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1. Introduction

In 1996, Chen initiated the following fundamental problem in his cornerstone work [1]: to
establish simple relationships between the main intrinsic invariants and the main extrinsic invariants
of Riemannian submanifolds. The basic relationships discovered until now are inequalities and the
study of this topic has attracted a lot of attention during the last two decades. We refer to [2] for a
relatively recent survey on this topic.

On the other hand, Casorati introduced the Casorati curvature of an n-dimensional submanifold
M of a Riemannian manifold, which is an extrinsic invariant defined as the normalized square of
the length of the second fundamental form of the submanifold [3]. In 2007, Decu et al. introduced
the normalized δ-Casorati curvatures δc(n− 1) and δ̂c(n− 1) and established inequalities involving
δc(n− 1) and δ̂c(n− 1) for submanifolds in real space forms [4].

The proof of the inequalities in [4] is based on an optimization procedure by showing that the
quadratic polynomial in the components of the second fundamental form is parabolic. And the above
method was successfully applied to establish inequalities in terms of the Casorati curvatures for
different submanifolds in various ambient spaces [5–10]. Recently, in [11–13], the authors obtained
the corresponding Casorati inequalites by using Oprea’s optimization methods on Riemannian
submanifolds [14].

In [15,16], Mihai and Özgür established Chen inequalities for submanifolds of real, complex
and Sasakian space forms endowed with semi-symmetric metric connections and in [17,18], Özgür
and Murathan gave Chen inequalities for submanifolds of a locally conformal almost cosymplectic
manifold and a cosymplectic space form endowed with semi-symmetric metric connections. On the
other hand, Lee et al. proved inequalities involving the Casorati curvature of submanifolds in real,
complex and Sasakian space forms endowed with a semi-symmetric metric connection in [7,8]. In an
earlier paper, Özgür established Chen inequalities for submanifolds in a Riemannian manifold of
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quasi-constant curvature [19]. Just very recently, we obtained Chen’s inequalities for submanifolds of
a Riemannian manifold of quasi-constatnt curvature with a semi-symmetric metric connection [20].

In this paper, by using new algebraic techniques, we establish inequalities involving the
normalized δ-Casorati curvatures δc(n− 1) and δ̂c(n− 1) for submanifolds in a Riemannian manifold
of quasi-constant curvature with a semi-symmetric metric connection, which generalize inequalities
obtained in [7]. Our techniques can also be used to establish inequalities involving the generalized
normalized δ-Casorati curvatures obtained in [5,9].

2. Preliminaries

To meet the requirements in the next sections, here, we briefly present the basic elements of the
theory of a Riemannian manifold endowed with a semi-symmetric metric connection.

Let Nn+p be an (n+ p)-dimensional Riemannian manifold with the Riemannian connection ∇̂, a
linear connection ∇ and the Riemannian metric g. The torsion tensor field T of the linear connection
∇ is defined by

T(X, Y) = ∇XY−∇YX− [X, Y]

for the vector fields X, Y on Nn+p.
The liner connection ∇ is said to be semi-symmetric if the torsion tensor T of the connection ∇

satisfies the following relation
T(X, Y) = φ(Y)X− φ(X)Y

for a 1-form φ on Nn+p. Further, if ∇ satisfies ∇g = 0, then ∇ is called a semi-symmetric metric
connection [21]. In [21], Yano obtained a relation between the semi-symmetric metric connection ∇
and the Riemannian connection ∇̂ which is given by

∇XY = ∇̂XY + φ(Y)X− g(X, Y)P

where P is a vector field defined by
g(P, X) = φ(X) (1)

for any vector field X on Nn+p.
Let Mn be an n-dimensional submanifold of an (n + p)-dimensional Riemannian manifold

Nn+p with the semi-symmetric metric connection ∇ and the Riemannian connection ∇̂. On Mn we
consider the induced semi-symmetric metric connection denoted by ∇ and the induced Riemannian
connection denoted by ∇̂.

Let R be the curvature tensor of Nn+p with respect to∇ and R̂ the curvature tensor of Nn+p with
respect to ∇̂. We also denote by R and R̂ the curvature tensors associated to ∇ and ∇̂, respectively,
on Mn.

The Gauss formulas with respect to ∇, respectively ∇̂, can be written as the following [22]

∇XY = ∇XY + h(X, Y), ∇̂XY = ∇̂XY + ĥ(X, Y)

for any vector fields X, Y on M, where h is a (0, 2) symmetric tensor on Mn and ĥ is the second
fundamental form associated to Riemaniann connection ∇̂. According to the formula (7) from [22] h
is also symmetric.

The curvature tensor R with respect to the semi-symmetric metric connection∇ on Nn+p can be
written as [23]

R(X, Y, Z, W) = R̂(X, Y, Z, W) + α(Y, Z)g(X, W)− α(X, Z)g(Y, W)

+ α(X, W)g(Y, Z)− α(Y, W)g(X, Z) (2)
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for any vector fields X, Y, Z, W on Mn, where α is a (0, 2)-tensor field defined by

α(X, Y) = (∇̂Xφ)Y− φ(X)φ(Y) +
1
2

φ(P)g(X, Y)

denote by λ the trace of α restricted on Mn.
The Gauss equation for the submanifold Mn into Nn+p with respect to the semi-symmetric metric

connection is given by Nakao [22]

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z)) (3)

for any vector fields X, Y, Z, W on Mn.
According to the Equation (7) from [22] we have

Lemma 1. If P given by Equation (1) is a tangent vector field on Mn, then h = ĥ.

In Nn+p we choose a local orthonormal frame e1, · · · , en, en+1, · · · , en+p, such that, restricting to
Mn, e1, · · · , en are tangent to Mn.

Let π ⊂ Tx Mn, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional curvature of Mn with
respect to the induced semi-symmetric metric connection. Then the scalar curvature τ with respect to
the semi-symmetric metric connection is defined by

τ(x) = ∑
1≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ with respect to the semi-symmetric metric connection is
defined by

ρ =
2τ

n(n− 1)

We write
ĥr

ij = g(ĥ(ei, ej), er), hr
ij = g(h(ei, ej), er)

Then we denote the Casorati curvature with respect to the semi-symmetric metric connection by

C = 1
n

n+p

∑
r=n+1

n

∑
i,j=1

(hr
ij)

2

Suppose now that L is an l-dimensional subspace of Tx M, l ≥ 2, and {e1, · · · , el} be an
orthonormal basis of L. Then the Casorati curvature of the l-plane section L with respect to the
semi-symmetric metric connection is given by

C(L) =
1
l

n+p

∑
r=n+1

l

∑
i,j=1

(hr
ij)

2

The normalized δ-Casorati curvatures δc(n− 1) and δ̂c(n− 1) with respect to the semi-symmetric
metric connection are given by [7]

[δc(n− 1)]x =
1
2
Cx +

n + 1
2n

inf
{
C(L) | L a hyperplane of Tx M

}
and

[δ̂c(n− 1)]x = 2Cx −
2n− 1

2n
sup

{
C(L) | L a hyperplane of Tx M

}
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3. Main Results

Let (N, g, U) (dimN = m) be a Riemannian manifold with metric g and a unit vector field U.
The structural group of this manifold is O(m− 1)× 1. Tx N and XN will stand for the tangent space to
N at a point x and the algebra of smooth vector fields on N, respectively. The 1-form corresponding
to the unit vector U is denoted by ξ, i.e.,

ξ(X) = g(U, X), X ∈ XN

The distribution of the 1-form ξ is denoted by ∆, i.e., ∆(x) = {X ∈ Tx N | ξ(X) = 0}.
Any section E in Tx N determines an angle ∠(E, U). A Riemannian manifold (N, g, U),

dimN ≥ 3, is said to be of quasi-constant sectional curvature if for any arbitrary 2-plane E in Tx N
with ∠(E, U) = ϕ, the sectional curvature of E only depends on the point x and the angle ϕ.

We will consider an (n + p)-dimensional Riemanniann manifold Nn+p of quasi-constant
curvature endowed with a semi-symmetric non-metric connection ∇ and the Riemannian
connection ∇̂.

From [24], the curvature tensor R̂ with respect to the Levi-Civita connection ∇̂ on Nn+p is
expressed by

R̂(X, Y, Z, W) = a[g(X, Z)g(Y, W)− g(Y, Z)g(X, W)]

+ b[g(X, Z)ξ(Y)ξ(W)− g(X, W)ξ(Y)ξ(Z)

+ g(Y, W)ξ(X)ξ(Z)− g(Y, Z)ξ(X)ξ(W)]

(4)

for any vector fields X, Y, Z, W on Nn+p, where a and b are scalar functions on Nn+p. If b = 0, it can
be easily seen that the manifold reduces to a space of constant curvature.

We assume that an n-dimensional Riemannian manifold Mn is a submanifold in Nn+p.
Decomposing the vector field U on Mn uniquely into its tangent and normal components U> and
U⊥, respectively, we have

U = U> + U⊥

Let us recall the following the definition from [25].

Definition 2. [25] Let Mn be an n-dimensional submanifold of an (n + p)-dimensional Riemannian
manifold Nn+p. Mn is called invariantly quasi-umbilical if there exist p mutually orthogonal unit
normal vectors en+1, · · · , en+p such that the shape operators with respect to all directions er have an
eigenvalue of multiplicity n− 1 and that for each er the distinguished eigendirection is the same.

The following is our main result.

Theorem 3. Let Mn, n ≥ 3, be an n-dimensional submanifold in a Riemanniann manifold Nn+p of
quasi-constant curvature endowed with a semi-symmetric metric connection. Then we have:

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) + a +
2b
n
‖ U> ‖2 − 2

n
λ (5)

Moreover, if P is tangent to Mn, the equality case of Equation (5) holds if and only if Mn is an
invariantly quasi-umbilical submanifold in Nn+p, such that with respect to suitable orthonormal tangent
frame {e1, · · · , en} and normal orthonormal frame {en+1, · · · , en+p}, the shape operators Ar = Aer ,
r ∈ {n + 1, · · · , n + p}, take the following forms:
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An+1 =



a 0 0 · · · 0 0
0 a 0 · · · 0 0
0 0 a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a 0
0 0 0 · · · 0 2a


, An+2 = · · · = An+p = 0

(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) + a +
2b
n
‖ U> ‖2 − 2

n
λ (6)

Moreover, if P is tangent to Mn, the equality case of Equation (6) holds if and only if Mn is an
invariantly quasi-umbilical submanifold in Nn+p, such that with respect to suitable orthonormal tangent
frame {e1, · · · , en} and normal orthonormal frame {en+1, · · · , en+p}, the shape operators Ar = Aer ,
r ∈ {n + 1, · · · , n + p}, take the following forms:

An+1 =



2a 0 0 · · · 0 0
0 2a 0 · · · 0 0
0 0 2a · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2a 0
0 0 0 · · · 0 a


, An+2 = · · · = An+p = 0

Remark 1. For b = 0, Theorem 3 is due to Theorem 1.1 in [7].

The proof of this theorem will be given after the following two lemmas.

Lemma 4. Let f (x1, x2, · · · , xn) be a function in Rn defined by

f (x1, x2, · · · , xn) = n
n−1

∑
i=1

x2
i +

n− 1
2

x2
n − 2 ∑

1≤i<j≤n
xixj

If x1 + x2 + · · ·+ xn = ε, then we have

f (x1, x2, · · · , xn) ≥ 0,

where the equality holds if and only if

x1 = x2 = · · · = xn−1 =
1
2

xn =
1

n + 1
ε

Proof. A simple calculation yields

f (x1, x2, · · · , xn) = n
n−1

∑
i=1

x2
i +

n− 1
2

x2
n − [(

n

∑
i=1

xi)
2 − (x2

1 + x2
2 + · · ·+ x2

n)]

= (n + 1)
n−1

∑
i=1

x2
i +

n + 1
2

x2
n − ε2

(7)
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On the other hand, using the Cauchy inequality we have

(ε− xn)
2 = (

n−1

∑
i=1

xi)
2 ≤ (n− 1)

n−1

∑
i=1

x2
i (8)

where the equality holds if and only if x1 = x2 = · · · = xn−1.
Combining Equations (7) and (8), we have

f (x1, x2, · · · , xn) ≥
n + 1
n− 1

(ε− xn)
2 +

n + 1
2

x2
n − ε2

=
1

2(n− 1)
[(n + 1)xn − 2ε]2

≥ 0

which represents Lemma 4 to prove.
The following lemma can be proved in a similar way.

Lemma 5. Let f (x1, x2, · · · , xn) be a function in Rn defined by

f (x1, x2, · · · , xn) =
2n− 3

2

n−1

∑
i=1

x2
i + 2(n− 1)x2

n − 2 ∑
1≤i<j≤n

xixj

If x1 + x2 + · · ·+ xn = ε, then we have

f (x1, x2, · · · , xn) ≥ 0

where the equality holds if and only if

x1 = x2 = · · · = xn−1 = 2xn =
2

2n− 1
ε

Proof of Theorem 3 Now, we are ready to prove the theorem.
Let x ∈ Mn and {e1, e2, · · · , en} and {en+1, · · · , en+p} be orthonormal bases of Tx Mn and T⊥x M,

respectively. From Equations (2)–(4) we have

Rijij = a + b[g(U>, ei)
2 + g(U>, ej)

2] + g(h(ei, ei), h(ej, ej))− g(h(ei, ej), h(ei, ej))

− α(ei, ei)− α(ej, ej)

which implies
2τ = n2H2 − nC + (n2 − n)a + 2b(n− 1) ‖ U> ‖2 −2(n− 1)λ (9)

Consider the following function P which is a quadratic polynomial in the components of the
second fundamental form:

P =
1
2

n(n− 1)C + (n− 1)(n + 1)
2

C(L)− 2τ + (n2 − n)a + 2b(n− 1) ‖ U> ‖2 −2(n− 1)λ (10)

Assuming, without loss of generality, that L is spanned by e1, e2, · · · , en−1, which together with
Equation (9) gives
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P =
n+p

∑
r=n+1

{n
n−1

∑
i=1

(hr
ii)

2 +
n− 1

2
(hr

nn)
2 + 2(n + 1) ∑

1≤i<j≤n−1
(hr

ij)
2

+ (n + 1)
n−1

∑
i=1

(hr
in)

2 − 2 ∑
1≤i<j≤n

hr
iih

r
jj}

≥
n+p

∑
r=n+1

{n
n−1

∑
i=1

(hr
ii)

2 +
n− 1

2
(hr

nn)
2 − 2 ∑

1≤i<j≤n
hr

iih
r
jj}

On the other hand, we can set
hr

11 + · · ·+ hr
nn = kr

where kr are real constants. In fact, for a fixed normal vector er, kr is the trace of the matrix (hr
ij),

which is invariant no matter how the entries hr
ij change.

Then by Lemma 4,
P ≥ 0 (11)

with the equality case holds if and only if

hr
11 = hr

22 = · · · = hr
n−1,n−1 =

1
2

hr
nn

Combining Equations (10) and (11) and the definition of δc(n − 1), we can derive inequality
Equation (5). The equality case of Equation (5) holds if and only if

hr
11 = hr

22 = · · · = hr
n−1,n−1 =

1
2

hr
nn; hr

ij = 0, i 6= j

Moreover, if P given by Equation (1) is tangent to M, by using Lemma 1, we have

ĥr
11 = ĥr

22 = · · · = ĥr
n−1,n−1 =

1
2

ĥr
nn; ĥr

ij = 0, i 6= j

i.e., Mn is invariantly quasi-umbilical.
Considering the following quadratic polynomial in the components of the second

fundamental form

Q = 2n(n− 1)C + 1
2
(n− 1)(1− 2n)C(L)− 2τ + (n2 − n)a + 2b(n− 1) ‖ U> ‖2 −2(n− 1)λ

and combining Equation (9), we have

Q =
n+p

∑
r=n+1

{2n− 3
2

n−1

∑
i=1

(hr
ii)

2 + 2(n− 1)(hr
nn)

2 + (2n− 1) ∑
1≤i<j≤n−1

(hr
ij)

2

+ 2(2n− 1)
n−1

∑
i=1

(hr
in)

2 − 2 ∑
1≤i<j≤n

hr
iih

r
jj}

≥
n+p

∑
r=n+1

{2n− 3
2

n−1

∑
i=1

(hr
ii)

2 + 2(n− 1)(hr
nn)

2 − 2 ∑
1≤i<j≤n

hr
iih

r
jj}

≥ 0

here we used Lemma 5. Then by the very definition of δ̂c(n− 1), we can easily derive the inequality
Equation (6). Also, the equality case can be easily verified.
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