
by adding the sum of the rest of the zero elements that indicate the rotation value.

3.2. Unit Correction

As the rotation and translation values used in the computation of OFSA values have different units,
a raw value cannot be used. Hence, an additional correction calculation is necessary for addressing the
unit difference. The rotation value can have a value between 0˝ and 360˝ and is numerically expressed
as a value between zero and one. The translation value has a direct relationship with resolution, with a
range between zero and the maximum number of pixels of the frame length and width. Assuming the
resolution of typical smart devices to be 800 by 400 pixels, the rotation value is negligible compared
to the translation value. If the OFSA value is computed in a condition without unit correction, it can
be sensitive to the change of translation, but it shows almost no response to the change of rotation.
Hence, Correction Value is multiplied by the translation for correction to expand the numerical range of
rotation, so that it can be the same as translation, or to set the range of translation value between zero
and one.

Correction Value “
1

Frame Width ` Frame Height
(3)

Equation (3) is an equation for Correction Value, which makes the translation value have an
identical scale to the rotation value through multiplication, where the frame width and height refer to
the size of the currently-obtained image.

3.3. Adaptive Operation

In OFSA, the snapshot process performs the process of temporarily storing the rendered object in
memory in pixel units, which causes a decreased frame rate by inducing a large amount of memory
read-write. The number of call outs in the snapshot process increases, as pose changes that exceed the
threshold occur more frequently. Hence, rendering is conducted in each frame by non-OFSA when
there is a change that continuously exceeds the threshold. If a change smaller than the threshold occurs
for more than two frames, OFSA is applied again by regarding the situation as stable.

4. Design of mo_OFSA

The Vuforia API was used in the design of an Android-based AR viewer application for the actual
implementation and performance evaluation of mo_OFSA (monitoring_OFSA). mo_OFSA is designed
to measure frames per second (FPS) by converting between non-OFSA and OFSA in a marker-based
AR environment. An FPS level of 40 was maintained, since valid performance checks are difficult
if the maximum FPS of 60 is exceeded in idle conditions in the testing environment of mo_OFSA
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in AR models that overwrap the marker. Figure 4 shows the architecture of mo_OFSA. Image data
received from the camera of the smart device is converted in frame units for computation by Vuforia’s
Frame Converter.
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Figure 4. Architecture of monitoring OFSA (mo_OFSA).

Vuforia consists of Frame Converter; Tracker, which detects the target object from the converted
image data; Collider, for multi-target AR; Pose Calculator, which computes the camera pose matrix
of the frame using the recognized target object; and Renderer, for the rendering of AR objects. OFSA
consists of Snap Shooter, which stores images in memory to display the rendered object in useless
frames without an additional rendering process; Frame Parameter, which stores the parameters of
each frame for comparisons between key frames and current frames; Frame Measure, which processes
the comparison computation of OFSA values; Rendered Object, which stores the completely rendered
object in case rendering is processed after the renewal of the key frame; and OFSA Value Calculator,
which computes the OFSA value using the data from Frame Converter. DB manager stores the
model and object required for AR implementation and includes the AR object, which stores the
rendered AR object, and the target object, which stores information about a real object, onto which
the relevant object will be overlaid. Viewer provides the user interface (UI). It consists of FPS
Indicator, which directly compares the frame rate between OFSA and non-OFSA; Threshold Indicator,
which checks the threshold value of the current user setting; OFSA Switch Indicator, which checks the
setting of OFSA and non-OFSA; and Snapshot Viewer, which displays snapshots of the OFSA process.
Setting determines and stores the detailed OFSA settings. The setting interface includes Threshold
Controller, which determines the snapshot in the OFSA process according to the difference in camera
poses between the current frame and the key frame, and OFSA Switch, which switches between the
implementation of non-OFSA and OFSA.

5. Implement of mo_OFSA

Figure 5 exhibits the composition of mo_OFSA implemented for the performance measurements
of OFSA. Its structure features four overlaid layers, which are described in 1© of Figure 5. The first layer
is the camera layer, where the image received from the camera is displayed. The second layer is the
convectional layer, which displays the target object that was recognized by non-OFSA on the AR object.
The third layer is the snapshot layer, which displays the snapshot stored by OFSA. The fourth layer is
capable of performing switches between non-OFSA and OFSA in the adaptive OFSA environment
without additional processes, as it consists of the user interface (UI) layer. Figure 5 2© shows a checkbox
for switching between OFSA and non-OFSA, where AR is implemented by non-OFSA if unchecked,
while the adaptive OFSA process is applied if checked. Figure 5 3© shows an indicator for controlling
the threshold of OFSA, where the sensitivity of OFSA is set. The initial value is 30, and mo_OFSA
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supports a control range between zero and 100. Figure 5 4© shows an FPS indicator, which presents the
frame rate of mo_OFSA as a 0.5-s renewal and records it for AR service analysis. Figure 5 5© shows
the actual application screen for when the change of camera pose is smaller than the threshold in the
OFSA environment. Although there is a minute change in the angle of the camera view, the AR object
is maintained as the identical model through the snapshot, and the FPS also shows the same level as
under the idle condition. Figure 5 6© shows a case of the camera pose change being larger than the
threshold in the OFSA environment. A new object that is different from the AR object in Figure 5 5© is
rendered to be registered in the snapshot and displayed.
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Figure 5. Composition of mo_OFSA.

Figure 6 shows frame flow, which checks the frame selection of OFSA using mo_OFSA. An image
was used in which the camera moved while centered on the target object. Each frame has a 1-s distance
in the image, which shows how the AR model is processed in non-OFSA and OFSA environments.
In non-OFSA, the AR model was rendered in each frame according to the frame flow. In OFSA,
1©, 2©, 3© and 4© in Figure 6 display identical AR models using a single snapshot. This is because the

difference in the camera pose matrix among the four frames from 1© is small. However, 5© and 6©
in Figure 6 are displayed by storing the snapshot that differs from the previous one after detecting a
change in the camera pose matrix that exceeds the threshold.
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6. Performance Evaluation

For the performance evaluation of the image analysis of non-OFSA and OFSA, the additional
frame rate that can be achieved was used as a criterion for performance analysis, and FPS was measured
twice per second. The relative performance evaluation was conducted by calculating the average
and median FPS based on the measured results. Using the moving condition of the target object
as a standard, Stable refers to a situation in which the target object is stopped in the frame without
moving; Slow Moving refers to the target object moving slowly; and Fast Moving refers to the target
object moving quickly. The direction of the target object’s movement is random, rather than linear or
nonlinear. For the homogeneity of the image, a 5-s image length composed of identical environments
was used for each standard. All images began with no target object in the frame, and the target object
was recognized after 1 s. In Slow Moving and Fast Moving, in which the target object moved, it moved
a designated distance for the four remaining seconds upon recognition. In Slow Moving, the object
moved for 1/3 of the frame on the test device with a resolution of 1280 ˆ 800 pixels. In Fast Moving,
the target object moved from one end of the frame to the other in the test device.

Figure 7 shows the average and median FPS of non-OFSA and OFSA observed in the same 5-s
image length on a graph. As shown in Figure 7 for Stable, OFSA is tracking and rendering the target
object through recognizing the interval [1–1.5 s]. Additionally, in the next step, OFSA can keep the
same FPS, prior to the target object without the tracking and rendering step. For Slow Moving in
Figure 7, the target object should be placed from the camera at a greater distance in Stable. Therefore,
it can speed up the time more than Stable by using a few of polygons without a rendering step. OFSA
experiences a small frame drop because of the process for storing snapshots compared to non-OFSA
in [1–1.5 s]. Furthermore, it can keep the initial FPS in [1.5–3 s], which does not exceed the threshold
value of OFSA regarding the moving of the target object. For Fast Moving in Figure 7, OFSA has to
save each new frame of the snapshot within the threshold value of the moving target object for each
frame. Therefore, non-OFSA has a large value of frame drop for the total interval in order to solve the
adaptive operation.

The average and median FPS in Table 2 are the average and median value of 10 FPS, which were
measured in 0.5-s units in a 5-s image.

Per f ormance Sacle “
FPSOFSA

FPS nonOFSA
ˆ 100 (4)

Table 2 exhibits the relative improvement rate of performance.

Table 2. Comparison of the frame rate between OFSA and non-OFSA.

Video Type non-OFSA OFSA
Performance Scale

Average FPS Median FPS Average FPS Median FPS

Stable 12.8 8 26 34 203%
Slow Moving 18.2 16 22.4 30 123%
Fast Moving 13.6 10 11.6 6 85%

Equation (4) calculates the performance scale, where FPS_OFSA and FPS_nonOFSA refer to
average FPS. Table 2 explains that OFSA can secure more frames than non-OFSA under the conditions
of Stable and Slow Moving. In particular, it showed more than twice the improvement of performance
compared to non-OFSA with greater frame recognition, under a condition of Stable, in which the
target object does not move. However, the performance of OFSA decreased to 85% in the Fast Moving
condition, which can indicate a limitation of OFSA due to the time delay that occurs during the
memory read-writing process of the snapshot.
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Figure 8 compares OFSA and adaptive OFSA using the same image. The experiment was
performed to confirm that adding an adaptive operation to OFSA can achieve improved frame rates
compared to OFSA in situations in which a large amount of movement occurs with the AR object.
The Stable image was used in interval [0–3-s]; the Slow Moving image was used in interval [3–6-s];
and the Fast Moving image was used in interval [6–9-s]. Adaptive OFSA showed improved frame
rates compared to OFSA, as it minimized registering key frames in the Fast Moving condition. As the
snapshot is registered in one frame before beginning the adaptive operation, it cannot instantly respond
in the Fast Moving situation. Nevertheless, adaptive OFSA showed a greater than 14% improvement
of the average FPS.
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OFSA can support a fast speed for AR services with large-scale data processing. For example,
we can reduce the data processing time of server AR services in an exhibition hall, which has low
computing devices, such as smart glass, smartphones and showcases, by displaying the processed
data from server. Therefore, OFSA can have a minimized cost for the scale and operation of the server
to AR services.

7. Conclusions

The OFSA, in this paper, is capable of providing the same adaptive AR service as that
in heterogeneous adaptive symmetric services in smart device environments. The performance
evaluation, which was conducted by dividing the situations into Stable, Slow Motion and Fast
Moving conditions, confirmed higher frame rates compared to the existing rate in the actual AR
environment. OFSA showed particularly strong performance in searching for moving targets or in
entering additional target objects in a stable AR object environment. As it minimizes system resource
waste due to rendering work in the case of small wobbles, it not only achieves faster tracking of target
objects, but also enhances the battery life-cycle of smart devices. We believe that this algorithm can
be extended, with minimum usage of system resources, to implement an AR that responds to the
inevitable hand trembling that occurs due to users’ ability to hold smart devices with one hand.

As the adaptive OFSA did not achieve better performance than non-OFSA in cases of target objects
that constantly move at high speed, we plan to further develop this scheme in the future by using a
method of storing only the valid domain in memory, to minimize the memory read-writing process.
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