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Abstract:

 Being able to formally test for symmetry hypotheses is an important topic in many fields, including environmental and physical sciences. In this paper, one concentrates on a large family of nonparametric tests of symmetry based on Cramér–von Mises statistics computed from empirical distribution and characteristic functions. These tests possess the highly desirable property of being universally consistent in the sense that they detect any kind of departure from symmetry as the sample size becomes large. The asymptotic behaviour of these test statistics under symmetry is deduced from the theory of first-order degenerate V-statistics. The issue of computing valid p-values is tackled using the multiplier bootstrap method suitably adapted to V-statistics, yielding elegant, easy-to-compute and quick procedures for testing symmetry. A special focus is put on tests of univariate symmetry, bivariate exchangeability and reflected symmetry; a simulation study indicates the good sampling properties of these tests. Finally, a framework for testing general symmetry hypotheses is introduced.
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1. Introduction


In many scientific fields, a natural or experimentally-controlled phenomenon is observed and a dataset is collected. From these observations, one may be interested in testing basic assumptions with respect to some theoretical model. One of these assumptions that often appears in physical models is the so-called symmetry hypothesis; see, for example, [1]. In order to validate a model under investigation, one typically wants to thoroughly test these kinds of hypotheses with the help of a statistical method.



There are various types of symmetry that need to be distinguished first. The most common concerns random variables taking values in the space [image: there is no content] of real numbers. In this context, a random variable [image: there is no content] is said to be symmetric around the origin if [image: there is no content], where here and in the sequel, [image: there is no content] means equality in distribution. More generally, X is symmetric around [image: there is no content] if and only if [image: there is no content]. For a pair [image: there is no content] of random variables taking values in [image: there is no content], many types of symmetry have been proposed in the literature. The pair [image: there is no content] is said to be exchangeable if and only if [image: there is no content]. This definition entails that X and Y have the same distribution. Another notion is reflected symmetry: [image: there is no content] is reflection symmetric around [image: there is no content] if and only if [image: there is no content]. This definition entails in particular the symmetry of X around a and the symmetry of Y around b. While this paper focuses on the two above-mentioned notions of bivariate symmetry, other definitions have been proposed, e.g., joint symmetry and spherical symmetry.



In the statistics and probability literature, there are two main ways to characterize the stochastic behaviour of random variables and random vectors. The most widely used is the distribution function approach. In that case, one works with the function [image: there is no content] in the univariate case and with the joint distribution [image: there is no content] in the bivariate case. An alternative, yet less popular approach, uses the so-called characteristic functions associated with random variables and random vectors. Since one can recover the distribution function of a random variable (or vector) from its characteristic function, and vice versa, the various hypotheses of symmetry described previously can equivalently be stated in terms of distribution functions or using characteristic functions. As will be seen, these two approaches lead to different and competing statistical procedures.



This paper focuses on consistent nonparametric tests of symmetry based on Cramér–von Mises functionals of empirical distribution and characteristic functions. These tests are attractive since they do not require any assumptions on the form of the underlying distribution and provide universally-consistent procedures. In addition, as will be seen, these test statistics for symmetry can be expressed as V-statistics. This representation allows for the derivation of their asymptotic behaviour and, most importantly, suggests a resampling method based on the multiplier bootstrap for the computation of p-values. Compared to permutation methods, which are generally employed when testing symmetry, this strategy is substantially quicker and provides elegant formulas that make the tests easy to implement. The main features of this work are the following:

	(i)

	
Describe a general family of Cramér–von Mises test statistics for symmetry hypotheses based on empirical distributions and characteristic functions. In the case of univariate symmetry, exchangeability and reflected symmetry, some of these statistics have already been proposed in the literature.




	(ii)

	
Deduce the asymptotic behaviour of these test statistics under the null hypothesis upon noting that they are related to degenerate V-statistics.




	(iii)

	
Suggest an efficient alternative to the use of permutations based on the multiplier bootstrap method adapted to V-statistics.




	(iv)

	
Present the results of a simulation study that investigates the properties of the tests under the null hypothesis, as well as under violations of symmetry hypotheses.




	(v)

	
Develop a general framework for testing a broad class of symmetry hypotheses.









The paper is organized as follows. Section 2 provides some results on degenerate V-statistics and their multiplier versions that will prove useful throughout the paper. Section 3 focuses on tests of symmetry for random variables, while Section 4 is devoted to tests of bivariate exchangeability and reflected symmetry. The results of an extensive simulation study are presented and discussed in Section 5. A unified framework that contains as special cases the univariate and bivariate tests of symmetry encountered in Section 3 and Section 4, but also many other types of symmetry, is developed in Section 6. Technical arguments are relegated to the Appendix.




2. Some Preliminaries on V-statistics


All of the test statistics for symmetry that will be encountered in this work are related to first-order degenerate V-statistics. Therefore, their asymptotic behaviour can be derived using results that one can find, for instance, in the books by [2] and [3]. In what follows, [image: there is no content] are identically distributed independent observations in [image: there is no content]. Some of the test statistics that will be described are of the form:


[image: there is no content]



(1)




where [image: there is no content] is a symmetric kernel of degree two that is first-order degenerate in the sense that [image: there is no content] for all [image: there is no content]. In that case,


Vn=Un(1)+n−1nnUn(2)








where [image: there is no content] and [image: there is no content] are the U-statistics:


Un(1)=1n∑j=1nψXj,XjandUn(2)=n2−1∑j<j′ψXj,Xj′











The following result is a straightforward consequence of Theorem 1, p. 79, in [2].



Proposition 1. 

If [image: there is no content], the statistic [image: there is no content] converges in distribution to:


[image: there is no content]








where [image: there is no content] are independent [image: there is no content] random variables and [image: there is no content] are the eigenvalues of the mapping η↦E{ψ(·,X2)η(X2)}.





Now, consider the statistic:


[image: there is no content]



(2)




where [image: there is no content] is a kernel of degree three that satisfies the following assumptions:

	𝒜1.

	
[image: there is no content] for all [image: there is no content], i.e., ϕ is symmetric with respect to its first two components;




	𝒜2.

	
[image: there is no content] for all [image: there is no content].









The large-sample behaviour of [image: there is no content] is stated as a proposition whose proof is deferred to the Appendix.



Proposition 2. 

The test statistic [image: there is no content] is asymptotically equivalent to the V-statistic with degenerate bivariate kernel [image: there is no content], i.e.,


[image: there is no content]



(3)









As a consequence, if [image: there is no content], then [image: there is no content] converges in distribution to:


[image: there is no content]








where [image: there is no content] are independent [image: there is no content] random variables and [image: there is no content] are the eigenvalues of the mapping η↦E{Φ(·,X2)η(X2)}.



As mentioned in the Introduction, the proposed methodology for the computation of p-values will be based on the multiplier bootstrap. Specifically, a multiplier sample is obtained by generating, independently of the data, a random sample [image: there is no content] of independent and identically distributed random variables, such that [image: there is no content] and [image: there is no content]. The suggested multiplier versions of [image: there is no content] and [image: there is no content] are given, respectively, by:


V^n=1n∑j,j′=1nξjξj′ψXj,Xj′W^n=1n2∑j,j′,k=1nξjξj′ϕXj,Xj′,Xk=1n∑j,j′=1nξjξj′1n∑k=1nϕXj,Xj′,Xk



(4)







From a slight adaptation of Theorem 3.1 in [4], which applies to first-order degenerate U-statistics, one obtains that [image: there is no content] is a valid replicate of [image: there is no content] asymptotically. For [image: there is no content], one could show using arguments similar as those in the proof of Proposition 2 that [image: there is no content] is asymptotically equivalent to:


W^n*=1n∑j,j′=1nξjξj′ΦXj,Xj′








so that the validity of [image: there is no content] to replicate [image: there is no content] asymptotically can be deduced, as well.



For computational purposes, define the matrices [image: there is no content], such that:


Ajj′=ψXj,Xj′andAjj′*=1n∑k=1nϕXj,Xj′,Xk











Letting [image: there is no content] and [image: there is no content], one can then write:


Vn=1n1A1⊤,V^n=1nξAξ⊤,Wn=1n1A*1⊤andW^n=1nξA*ξ⊤











In practice, the multiplier procedure is repeated B times by generating independent vectors [image: there is no content] of multiplier random variables, i.e., for each [image: there is no content], [image: there is no content]. Then, one computes [image: there is no content] and [image: there is no content] using the above formulas. These replicates of [image: there is no content] and [image: there is no content] are very quick to compute since the matrices A and [image: there is no content] need to be evaluated only once from the data.




3. Tests of Univariate Symmetry


Many tests of univariate symmetry have been proposed over the years. An early contribution is that of [5] based on a Cramér–von Mises statistic. Tests of symmetry about an unspecified point have been studied by [6,7]; see also the more recent contribution by [8], where invariant tests based on the empirical characteristic function are proposed. Extensions of these tests are investigated by [9]. Tests based on kernel density estimation have been investigated by [10,11], where the computation of p-values relies on the bootstrap. Data-driven smooth tests of symmetry have been proposed by [12].



Here, one focuses on consistent tests based on distribution and characteristic functions in the case of a known center of symmetry. To this end, let [image: there is no content] be independent and identically distributed copies of a continuous random variable X. For [image: there is no content], let [image: there is no content] be the distribution function of X, and for [image: there is no content], let [image: there is no content] be its characteristic function. Here and in the sequel, [image: there is no content], and [image: there is no content] is the expectation operator. The goal in this section is to describe test procedures for the null hypothesis [image: there is no content]. One can focus on the case [image: there is no content] only, i.e., [image: there is no content]. Indeed, the methodology extends easily to the case [image: there is no content] by observing that [image: there is no content] is equivalent to [image: there is no content], where [image: there is no content], and by working with the sample of transformed data [image: there is no content], where [image: there is no content] for each [image: there is no content].



The first step is to note that one can write the null hypothesis [image: there is no content] from a distribution function or a characteristic function point-of-view. If [image: there is no content] is true, then [image: there is no content] for all [image: there is no content] and [image: there is no content] for all [image: there is no content]. Hence, the null hypothesis can be written equivalently as:

	
H0univ:F(−x)=1−F(x−)∀x∈R;



	
H0univ:c(t)=c(−t)∀t∈R.








As a consequence, consistent test statistics can be based either on the empirical version of F or on the empirical version of c given, respectively, by:


Fn(x)=1n∑j=1nIXj≤xandcn(t)=1n∑j=1neitXj











Here and in the sequel, [image: there is no content] if the statement s is true and zero otherwise. Natural test statistics for univariate symmetry are therefore given by:


Vnuniv=n∫RFn(−x)+Fn(x−)−12dxWnuniv=n∫RFn(−x)+Fn(x−)−12dFn(x)Vnuniv(ω)=n∫Rcn(t)−cn(−t)2ω(t)dt








where [image: there is no content] and [image: there is no content] denotes the modulus of the complex number z. In the definition of the Cramér–von Mises statistic [image: there is no content], [image: there is no content] puts mass [image: there is no content] at each element of the sample. This statistic is a special case of the one proposed by [13] when X is continuous. An asymptotically-equivalent version of this test statistic has been investigated by [14]; see also [5]. According to the author’s knowledge, [image: there is no content] has not been investigated yet. The test statistic [image: there is no content] uses the characteristic function point-of-view and is based on a nonnegative weight function ω that must be specified by the experimenter. Some examples of weight functions are described in Section 5.2. The following lemma provides formulas for the computation of these test statistics.



Lemma 3. 

One has:


[image: there is no content]








where ψuniv(x1,x2)=2sign(x1)sign(x2)min(|x1|,|x2|),


ϕuniv(x1,x2,x3)=Ix3≤min(−x1,−x2)−Ix3≤min(x1,−x2)−Ix3≤min(−x1,x2)+Ix3≤min(x1,x2)








and ψωuniv(x1,x2)=4∫Rsin(tx1)sin(tx2)ω(t)dt.





Since [image: there is no content] and [image: there is no content], the fact that [image: there is no content] under the null hypothesis entails [image: there is no content] and [image: there is no content]. As a consequence, [image: there is no content] and [image: there is no content] are V-statistics of order two with first-order degeneracy, and their large-sample behaviour follows from Proposition 1. Note, however, that an additional requirement on [image: there is no content] is necessary in order that [image: there is no content]. In particular, it will hold true if the moment of order two exists.



Since [image: there is no content] is symmetric with respect to its first two components and from the fact that [image: there is no content], which entails [image: there is no content] for all [image: there is no content], the asymptotic behaviour of [image: there is no content] is deduced from Proposition 2. Finally, the multiplier versions of [image: there is no content], [image: there is no content] and [image: there is no content] are derived from the formulas in (4).




4. Tests of Bivariate Symmetry


While less popular than the univariate symmetry hypothesis, many tests of bivariate symmetry have been proposed. The earliest contributions come from [15,16], where nonparametric tests were developed; these tests have been reconsidered by [17]. A test using the empirical distribution function has been suggested by [18]. An investigation comparing some tests of bivariate symmetry was done by [19]. Extensions to tests of multivariate symmetry were considered by [20].



In this section, the focus is put on bivariate exchangeability and reflected symmetry. In the sequel, [image: there is no content] are independent and identically distributed copies of a continuous random pair [image: there is no content]. For [image: there is no content], the joint distribution of [image: there is no content] is [image: there is no content], and for [image: there is no content], its characteristic function is C(s,t)=E(ei(sX+tY))=∫R2ei(sx+ty)dH(x,y). The proposed test statistics will be based on the sample versions of H and C, namely:


Hn(x,y)=1n∑j=1nIXj≤x,Yj≤yandCn(s,t)=1n∑j=1nei(sXj+tYj)



(5)







4.1. Exchangeability


The goal here is to test for the null hypothesis [image: there is no content]. When [image: there is no content] is true, [image: there is no content] and [image: there is no content]. Hence, the null hypothesis can be written equivalently as:

	
H0exch:H(x,y)=H(y,x)∀(x,y)∈R2;



	
H0exch:C(s,t)=C(t,s)∀(s,t)∈R2.








In view of these two characterizations of the null hypothesis, consider:


Wnexch=n∫R2Hn(x,y)−Hn(y,x)2dHn(x,y)Vnexch(Ω)=n∫R2Cn(s,t)−Cn(t,s)2Ω(s,t)dsdt








where Ω is a nonnegative and integrable weight function. The test statistic [image: there is no content] was introduced by [16], where a test of symmetry is performed using an approximation of the distribution under [image: there is no content]. Because the latter is inaccurate under high levels of dependence, an alternative procedure was proposed by [21]. Explicit formulas for [image: there is no content] and [image: there is no content] are provided in the next lemma.



Lemma 4. 

One has:


[image: there is no content]








where:


ϕexch(x1,y1),(x2,y2),(x3,y3)=Ix3≥max(x1,x2),y3≥max(y1,y2)−Ix3≥max(x1,y2),y3≥max(y1,x2)−Ix3≥max(y1,x2),y3≥max(x1,y2)+Ix3≥max(y1,y2),y3≥max(x1,x2)








and:


[image: there is no content]








where for ψ˜Ωexch(x,y)=∫R2cos(sx+ty)Ω(s,t)dsdt,


ψΩexch{(x1,y1),(x2,y2)}=ψ˜Ωexch(x1−x2,y1−y2)−ψ˜Ωexch(x1−y2,y1−x2)−ψ˜Ωexch(y1−x2,x1−y2)+ψ˜Ωexch(y1−y2,x1−x2)













The kernel [image: there is no content] is symmetric with respect to its first two components. In addition, [image: there is no content] under the null hypothesis, because [image: there is no content]. The asymptotic behaviour of [image: there is no content] can then be deduced from Proposition 2. Similarly, [image: there is no content], so that [image: there is no content] and [image: there is no content] is a V-statistic with first-order degeneracy. Its large-sample behaviour then follows from Proposition 1. Multiplier versions of [image: there is no content] and [image: there is no content] derive from formulas in Equation (4).




4.2. Reflected Symmetry


As mentioned in the Introduction, the null hypothesis of reflected symmetry around [image: there is no content] is [image: there is no content]. For simplicity, one assumes that [image: there is no content], so that the focus is put on [image: there is no content]. The extension to arbitrary [image: there is no content] is straightforward upon noting that the null hypothesis [image: there is no content] is equivalent to H0refl:(X˜,Y˜)=d(−X˜,−Y˜), where [image: there is no content] and [image: there is no content]. Hence, one would only have to consider the sample of transformed data [image: there is no content], where [image: there is no content] and [image: there is no content] for each [image: there is no content].



When [image: there is no content] is true, [image: there is no content] and [image: there is no content]. Letting H¯(x,y)=P(X≥x,Y≥y), the distribution function and characteristic function versions of [image: there is no content] are then respectively:

	
H0refl:H(x,y)=H¯(−x,−y)∀(x,y)∈R2;



	
H0refl:C(s,t)=C(−s,−t)∀(s,t)∈R2.








Letting [image: there is no content], consider the test statistics:


Wnrefl=n∫R2Hn(x,y)−H¯n(−x,−y)2dHn(x,y)Vnrefl(Ω)=n∫R2Cn(s,t)−Cn(−s,−t)2Ω(s,t)dsdt











Explicit formulas are given next.



Lemma 5. 

One has:


[image: there is no content]








where:


ϕrefl(x1,y1),(x2,y2),(x3,y3)=Ix3≥max(x1,x2),y3≥max(y1,y2)−Ix3≥max(x1,−x2),y3≥max(y1,−y2)−Ix3≥max(−x1,x2),y3≥max(−y1,y2)+Ix3≥max(−x1,−x2),y3≥max(−y1,−y2)








and:


[image: there is no content]








where ψΩrefl(x1,y1),(x2,y2)=4∫R2sinsx1+ty1sinsx2+ty2Ω(s,t)dsdt.





Proceeding similarly as with [image: there is no content], one can show that [image: there is no content]. Thus, since [image: there is no content] is symmetric with respect to its first two components, the asymptotic behaviour of [image: there is no content] follows from Proposition 2. Furthermore, since [image: there is no content], one deduces [image: there is no content], and [image: there is no content] is a first-order degenerate V-statistic whose large-sample behaviour follows from Proposition 1. Multiplier versions of [image: there is no content] and [image: there is no content] are derived from Equation (4).




4.3. A Note on Copula Symmetry


A class of bivariate symmetries, yet less known than exchangeability and reflected symmetry, is based on copulas. The latter allows one to shed new light on the understanding of bivariate symmetry. The starting point is a theorem by [22] that states that there exists a function [image: there is no content] called a copula, such that [image: there is no content] for all [image: there is no content]. If the marginal distributions [image: there is no content] and [image: there is no content] are continuous, then D is unique. As a consequence, D completely characterizes the dependence between X and Y when [image: there is no content] is continuous.



Because Sklar’s representation entails that the random pair [image: there is no content] is distributed as D, exchangeability and reflected symmetry can be reformulated as follows:

	(i)

	
The pair [image: there is no content] is exchangeable if and only if [image: there is no content] and [image: there is no content];




	(ii)

	
The pair [image: there is no content] is reflection symmetric around [image: there is no content] if and only if [image: there is no content], [image: there is no content] and [image: there is no content], where [image: there is no content] and [image: there is no content].









The reader is referred to [23] for more details on the general theory of copulas.



Assuming the availability of independent random copies [image: there is no content] of [image: there is no content], one can test for the exchangeability and reflected symmetry of the copula only. This setup is equivalent in assuming that the marginal distributions [image: there is no content] and [image: there is no content] are known, so that a random sample [image: there is no content] can be transformed to the copula scale by letting [image: there is no content] for each [image: there is no content]. For copula exchangeability, the method described in Subsection 3.2 can be applied directly; for copula reflected symmetry, this corresponds to the case [image: there is no content], and then, the methodology in Subsection 3.2 may be used with [image: there is no content], where [image: there is no content] and [image: there is no content].



The marginal distributions [image: there is no content] and [image: there is no content] are generally unknown. In that case, it is suggested to work instead with [image: there is no content], where [image: there is no content] and [image: there is no content], [image: there is no content] are the empirical distribution functions. However, doing so results in much more complicated limit distributions and calls for suitably-adapted multiplier methods. See the works by [24] on copula exchangeability and by [25] on copula reflected symmetry (called radial symmetry in that case) for details.





5. Monte Carlo Study of the Sampling Properties of the Tests


5.1. Parameters of the Simulations


This section explores the sample properties of the tests for the three null hypotheses considered in Section 3 and Section 4, namely [image: there is no content], [image: there is no content] and [image: there is no content]. Specifically, the ability of the tests to keep their 5% nominal level under the null hypothesis and their power against alternative hypotheses will be investigated with the help of simulated datasets. The probability of rejection of the null hypothesis will be estimated from 1000 replicates under each scenario. The computation of p-values will be based on [image: there is no content] bootstrap samples using a version of the multiplier method called the Bayesian bootstrap. In that case, [image: there is no content] are replaced by [image: there is no content], [image: there is no content], where [image: there is no content] are independent and identically distributed from the exponential law with mean one; see [26] for details. Many other choices are possible for the stochastic structure of the multiplier variables, but from the author’s experience, it has little influence on the performance of the tests.




5.2. Size and Power of the Tests of Univariate Symmetry


This subsection investigates the properties of the tests based on [image: there is no content], [image: there is no content] and [image: there is no content] for testing the null hypothesis of univariate symmetry [image: there is no content]. The computation of [image: there is no content] calls for the choice of a weight function ω. For the simulation results that will be presented, one considers [image: there is no content] and [image: there is no content] for [image: there is no content]. One can show that for [image: there is no content] and [image: there is no content],


ψω1λuniv(x1,x2)∝x1x2λ2+x−2λ2+x+2andψω1λuniv(x1,x2)∝ϕx−λ−ϕx+λ








where [image: there is no content] is the density of the standard univariate normal distribution.



In order to investigate the ability of the tests to reject the null hypothesis of univariate symmetry around zero, one considers the general family of skew-asymmetric densities, as defined by [27]. Specifically, for a given symmetric density f and a given absolutely continuous distribution function G, such that [image: there is no content] is a symmetric density around zero, a skew-asymmetric density is defined for [image: there is no content] by gδ(x)=2f(x)G(δx). The case [image: there is no content] corresponds to a situation under the null hypothesis. When f and G are respectively the density and the cumulative distribution function of the standard normal distribution, one recovers the skew-normal family as introduced by [28]. For the simulation results that are reported in Table 1, one also considers the skew-T distribution with three degrees of freedom and the skew-Cauchy distribution (which is indeed the skew-T with one degree of freedom). Since [image: there is no content] for all [image: there is no content], datasets from [image: there is no content] can be generated using the rejection method; see [29] for more details. The idea is to simulate repeatedly X from f and U from the uniform distribution on [image: there is no content] until U≤gδ(X)/2f(X); then [image: there is no content].



Table 1. Probability of the rejection of the null hypothesis of univariate symmetry, as estimated from 1000 replicates, for the tests based on [image: there is no content], [image: there is no content] and [image: there is no content] under skew-normal, skew-T and skew-Cauchy alternatives.



	
Law

	
δ

	
n

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Skew-Normal

	

	
50

	
5.8

	
6.3

	
6.4

	
6.8

	
6.1

	
6.1




	
0

	
100

	
5.2

	
5.0

	
5.5

	
5.6

	
5.1

	
5.5




	

	
200

	
5.3

	
4.7

	
5.7

	
5.4

	
6.2

	
5.6




	

	
50

	
9.5

	
11.1

	
8.6

	
9.4

	
9.3

	
10.8




	
0.1

	
100

	
13.6

	
14.9

	
12.1

	
12.7

	
13.9

	
14.5




	

	
200

	
21.3

	
20.5

	
17.7

	
18.9

	
19.9

	
21.4




	

	
50

	
28.8

	
30.2

	
25.7

	
26.6

	
28.5

	
29.5




	
0.25

	
100

	
47.8

	
50.9

	
40.6

	
41.7

	
45.8

	
48.3




	

	
200

	
79.1

	
77.7

	
71.3

	
72.8

	
76.5

	
79.6




	

	
50

	
74.6

	
74.4

	
67.9

	
70.3

	
73.0

	
75.2




	
0.5

	
100

	
96.3

	
95.3

	
93.5

	
94.2

	
95.7

	
96.2




	

	
200

	
100.0

	
100.0

	
99.8

	
99.8

	
99.8

	
100.0




	
Skew-T

	

	
50

	
4.4

	
7.2

	
4.4

	
5.0

	
4.7

	
5.2




	
0

	
100

	
4.2

	
7.1

	
4.8

	
5.1

	
5.1

	
5.3




	

	
200

	
4.5

	
5.7

	
5.4

	
5.4

	
4.5

	
4.4




	

	
50

	
11.6

	
14.3

	
8.3

	
8.5

	
10.5

	
10.6




	
0.1

	
100

	
17.6

	
19.5

	
11.7

	
11.8

	
13.9

	
15.2




	

	
200

	
30.9

	
29.0

	
18.9

	
19.0

	
22.5

	
24.3




	

	
50

	
43.1

	
39.4

	
27.5

	
27.7

	
33.4

	
36.2




	
0.25

	
100

	
66.4

	
66.2

	
43.1

	
43.5

	
55.5

	
59.5




	

	
200

	
94.0

	
92.3

	
78.9

	
78.5

	
86.9

	
89.7




	

	
50

	
85.5

	
85.1

	
66.8

	
67.6

	
77.5

	
80.7




	
0.5

	
100

	
98.9

	
99.0

	
94.4

	
94.4

	
97.6

	
98.2




	

	
200

	
100.0

	
100.0

	
99.9

	
99.9

	
100.0

	
100.0




	
Skew-Cauchy

	

	
50

	
3.3

	
6.2

	
5.7

	
5.9

	
5.3

	
5.6




	
0

	
100

	
3.4

	
6.4

	
5.1

	
5.0

	
5.4

	
5.2




	

	
200

	
2.9

	
6.2

	
5.6

	
5.4

	
6.1

	
6.3




	

	
50

	
23.9

	
28.5

	
9.8

	
9.6

	
11.7

	
11.9




	
0.1

	
100

	
47.0

	
46.6

	
11.8

	
12.1

	
16.4

	
16.8




	

	
200

	
76.8

	
73.4

	
17.5

	
16.5

	
29.0

	
29.6




	

	
50

	
56.9

	
67.1

	
24.7

	
23.9

	
35.1

	
35.6




	
0.25

	
100

	
83.3

	
91.1

	
45.4

	
42.7

	
61.1

	
61.5




	

	
200

	
93.8

	
99.6

	
76.1

	
71.5

	
89.8

	
90.2




	

	
50

	
81.3

	
93.5

	
57.8

	
56.4

	
74.0

	
75.0




	
0.5

	
100

	
94.1

	
99.7

	
89.4

	
87.8

	
96.0

	
96.3




	

	
200

	
97.8

	
100.0

	
99.6

	
99.5

	
100.0

	
100.0










Looking at Table 1, one can say that the six tests are very good at keeping their 5% nominal level under the null hypothesis, even when [image: there is no content]. An exception occurs for [image: there is no content] under the Cauchy distribution, where the test is too conservative. This behaviour is explained by the fact that the requirement [image: there is no content] is not satisfied in that case. As expected, the power of these tests increases as a function of the sample size, as expected from their theoretical consistency. The power also increases as a function of the parameter δ that controls the level of asymmetry. Note that departures from [image: there is no content] based on skew-Student and skew-Cauchy alternatives are more easily detected than those from the skew-normal distribution. Overall, the best tests are those based on [image: there is no content] and [image: there is no content], as well as on the characteristic function statistics [image: there is no content] and [image: there is no content].




5.3. Size and Power of the Tests of Exchangeability


The test statistics [image: there is no content] and [image: there is no content] are investigated here for testing the null hypothesis [image: there is no content] of exchangeability. Two weight functions are considered for [image: there is no content], namely:


Ω1λ(s,t)=e−λ(|s|+|t|)andΩ2λ(s,t)=e−λ2(s2+t2)/2











One can show that:


ψΩ1λexch(x1,y1),(x2,y2)∝1λ2+(x1−x2)2λ2+(y1−y2)2−1λ2+(x1−y2)2λ2+(y1−x2)2ψΩ2λexch(x1,y1),(x2,y2)∝ϕx1−x2λϕy1−y2λ−ϕx1−y2λϕy1−x2λ











As enlightened in Subsection 4.3, the hypothesis of exchangeability of a pair [image: there is no content] requires that [image: there is no content] and that [image: there is no content]. For the simulation results that will be presented, one assumes a [image: there is no content] distribution for both X and Y, so that the asymmetry will be controlled solely by the form of the copula. Here, one considers a general class of asymmetric bivariate distributions of the form:


[image: there is no content]








where Φ is the cumulative distribution function of the [image: there is no content] law and D is a symmetric copula, i.e., [image: there is no content] for all [image: there is no content]. The special case [image: there is no content] corresponds to a scenario under the null hypothesis of exchangeability. This construction is based on a proposal by [30]. For the results in Table 2, the copula D belongs either to the normal or the Gumbel–Hougaard family of symmetric models, i.e.,


D(u,v)=∫−∞Φ−1(u)∫−∞Φ−1(v)ϕϱ(x,y)dydxandD(u,v)=exp−loguv1/(1−θ)








where [image: there is no content] is the bivariate standard normal density with correlation [image: there is no content] and [image: there is no content]. These parameters are taken so that they match a Kendall’s tau of 0.75, i.e., [image: there is no content] and [image: there is no content]. The values of the asymmetry parameter are [image: there is no content].



Table 2. Probability of the rejection of the null hypothesis of exchangeability, as estimated from 1000 replicates, for the tests based on [image: there is no content] and [image: there is no content] under the copula-based distribution [image: there is no content].



	
Copula D

	
δ

	
n

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Normal

	

	
50

	
2.3

	
1.5

	
2.5

	
3.1

	
4.2




	
0

	
100

	
4.6

	
3.6

	
4.2

	
4.3

	
5.3




	

	
200

	
4.5

	
2.9

	
3.7

	
2.8

	
3.7




	

	
50

	
9.8

	
8.4

	
16.7

	
15.6

	
22.4




	
0.25

	
100

	
16.7

	
32.1

	
44.0

	
37.9

	
48.1




	

	
200

	
37.5

	
73.2

	
82.4

	
76.7

	
85.5




	

	
50

	
13.8

	
18.7

	
26.3

	
29.6

	
37.8




	
0.5

	
100

	
29.3

	
57.4

	
66.8

	
60.1

	
69.5




	

	
200

	
48.1

	
94.6

	
97.0

	
94.0

	
98.7




	

	
50

	
9.3

	
4.6

	
7.3

	
10.8

	
16.1




	
0.75

	
100

	
12.7

	
18.8

	
19.4

	
23.9

	
33.4




	

	
200

	
24.0

	
48.1

	
54.7

	
54.4

	
66.4




	
Gumbel–Hougaard

	

	
50

	
2.3

	
1.5

	
3.2

	
3.9

	
4.2




	
0

	
100

	
4.4

	
2.5

	
3.7

	
4.3

	
6.1




	

	
200

	
4.1

	
5.0

	
6.0

	
5.4

	
5.2




	

	
50

	
11.2

	
11.7

	
20.0

	
16.7

	
25.6




	
0.25

	
100

	
23.1

	
47.2

	
60.7

	
47.6

	
57.5




	

	
200

	
41.6

	
90.0

	
94.8

	
87.9

	
93.2




	

	
50

	
17.0

	
26.7

	
39.7

	
32.9

	
45.0




	
0.5

	
100

	
29.6

	
70.8

	
85.5

	
72.1

	
83.9




	

	
200

	
56.4

	
98.1

	
99.0

	
98.0

	
99.1




	

	
50

	
11.6

	
10.5

	
14.2

	
18.6

	
27.0




	
0.75

	
100

	
20.5

	
31.6

	
38.7

	
38.3

	
49.1




	

	
200

	
25.2

	
64.8

	
74.4

	
68.2

	
80.8










In light of simulations not presented here, the values [image: there is no content] offer the best performance for the test statistics [image: there is no content] and [image: there is no content]. From the entries in Table 2, one can see that the five tests are rather good at keeping their size under [image: there is no content], having in mind the fact that the multiplier method is valid asymptotically as [image: there is no content]. As expected, the power of the tests increases with the sample size. Here, the level of asymmetry is not necessarily monotone in δ. Indeed, the highest level of asymmetry occurs for values of δ around [image: there is no content] when it is measured for example by the index introduced by [31]; the simulation results concord with this fact, where the highest power are observed when [image: there is no content]. Here, the test based on the empirical distribution function statistic [image: there is no content] is significantly less powerful than those based on the empirical characteristic function; a similar feature has been documented by [32] when testing for copula symmetry. The best tests overall are those based on [image: there is no content]. Finally, note that asymmetries based on the Gumbel–Hougaard copula are better detected than those based on the normal copula.




5.4. Size and Power of the Tests of Reflected Symmetry


For the same weight functions [image: there is no content] and [image: there is no content] considered in the preceding subsection for testing exchangeability, one can show that:


ψΩ1λrefl(x1,y1),(x2,y2)∝x1x2λ2+y12+y22+y1y2λ2+x12+x22(λ2+x−2)(λ2+x+2)(λ2+y−2)(λ2+y+2)ψΩ2λrefl(x1,y1),(x2,y2)∝ϕx−λϕy−λ−ϕx+λϕy+λ








where [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



Following [33], reflected asymmetric bivariate densities can be built from a generalization of skew asymmetric univariate densities. Specifically, consider a density f, such that [image: there is no content], and a one-dimensional distribution function G, such that its density [image: there is no content] is symmetric around zero. Then, gδ(x,y)=2f(x,y)G{δ(x+y)} is a skew asymmetric bivariate density. In the special case when [image: there is no content] and [image: there is no content] is the cumulative distribution function of the [image: there is no content] distribution, one recovers the so-called skew-normal distribution with correlation coefficient [image: there is no content], namely:


gδN(x,y)=2ϕϱ(x,y)Φδ(x+y)











For the results in Table 3, [image: there is no content] and [image: there is no content]. Results not presented here with [image: there is no content] show that the power is one, even for a sample size as low as [image: there is no content]. Here, similar comments as for the tests of exchangeability apply for the ability of the tests to keep their nominal level and for their power as n increases. Comparing to the results in Table 2, however, one sees that the estimated probabilities of rejection are higher here. It can be explained, at least in part, by the fact that the asymmetry in the bivariate skew asymmetric model [image: there is no content] affects both the marginal distributions and the copula. Here, reflected asymmetry increases as a function of δ, resulting in power results that increase with δ. Overall, the test based on [image: there is no content] performs well under all of the scenarios that were considered. The characteristic function statistics are also doing well, the best being [image: there is no content]. Finally, note that the power is higher when [image: there is no content] compared to [image: there is no content].



Table 3. Probability of the rejection of the null hypothesis of reflected symmetry, as estimated from 1000 replicates, for the tests based on [image: there is no content] and [image: there is no content] under the skew-normal distribution.



	
ϱ

	
δ

	
n

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1/3

	

	
50

	
8.3

	
7.5

	
7.1

	
8.6

	
7.1




	
0

	
100

	
6.0

	
4.6

	
4.6

	
4.5

	
4.6




	

	
200

	
3.3

	
5.4

	
4.8

	
3.6

	
4.9




	

	
50

	
35.4

	
28.1

	
28.5

	
35.1

	
28.5




	
0.25

	
100

	
65.1

	
55.0

	
55.9

	
63.3

	
55.8




	

	
200

	
92.2

	
83.1

	
84.4

	
89.6

	
84.3




	

	
50

	
94.5

	
89.9

	
91.1

	
94.6

	
90.9




	
0.5

	
100

	
100.0

	
99.1

	
99.2

	
99.5

	
99.1




	

	
200

	
100.0

	
100.0

	
100.0

	
100.0

	
100.0




	
2/3

	

	
50

	
6.7

	
4.8

	
5.4

	
6.2

	
5.4




	
0

	
100

	
6.8

	
6.3

	
6.7

	
6.1

	
6.7




	

	
200

	
5.3

	
4.3

	
4.1

	
4.2

	
4.1




	

	
50

	
30.4

	
28.1

	
28.1

	
33.8

	
28.1




	
0.25

	
100

	
58.7

	
47.5

	
48.2

	
57.3

	
48.2




	

	
200

	
84.2

	
75.6

	
76.7

	
82.4

	
76.9




	

	
50

	
88.9

	
83.3

	
84.2

	
89.7

	
84.1




	
0.5

	
100

	
99.6

	
98.4

	
98.6

	
99.5

	
98.5




	

	
200

	
100.0

	
100.0

	
100.0

	
100.0

	
100.0












6. Unification into a General Framework


The hypotheses considered so far can be treated somewhat simultaneously by taking a general group of transformations. To this end, take a random vector [image: there is no content] in [image: there is no content] with joint distribution function [image: there is no content], [image: there is no content] and p-variate characteristic function [image: there is no content], [image: there is no content]. Then, let [image: there is no content] be a symmetric matrix, such that [image: there is no content] and consider testing the null hypothesis [image: there is no content] against [image: there is no content]. When [image: there is no content] and [image: there is no content], one recovers the univariate symmetry encountered in Section 3. In the case [image: there is no content], the exchangeability and reflected symmetry hypotheses treated in Section 4 correspond respectively to:


M=0110andM=−100−1











Letting [image: there is no content] and upon noting that [image: there is no content], the null hypothesis [image: there is no content] can be written equivalently as:

	
H0M:F(x)=FM(x)∀x∈Rp;



	
H0M:C(t)=C(M⊤t)∀t∈Rp.








From a sample [image: there is no content] of independent copies of [image: there is no content], define the empirical versions of F and C respectively by:


Fn(x)=1n∑j=1nIXj≤xandCn(x)=1n∑j=1neit⊤Xj











A Cramér–von Mises statistic based on the sample distribution function is:


[image: there is no content]








where [image: there is no content] is the distribution function of [image: there is no content]. Taking Ω to be a nonnegative integrable weight function defined on [image: there is no content], a characteristic-function statistic is:


VnM(Ω)=n∫RpCn(t)−Cn(M⊤t)2Ω(t)dt











From computations similar to those in Lemmas 3–5, one can show that:


WnM=1n2∑j,j′,k=1nϕM(Xj,Xj′,Xk)andVnM(Ω)=1n∑j,j′=1nψΩM(Xj,Xj′)








where for [image: there is no content],


ϕM(x1,x2,x3)=Ix3≥max(x1,x2)−Ix3≥max(x1,Mx2)−Ix3≥max(Mx1,x2)+Ix3≥max(Mx1,Mx2)








and for ψ˜ΩM(x)=∫Rpcos(t⊤x)Ω(t)dt,


[image: there is no content]











Since [image: there is no content], it follows that [image: there is no content] under [image: there is no content]. Since in addition, [image: there is no content] is symmetric with respect to its first two components, the asymptotic distribution of [image: there is no content] under the null hypothesis can be deduced from Proposition 2. One also has [image: there is no content], and then, [image: there is no content] is a first-order degenerate V-statistic with bivariate kernel [image: there is no content] whose asymptotic distribution follows from Proposition 1. The multiplier versions of these statistics follow from the formulas in Equation (4).



To close this section, note that many symmetry hypotheses are related to a group of transformations rather than to a single transformation matrix [image: there is no content]. This situation has been considered by [34] from a distribution function point-of-view using a bootstrap method for the computation of p-values. In order to handle this case under the framework of the current paper, let [image: there is no content] be a set of [image: there is no content] symmetric matrices and consider the null hypothesis [image: there is no content]for all [image: there is no content]. For example, spherical symmetry corresponds to [image: there is no content] being the set of all orthogonal transformations in [image: there is no content], while multivariate exchangeability occurs when [image: there is no content] is the set of all permutation matrices in [image: there is no content].



The key here is to work with a combination matrix [image: there is no content], such that for [image: there is no content], Lz=0q∈Rq if and only if [image: there is no content] is a constant vector. Then, define [image: there is no content] and [image: there is no content] and note that under the null hypothesis [image: there is no content], [image: there is no content] and [image: there is no content] are [image: there is no content]-dimensional vectors of identical functions in [image: there is no content]. With this in hand, the null hypothesis can be re-written either as H0G:LFG(x)=0q∀x∈Rp or H0G:LCG(t)=0q∀t∈Rp. Hence, letting [image: there is no content] and [image: there is no content], with [image: there is no content], test statistics are given by:


WnG=n∫RpLFn,G(x)2dFn(x)andVnG(Ω)=n∫RpLCn,G(t)2Ω(t)dt











It can be shown that [image: there is no content] is of the form required in Proposition 2, while [image: there is no content] is a V-statistic with a bivariate kernel having a first-order degeneracy, hence falling under the requirements of Proposition 1.
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Appendix A. Proofs of Proposition 2, Lemma 3, Lemma 4 and Lemma 5


Appendix A.1. Proof of Proposition 2


First, define the symmetric kernel:


[image: there is no content]








and note that:


[image: there is no content]











The fact that [image: there is no content] entails [image: there is no content] for all [image: there is no content], so [image: there is no content] is a first-order degenerate V-statistic. In that case, it follows from Example 2, p. 185, in [2] and the H-decomposition of U-statistics (see, e.g., Section 3.3.2, p. 78 in [2]) that for Φ˜(x1,x2)=3E{ϕ˜(x1,x2,X3)},


Wn=EΦ˜X1,X1+nUn(2)+oP(1)








where:


[image: there is no content]











The representation of [image: there is no content] in Equation (3) follows by noting that:


Φ˜(x1,x2)=Eϕ(x1,x2,X3)+ϕ(x1,X3,x2)+ϕ(x2,X3,x1)=Eϕ(x1,x2,X3)=Φ(x1,x2)











Finally, the asymptotic representation of [image: there is no content] is a consequence of Proposition 1 with [image: there is no content].




Appendix A.2. Proof of Lemma 3


First, note that:


Vnuniv=2n∫0∞Fn(−x)+Fn(x−)−12dx











When [image: there is no content], one has I(Xj≤−x)+I(Xj<x)−1=−sign(Xj)I(x≤|Xj|), so that:


Fn(−x)+Fn(x−)−12=−1n∑j=1nsign(Xj)I(x≤|Xj|)2=1n2∑j,j′=1nsign(Xj)sign(Xj′)Ix≤min(|Xj|,|Xj′)











It then follows that:


Vnuniv=1n∑j,j′=1n2sign(Xj)sign(Xj′)min|Xj|,|Xj′|=1n∑j,j′=1nψunivXj,Xj′











Upon noting that [image: there is no content] puts mass [image: there is no content] at [image: there is no content], one also has:


Wnuniv=∑k=1nFn(−Xk)+Fn(Xk−)−12=∑k=1n1n∑j=1nI(Xj≤−Xk)+I(Xj<Xk)−12=∑k=1n1n∑j=1nI(Xk≤−Xj)−I(Xk≤Xj)2=1n2∑j,j′,k=1nI(Xk≤−Xj)−I(Xk≤Xj)I(Xk≤−Xj′)−I(Xk≤Xj′)=1n2∑j,j′,k=1nIXk≤min(−Xj,−Xj′)−IXk≤min(Xj,−Xj′)−IXk≤min(−Xj,Xj′)+IXk≤min(Xj,Xj′)=1n2∑j,j′,k=1nϕuniv(Xj,Xj′,Xk)











For [image: there is no content], the fact that:


[image: there is no content]








entails:


cn(t)−cn(−t)2=4n2∑j=1nsin(tXj)2=4n2∑j,j′=1nsin(tXj)sin(tXj′)











Integrating this last expression with respect to ω yields:


Vnuniv(ω)=1n∑j,j′=1n4∫Rsin(tXj)sin(tXj′)ω(t)dt=1n∑j,j′=1nψωuniv(Xj,Xj′)












Appendix A.3. Proof of Lemma 4


For the test statistic [image: there is no content], one has:


[image: there is no content]








so that:


Hn(Xk,Yk)−Hn(Yk,Xk)2=1n2∑j,j′=1nIXk≥max(Xj,Xj′),Yk≥max(Yj,Yj′)−1n2∑j,j′=1nIXk≥max(Xj,Yj′),Yk≥max(Yj,Xj′)−1n2∑j,j′=1nIXk≥max(Yj,Xj′),Yk≥max(Xj,Yj′)+1n2∑j,j′=1nIXk≥max(Yj,Yj′),Yk≥max(Xj,Xj′)











It is then a straightforward exercise to show that:


[image: there is no content]











For the test statistic [image: there is no content], first note that:


Cn(s,t)−Cn(t,s)=1n∑j=1ncos(sXj+tYj)−cos(tXj+sYj)+i1n∑j=1nsin(sXj+tYj)−sin(tXj+sYj)











Hence,


Cn(s,t)−Cn(t,s)2=1n2∑j,j′=1ncos(sXj+tYj)−cos(tXj+sYj)cos(sXj′+tYj′)−cos(tXj′+sYj′)+1n2∑j,j′=1nsin(sXj+tYj)−sin(tXj+sYj)sin(sXj′+tYj′)−sin(tXj′+sYj′)











Using the trigonometric identity [image: there is no content], one obtains after straightforward computations that:


Cn(s,t)−Cn(t,s)2=1n2∑j,j′=1ncoss(Xj−Xj′)+t(Yj−Yj′)−1n2∑j,j′=1ncoss(Xj−Yj′)+t(Yj−Xj′)−1n2∑j,j′=1ncoss(Yj−Xj′)+t(Xj−Yj′)+1n2∑j,j′=1ncoss(Yj−Yj′)+t(Xj−Xj′)











Integrating this last expression with respect to [image: there is no content] yields:


[image: there is no content]












Appendix A.4. Proof of Lemma 5


Proceeding as in the proof of Lemma 4, note that:


Hn(Xk,Yk)−H¯n(−Xk,−Yk)2=1n∑j=1nIXk≥Xj,Yk≥Yj−IXk≥−Xj,Yk≥−Yj2=1n2∑j,j′=1nIXk≥max(Xj,Xj′),Yk≥max(Yj,Yj′)−1n2∑j,j′=1nIXk≥max(Xj,−Xj′),Yk≥max(Yj,−Yj′)−1n2∑j,j′=1nIXk≥max(−Xj,Xj′),Yk≥max(−Yj,Yj′)+1n2∑j,j′=1nIXk≥max(−Xj,−Xj′),Yk≥max(−Yj,−Yj′)











It then follows that:


[image: there is no content]











For [image: there is no content], the fact that:


[image: there is no content]








entails:


Cn(s,t)−Cn(−s,−t)2=4n2∑j,j′=1nsinsXj+tYjsinsXj′+tYj′











Integrating this expression with respect to [image: there is no content] yields:


[image: there is no content]
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