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1. Introduction

The invariant subspace method is an effective one to perform reductions of nonlinear partial
differential equations (PDEs) to finite-dimensional dynamical systems. In [1], Galaktionov and
Svirshchevskii provide a systematic account of this approach and its various applications for a
large variety of nonlinear PDEs. They also addressed some fundamental and open questions on the
invariant subspaces of nonlinear PDEs. Many interesting results were obtained in this book. In [2–20],
the extensions of the invariant subspace method and various applications to other nonlinear PDEs
were also discussed. It is noticed that a large number of exact solutions, such as N-solitons of integrable
equations, similarity solutions of nonlinear evolution equations and the generalized functional
separable solutions to nonlinear PDEs, can be recovered by the invariant subspace methods [1,21–31].
In the one-dimensional space case, the invariant subspace method can be implemented by the
conditional Lie–Bäcklund symmetry introduced independently by Zhdanov [32] and Fokas-Liu [33].
A key point for the invariant subspace approach is the estimate of maximal dimension of the invariant
subspaces [1,5,6,15,16]. It was shown in [1,5] that for k-th order one-dimensional nonlinear operator of
the form:

F[u] = F(x, u, ux, · · · , u(k))

where u(k) = ∂ku/∂xk, the dimension of their invariant subspaces is bounded by 2k + 1. Such an
estimate can be extended to the k-th order m-component nonlinear vector operators:

~F[~u] = ~F(x,~u,~ux, · · · ,~u(k)). (1)
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In [15], we proved that the maximal dimension of the invariant subspaces for operator (1) is
bounded by 2mk + 1. This enables us to determine the maximal dimension preliminarily of the
invariant subspaces of the nonlinear evolution equations. In contrast with the one-dimensional
space case, only very limited results on the invariant subspaces of multi-dimensional PDEs were
obtained. These results were obtained mostly by the ansatz-based method, and there are no
systematic approaches to obtain these results. As mentioned in [1], the general problem of finding
invariant subspaces for a wide class of nonlinear differential operators in the multi-dimensional
case is not completely solved. A open question still remains: what is the maximal dimension of the
two-dimensional k-th order scalar nonlinear operators of the form:

F[u] = F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)),

where u(k) = ∂r+su/∂xr∂ys, r + s = k denotes all k-th order derivatives with respect to x and y?
It is of great interest to develop the invariant subspace method to study the multi-dimensional

nonlinear evolution equations. Indeed, there are a number of examples whose exact solutions can
be derived from the invariant subspace method; please refer to [1,2] for more examples on invariant
subspaces of the 2 + 1-dimensional nonlinear evolution equations. For instance, it is discovered that
the operators:

J[u] = u∆2u− |∇u|2, (x, y) ∈ R2

and:

Q[u] = u∆2
2u− (∆2u)2 + 25 u5 ∆2u, (x, y) ∈ R2

with ∆2 = ∂2
x + ∂2

y admit the following invariant subspaces:

W6 = L{1, x, y, x2, y2, xy},
W6 = L{1, cosh x, cos y, cosh(2x), cos(2y), cosh x cos y},

W91 = L{1, x, y, x2 + y2, xy, xr2, yr2, r4}, r2 = x2 + y2,

W92 = L{1, cosh(2x), sinh(2x), cos(2y), sin(2y), cosh x cos y, sinh x cos y, cosh x sin y, sinh x sin y}.

It was proven in [1] that the quadratic operator defined in RN :

K[u] = α(∆nu)2 + βu∆nu + γ|∇u|2, x ∈ RN

admits the invariant subspaces:

Wr
2 = L{1, |x|2, },

Wq
N+1 = L{1, x2

1, x2
2, · · · , x2

N},

Wq
n = L{1, xixj, 1 ≤ i, j ≤ N}, n =

N(N + 1)
2

+ 1,

W lin
N = L{x1, x2, · · · , xN}

and the direct sum of subspaces:

W lin
N
⊕

Wq
n .

The purpose of this paper is to develop symmetry-related method to study invariant subspaces
of nonlinear evolution equations in the two- or multi-dimensional case. The outline of this paper is
as follows. In Section 2, we first give two direct extensions of the concept of invariant subspace in
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R2. Then, the algorithm of this approach will be shown by looking for the invariant subspaces of
the operator:

A[u] ≡ α(∆2u)2 + γu∆2u + δ|∇u|2 + εu2 in R2,

where α, γ, δ and ε are constants, and α2 + γ2 + δ2 + ε2 6= 0. In Section 3, the general description of
the changes of variables for the two-dimensional invariant subspace method is given, which can be
regarded as an extension to the invariant subspace method in the one-dimensional case. Since the
two-dimensional nonlinear evolution equations can be reduced to one-dimensional equations by the
Lie symmetry method, this fact combined with the invariant subspace method in the one-dimensional
case will be used to obtain invariant subspaces of the corresponding two-dimensional nonlinear
operators, which will be discussed in Section 4. As an example, we obtain many new invariant
subspaces admitted by a quadratic differential operator J[u]. Section 5 is the concluding remarks on
this work.

2. Direct Extensions of Invariant Subspaces

2.1. Direct Extensions in R2

Let us first give a brief account of the invariant subspace method as presented in [1]. Consider the
general evolution equation:

ut = F(x, u, ux, uxx, · · · , u(k)) ≡ F[u], x ∈ R (2)

where F is a k-th-order ordinary differential operator with respect to the variable x and F(·) is a given
sufficiently smooth function of the indicated variables. Let { fi(x), i = 1, · · · , n} be a finite set of
n > 1 linearly independent functions, and Wx

n denotes their linear span Wx
n = L{ f1(x), · · · , fn(x)}.

The subspace Wx
n is said to be invariant under the given operator F, if F[Wx

n ] ⊆Wx
n , and then operator

F is said to preserve or admit Wx
n , which means:

F[
n

∑
i=1

Ci fi(x)] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x)

for any C(t) = (C1(t), · · · , Cn(t)) ∈ Rn, where Ψi are the expansion coefficients of F[u] ∈ Wx
n in the

basis { fi}. It follows that if the linear subspace Wx
n is invariant with respect to F, then Equation (2) has

solutions of the form:

u(t, x) =
n

∑
i=1

Ci(t) fi(x),

where Ci(t) satisfy the n-dimensional dynamical system:

C′i = Ψi(C1, · · · , Cn), i = 1, · · · , n.

Moreover, assume that the invariant subspace Wx
n is defined as the space of solutions of the linear

n-th-order ODE:

Lx[v] ≡
dnv
dxn + an−1(x)

dn−1v
dxn−1 + · · ·+ a1(x)

dv
dx

+ a0(x)v = 0. (3)

If the operator F[u] admits the invariant subspace Wx
n , then the invariant condition with respect

to F takes the form:
Lx[F[u]]|[H] ≡ 0, (4)
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where [H] denotes the equation Lx[u] = 0 and its differential consequences with respect to x.
The invariant condition leads to the following theorem on the maximal dimension of an invariant
subspace preserved by the operator F.

Theorem 1. [1] If a linear subspace Wx
n determined by the space of solutions of linear Equation (3) is invariant

under a nonlinear differential operator F of order k, then:

n 6 2k + 1.

It is inferred from Equation (4) and the invariant criteria for conditional Lie–Bäcklund
symmetry [32,33] that Equation (2) admits the conditional Lie–Bäcklund symmetry:

σ = Lx[u].

To look for the exact solutions of the form:

u(t, x, y) = ∑
i,j

Cij(t) fi(x)gj(y) (5)

of the two-dimensional nonlinear evolution equations:

ut = F[u] ≡ F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)), (6)

we now introduce the linear subspace:

Wxy
nm = L{ f1(x)g1(y), · · · , fn(x)g1(y), · · · , f1(x)gm(y), · · · , fn(x)gm(y)}
≡ {∑

i,j
Cij fi(x)gj(y), ∀(C11, · · · , C1m, · · · , Cn1, · · · , Cnm) ∈ Rnm}

as an extension to Wx
n . Assume that F[u] = F(x, y, u, ux, uy, uxx, uxy, uyy, · · · , u(k)) is a k-th-order

differential operator with respect to the variables x and y, and {gj(y), j = 1, · · · , m} is a finite
set of m > 1 linearly independent functions of variable y. It is easy to see that the space
{ fi(x)gj(y), i = 1, · · · , n, j = 1, · · · , m} is also a set of linearly independent functions. Let Wy

m
denote the linear span of the set {gj(y), j = 1, · · · , m}, i.e., Wy

m = L{g1(y), · · · , gm(y)}. Similarly, the
space Wy

m is defined as the space of solutions of the linear m-th-order ODE:

Ly[w] ≡ dmw
dym + bm−1(y)

dm−1w
dym−1 + · · ·+ b1(y)

dw
dy

+ b0(y)w = 0. (7)

If u ∈ Wxy
nm, then there exists a vector (C11(t), · · · , C1m(t), · · · , Cn1(t), · · · , Cnm(t)) ∈ Rnm,

such that:
u = ∑

i,j
Cij(t) fi(x)gj(y). (8)

We rewrite u as:

u =
n

∑
i=1

(
m

∑
j=1

(Cij(t)gj(y)) fi(x) =
m

∑
j=1

(
n

∑
i=1

(Cij(t) fi(x))gj(y),

which means that:
Lx[u] = 0, and Ly[u] = 0. (9)
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On the other hand, if the function u = u(t, x, y) satisfies the condition (9), then u has the form (8).
Indeed, Lx[u] = 0 means that there exists a vector function (C1(t, y), · · · , Cn(t, y)), such that:

u =
n

∑
i=1

Ci(t, y) fi(x),

while Ly[u] = 0 means that:

Ly[u] = Ly[
n

∑
i=1

Ci(t, y) fi(x)] =
n

∑
i=1

fi(x)Ly[Ci(t, y)] = 0.

Since fi(x) (i = 1, · · · , n) are linearly independent, the above equation leads to:

Ly[Ci(t, y)] = 0, i = 1, · · · , n.

Hence, there exists a set of vectors (Ci1(t), · · · , Cim(t)) ∈ Rm, such that:

Ci(t, y) =
m

∑
j=1

Cij(t)gj(y), i = 1, · · · , n.

As above, we are able to obtain the invariance condition of the subspace Wxy
nm with respect to

F, i.e., F[Wxy
nm] ⊆Wxy

nm, which takes the form:

Lx[F[u]]|[Hx ]∩[Hy ] ≡ 0, and Ly[F[u]]|[Hx ]∩[Hy ] ≡ 0, (10)

where [Hx] ∩ [Hy] denotes Lx[u] = 0, Ly[u] = 0, and their differential consequences with respect to
x and y. If F[u] admits the invariant subspace Wxy

nm, then Equation (6) has solutions (5) and can be
reduced to an nm-dimensional dynamic system.

We next consider a special case of the function (5). If 1 ∈ Wx
n ∩Wy

m, then a0(x) = 0 in (3) and
b0(y) = 0 in (7). Without loss of generality, we assume f1(x) = 1 and g1(y) = 1. Note that the function
of the form:

u(t, x, y) = C1(t) +
n

∑
i=2

Ci(t) fi(x) +
m

∑
j=2

Bj(t)gj(y) (11)

is a special case of (5), which is a separable function with respect to spacial variables x and y. We denote:

Wxy
n+m−1 = L{1, f2(x), · · · , fn(x), g2(y), · · · , gm(y)}

≡
{

C1(t) +
n

∑
i=2

Ci(t) fi(x) +
m

∑
j=2

Bj(t)gj(y)

}
,

which is a linear span of the set {1, fi(x), gj(y), i = 2, · · · , n, j = 2, · · · , m}. Clearly, if u ∈Wxy
n+m−1, then:

Lx[u] = 0, Ly[u] = 0, and uxy = 0. (12)

On the other hand, if uxy = 0, then the function u has the form:

u = f (t, x) + g(t, y).

From Lx[u] = 0 (notice that a0(x) = 0), we obtain:

Lx[ f (t, x) + g(t, y)] = Lx[ f (t, x)] = 0,
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which means that there exists a vector (A1(t), C2(t), · · · , Cn(t)), such that:

f (t, x) = A1(t) +
n

∑
i=2

Ci(t) fi(x).

Similarly, Ly[u] = 0 leads to:

g(t, y) = B1(t) +
m

∑
j=2

Bj(t)gj(y),

where Bj(j = 1, · · · , m) are functions of t. We denote C1 = A1 + B1. Hence, u ∈Wxy
n+m−1 if and only if

u satisfies the condition (12). Then, we can obtain the invariance condition of the subspace Wxy
n+m−1

with respect to F, i.e., F[Wxy
n+m−1] ⊆Wxy

n+m−1, which takes the form:

Lx[F[u]]|[H] ≡ 0, Ly[F[u]]|[H] ≡ 0, and (F[u])xy|[H] ≡ 0. (13)

where [H] denotes the set {Lx[u] = 0} ∩ {Ly[u] = 0} ∩ {uxy = 0}, and their differential consequences
with respect to x and y. In this case, Equation (6) has the solution of the form (11) and can be reduced
to an (n + m− 1)-dimensional dynamic system.

Assume that the k-th-order differential operator F[u], including the term ∂ku/∂xk, admits the
invariant subspace Wxy

nm (or Wxy
n+m−1), and note that the operator F[u] can also be regarded as a

differential operator only with respect to x; the first identity in the condition (10) (or (13)) leads to the
estimate n 6 2k + 1. The same estimate is also true for m.

Remark 1. It is noted that the Wxy
mn and Wxy

n+m−1 demonstrate two special forms of invariant subspaces of the
operator F[u]. The general form can be introduced as below, which will be used in the following sections.

Let { fi(x, y), i = 1, · · · , n} be a finite set of n > 1 linearly independent functions, and Wn denote
their linear span Wn = L{ f1(x, y), · · · , fn(x, y)}. The subspace Wn is said to be invariant under the
given operator F[u], if F[Wn] ⊆Wn, and then, operator F[u] is said to preserve or admit Wn.

2.2. Invariant Subspaces of a Quadratic Operator in R2

Consider the quadratic operator:

A[u] ≡ α(∆2u)2 + γu∆2u + δ|∇u|2 + εu2.

We will look for the invariant subspaces Wxy
n+m−1 and Wxy

nm of A[u]. Note that the operator A[u]
is symmetric with respect to x and y; we assume that n = m. The cases of n = 2, 3, 4, 5 will be
considered respectively. In the rest of this paper, the following notations will be used:

ur0 =
∂ru
∂xr , u0s =

∂su
∂ys , urs =

∂r+su
∂xr∂ys , r, s = 1, 2, · · · .

2.2.1. The Space Wxy
n+n−1

We first consider the case of n = 3. In this case, we look for the invariant subspaces Wxy
3+3−1 of the

operator A[u], which are determined by the following ODEs:

L3
x[v] ≡

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0, L3
y[w] ≡ d3w

dy3 + b2
d2w
dy2 + b1

dw
dy

= 0. (14)
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Here and hereafter, ai, bi are constants. The invariant conditions take the form:

G1 = L3
x[A[u]]|[H] ≡ 0, G2 = L3

y[A[u]]|[H] ≡ 0, and G3 = (A[u])xy|[H] ≡ 0, (15)

where [H] denotes the set {L3
x[u] = 0} ∩ {L3

y[u] = 0} ∩ {uxy = 0} and their differential consequences
with respect to x and y.

Substituting A[u] into (15), we obtain:

G1 =(−4a2δ− 4a3
2α− 3a2γ + 6a1αa2)u2

20

+ (6ε− 6a1γ− 8a2
2αa1 + a2

2γ + 6a2
1α− 6a1δ)u10u20 + (2a2ε + a2γa1 − 4a2αa2

1)u
2
10,

G2 =(−4b2δ− 4b3
2α− 3b2γ + 6b1αb2)u2

02

+ (6ε− 6b1γ− 8b2
2αb1 + b2

2γ + 6b2
1α− 6b1δ)u01u02 + (2b2ε− 4b2αb2

1 + b2γb1)u2
01,

G3 =2αb2a2u02u20 + (2αb1a2 − γa2)u01u20 + (−γb2 + 2αb2a1)u10u02

+ (−γb1 − γa1 + 2αb1a1 + 2ε)u01u10.

In view of the coefficients in Gi (i = 1, 2, 3), we deduce a system of ai, bi, α, γ, δ and ε, which
includes ten equations. Solving the resulting system, we arrive at the following results.

Proposition 1. Assume that the subspaces Wxy
3+3−1 are determined by the system (14). Then, the quadratic

operators A[u] in R2 preserving the invariant subspaces Wxy
3+3−1 determined by uxy = 0 and the following

constraints are presented as below, where α, γ, δ, ε, ai, bi(i = 1, 2) are arbitrary constants.

(1) A[u] = γ[u∆2u− |∇u|2], with:

L3
x[v] =

d3v
dx3 − b1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;

(2) A[u] = α[(∆2u)2 − b2
2|∇u|2], with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b2

d2w
dy2 = 0;

(3) A[u] = α[(∆2u)2 − 8
9 b2

2u∆2u + 16
81 b4

2u2], with:

L3
x[v] =

d3v
dx3 −

4
9

b2
2

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b2

d2w
dy2 +

2
9

b2
2

dw
dy

= 0;

(4) A[u] = γ[(a1 + b1)(∆2u)2 + 4a1b1u∆2u + (a1 − b1)
2|∇u|2 + a1b1(a1 + b1)u2], with:

L3
x[v] =

d3v
dx3 + a1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;

(5) A[u] = α[(∆2u)2 + b1|∇u|2], with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b1

dw
dy

= 0;

(6) A[u] = α(∆2u)2 + γu∆2u + (γb1 − αb2
1)u

2, with:

L3
x[v] =

d3v
dx3 + b1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + b1

dw
dy

= 0;
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(7) A[u] = α(∆2u)2 + γu∆2u + δ|∇u|2, with:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 = 0;

Solving the systems (14) yields the corresponding invariant subspaces. Here, we just present the
invariant subspaces in the fourth case. The invariant subspaces for the other cases can be obtained in a
similar manner. In the fourth case, we get the following invariant subspaces:

Wxy
3+3−1 =



L{1, cos(
√

a1x), sin(
√

a1x), cos(
√

b1y), sin(
√

b1y)}, a1 > 0, b1 > 0,
L{1, cos(

√
a1x), sin(

√
a1x), cosh(

√
−b1y), sinh(

√
−b1y)}, a1 > 0, b1 < 0,

L{1, cos(
√

a1x), sin(
√

a1x), y, y2)}, a1 > 0, b1 = 0,
L{1, cosh(

√
−a1x), sinh(

√
−a1x), cosh(

√
−b1y), sinh(−

√
−b1y)}, a1 < 0, b1 < 0,

L{1, cosh(
√
−a1x), sinh(

√
−a1x), y, y2)}, a1 < 0, b1 = 0,

L{1, x, x2, y, y2}, a1 = 0, b1 = 0.

In the case of n = 2, we assume that the subspace Wxy
2+2−1 is determined by the system:

L2
x[v] ≡

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] ≡ d2w

dy2 + b1
dw
dy

= 0. (16)

By the similar calculation, we obtain the following results.

Proposition 2. Any operators A[u] that admit the subspaces Wxy
2+2−1 determined by the system (16)

are presented as follows:

(1) A[u] = γ[(a2
1 + b2

1)(∆2u)2 − 4a2
1b2

1u∆2u− (a2
1 − b2

1)
2|∇u|2 + a2

1b2
1(a

2
1 + b2

1)u
2], with:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(2) A[u] = α[(∆2u)2 − b2
1|∇u|2], with:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

= 0;

(3) A[u] = α(∆2u)2 + γu∆2u− (αb2
1 + γ)b2

1u2, with:

L2
x[v] =

d2v
dx2 + b1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(4) A[u] = α(∆2u)2 + γu∆2u− (αb2
1 + γ)b2

1u2, with:

L2
x[v] =

d2v
dx2 − b1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0;

(5) A[u] = α(∆2u)2 + γu∆2u + δ|∇u|2, with:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 = 0;
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In the case of n = 4, we consider the invariant subspaces Wxy
4+4−1 admitted by the operator A[u],

which are determined by the following ODEs:

L4
x[v] ≡

d4v
dx4 + a3

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0,

L4
y[w] ≡ d4w

dy4 + b3
d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0.
(17)

By the similar calculation as that in the case of n = 3, the invariant condition:

(A[u])xy|[H] = 2αu03u30 + γu10u03 + γu01u30 + 2εu10u01 ≡ 0

leads to α = γ = ε = 0, where [H] denotes the set {L4
x[u] = 0} ∩ {L4

y[u] = 0} ∩ {uxy = 0}, and their
differential consequences with respect to x and y. The invariant condition:

L4
x[A[u]]|[H] ≡ 0, L4

y[A[u]]|[H] ≡ 0

yields δ = 0, which shows that there are no operators A[u] preserving the invariant subspaces
determined by (17). Similarly, we are able to show that there are no operators A[u] to preserve the
subspace Wxy

5+5−1 defined by the following ODEs:

L5
x[v] ≡

d5v
dx5 + a4

d4v
dx4 + a3

d3v
dx3 + a2

d2v
dx2 + a1

dv
dx

= 0,

L5
y[w] ≡ d5w

dy5 + b4
d4w
dy4 + b3

d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0.

2.2.2. The Space Wxy
nn

From the invariant condition (10), a similar calculation as above leads to the following results.

Proposition 3. There are no operators A[u] admitting the invariant subspaces Wxy
nn determined by the system:

Ln
x [v] ≡

dnv
dxn + an−1

dn−1v
dxn−1 + · · ·+ a1

dv
dx

+ a0v = 0,

Ln
y [w] ≡ dnw

dyn + bn−1
dn−1w
dyn−1 + · · ·+ b1

dw
dy

+ b0w = 0,
(18)

for n = 3, 4, 5. The operators A[u], which preserve the invariant subspaces Wxy
22 determined by the system (18)

for n = 2, are given as follows:

(1) A[u] = α(∆2u)2 + γu∆2u− (a0 + b0)[α(a0 + b0)− γ]u2, with:

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2v
dy2 + b0v = 0;

(2) A[u] = α[(∆2u)2 − b2
1(2u∆2u + |∇u|2) + 2b4

1u2], with:

L2
x[v] =

d2v
dx2 + b1

dv
dx

= 0, L2
y[w] =

d2v
dy2 + b1

dw
dy

= 0;

(3) A[u] = α[(∆2u)2 − b2
1(2u∆2u + |∇u|2) + 2b4

1u2], with:

L2
x[v] =

d2v
dx2 − b1

dv
dx

= 0, L2
y[w] =

d2v
dy2 + b1

dw
dy

= 0.
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The invariant spaces of the following two nonlinear equations can be constructed in a similar manner.

Example 1. Consider the Jacobian:

J(u, ∆u) = ux∆2uy − uy∆2ux ≡ ux(uxxy + uyyy)− uy(uxxx + uxyy)

which is the nonlinear term in two-dimensional Rossby waves equation [34]:

∆ut + J(u, ∆u) + βux = 0.

It preserves the following invariant subspaces:

(1) Wxy
2+2−1, determined by the system:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0, with a1b1(a2
1 − b2

1) = 0;

(2) Wxy
3+3−1, determined by any of the following systems:

L3
x[v] =

d3v
dx3 + a1

dv
dx

= 0, L3
y[w] =

d3w
dy3 + a1

dw
dy

= 0;

L3
x[v] =

d3v
dx3 − b2

2
dv
dx

= 0, L3
y[w] =

d3w
dy3 + b2

d2w
dy2 = 0;

L3
x[v] =

d3v
dx3 ± a2

d2v
dx2 = 0, L3

y[w] =
d3w
dy3 + a2

d2w
dy2 = 0;

(3) Wxy
4+4−1, determined by the system:

L4
x[v] =

d4v
dx4 + a2

d2v
dx2 = 0, L4

y[w] =
d4w
dy4 + a2

d2w
dy2 = 0;

(4) Wxy
22 , determined by any of the following systems:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

= 0;

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2w
dy2 + b0w = 0.

Example 2. The invariant subspaces W3 = L{1, x2, y2} and W6 = L{1, x2, y2, x2y2, x4, y4} admitted by
Monge–Ampère operator M[u] = uxxuyy − u2

xy were given in [1]. Here, we are looking for more invariant
subspaces of this operator. Indeed, it still admits the following invariant subspaces:

(1) Wxy
2+2−1, determined by the system:

L2
x[v] =

d2v
dx2 + a1

dv
dx

= 0, L2
y[w] =

d2w
dy2 + b1

dw
dy

= 0, with a1b1 = 0;

(2) Wxy
3+3−1, determined by any of the following systems:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 + b2

d2w
dy2 + b1

dw
dy

= 0;
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(3) Wxy
22 , determined by any of the following systems:

L2
x[v] =

d2v
dx2 = 0, L2

y[w] =
d2w
dy2 + b1

dw
dy

+ b0w = 0, with b0b1 = 0;

L2
x[v] =

d2v
dx2 + a0v = 0, L2

y[w] =
d2w
dy2 + b0w = 0;

(4) Wxy
33 = L{1, x, x2, y, y2, xy, x2y, xy2, x2y2}, determined by the system:

L3
x[v] =

d3v
dx3 = 0, L3

y[w] =
d3w
dy3 = 0.

3. Invariant Subspaces under the General Change of Variables

In King’s papers [2,12], the formal solution of two-dimensional nonlinear diffusion equations:

C1(t) + C2(t)x + C3(t)y + C4(t)x2 + C5(t)xy + C6(t)y2 (19)

was proposed as a non-group-invariant exact solution, which belongs to the subspace
W6 = L{1, x, y, x2, xy, y2}. The solution:

U =C1(t) + C2(t)x + C3(t)x2 + C4(t)y + C5(t)y2 + C6(t)xy

+ C7(t)x(x2 + y2) + C8(t)y(x2 + y2) + C9(t)(x2 + y2)2 (20)

of the equation:
Ut = U∆2U− |∇U|2 ≡ J[U], (x, y) ∈ R2, (21)

was presented as a generalization of solution (19). The derivation was based on the change of variables.
King [2] discovered that Equation (21) was invariant under the following change of variables:

U(1) = (x2 + y2)−2U, x(1) =
x

x2 + y2 , y(1) =
y

x2 + y2 , t(1) = t, (22)

which means that:

Ut = J[U] −→ U(1)
t(1)

= J[U(1)], i.e., Ut = (x2 + y2)2 J[U(1)].

Hence, J[U] = (x2 + y2)2 J[U(1)]. On the other hand, since the operator J[U(1)] preserves the
invariant subspace:

W(1)
6 = L{1, x(1), (x(1))2, y(1), (y(1))2, x(1)y(1)}

≡ L
{

1,
x

x2 + y2 ,
x2

(x2 + y2)2 ,
y

x2 + y2 ,
y2

(x2 + y2)2 ,
xy

(x2 + y2)2

}
,

then the operator J[U] preserves the corresponding subspace:

Ŵ6 = L{x2, y2, xy, x(x2 + y2), y(x2 + y2), (x2 + y2)2}.

In [1], Galaktionov and Svirshchevskii used the Lie symmetry of Equation (21) to give the invariant
transformations of variables as (21). Then, they applied the invariant transformations and invariant
subspaces of the corresponding one-dimensional equation of (21), i.e., Ut = UUxx −U2

x , to obtain the
invariant subspaces W91 and W92. In general, we have the following result.
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Proposition 4. Given a two-dimensional nonlinear differential operator F[u] with respect to the variables x
and y, if the nonlinear evolution Equation (6) is invariant under the transformation:

u(1) = r(x, y)u, x(1) = p(x, y), y(1) = q(x, y), t(1) = t, (23)

and operator F[u] admits the linear space Wn = L{ f1(x, y), · · · , fn(x, y)}, then F[u] also admits the
linear space:

Ŵn = L{ f1(p(x, y), q(x, y))/r(x, y), · · · , fn(p(x, y), q(x, y))/r(x, y)}.

Proof: Equation (6) is invariant under the transformation (23), which means u(1)
t(1)

= F[u(1)]. On the

other hand, u(1)
t(1)

= r(x, y)ut. Hence, F[u(1)] = r(x, y)F[u]. Assume that:

u(1) =
n

∑
i=1

Ci fi(x(1), y(1)),

where Ci(i = 1, · · · , n) are arbitrary functions of t. Correspondingly,

u =
1

r(x, y)

n

∑
i=1

Ci fi(x(1), y(1)).

F[u(1)] admits the subspace W(1)
n = L{ f1(x(1), y(1)), · · · , fn(x(1), y(1))}, which means that there

exist functions Ψi(i = 1, · · · , n), such that:

F[u(1)] = F[
n

∑
i=1

Ci fi(x(1), y(1))] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x(1), y(1)),

i.e.,

r(x, y)F[u] = r(x, y)F[
1

r(x, y)

n

∑
i=1

Ci fi(x(1), y(1))] =
n

∑
i=1

Ψi(C1, · · · , Cn) fi(x(1), y(1)).

Then, F[u] admits the subspace:

Ŵn = L{ f1(p(x, y), q(x, y))/r(x, y), · · · , fn(p(x, y), q(x, y))/r(x, y)}.

This completes the proof of the proposition. 2

Example 3. In Proposition 1, we find that the operator J[U] admits the invariant subspaces:

W51 = L{1, cos(b1x), sin(b1x), cosh(b1y), sinh(b1y)} and.

Hence, by the changes of variables (22), the following subspace:

Ŵxy
3+3−1 = L

{
(x2 + y2)2, (x2 + y2)2 cos(b1

x
x2 + y2 ), (x

2 + y2)2 sin(b1
x

x2 + y2 ),

(x2 + y2)2 cosh(b1
y

x2 + y2 ), (x
2 + y2)2 sinh(b1

y
x2 + y2 )

}
is invariant under J[U].

Note that the transformation (22) is a special one, under which Equation (21) is invariant. We can
introduce a general transformation. As for the one-dimensional case [1]; two two-dimensional
operators F[u] and F̃[ũ] are said to be equivalent, if there exists the change of variables:

u = r(x, y)ũ, x̃ = p(x, y), ỹ = q(x, y)
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such that:
F̃[ũ] = F[u]/r(x, y).

It implies that if the operator F[u] preserves the invariant subspace Wn = L{ f1(x, y), · · · , fn(x, y)},
then the equivalent operator F̃[ũ] preserves the invariant subspace W̃n = L{ f̃1(x̃, ỹ), · · · , f̃n(x̃, ỹ)},
where f̃i(x̃, ỹ) = fi(x(x̃, ỹ), y(x̃, ỹ))/r(x(x̃, ỹ), y(x̃, ỹ))(i = 1, · · · , n).

4. Invariant Subspace in R and Lie’s Classical Symmetries

The Lie theory of the symmetry group plays an important role for differential equations, which
is a useful method to explore various properties and obtain exact solutions of nonlinear PDEs.
The approach and its several extensions are illustrated in the books [35,36] and the papers [32,33,37,38].
One of the multiple applications of the Lie symmetry method is the similarity reduction of PDEs
to ones with fewer variables. As usual, if an n-dimensional PDE admits one symmetry, then it
can be reduced to an n− 1-dimensional PDE equation and even to a ODE. It has been known that
the invariant subspaces of one-dimensional differential operator were used to construct solutions
of multi-dimensional nonlinear evolution equations of the radially symmetry form, which are
one-dimensional evolution equations. For the two-dimensional case, the radially-symmetric solution
can be regarded as the rotational-invariant solution. Accordingly, more invariant subspaces of
two-dimensional operators can be obtained by combining the Lie symmetry method with the invariant
subspaces of one-dimensional operators.

Example 4. Consider the invariant subspaces preserved by the quadratic operator J[U]. The equation:

ut = ∇× (u−1∇u) = (u−1ux)x + (u−1uy)y

can be changed into Equation (21) by the transformation u = 1/U. Indeed, for u > 0, the above equation can be
rewritten as:

ut = 4 ln u, (24)

which is a well-known equation for describing the Ricci flow in a two-dimensional space [39]. Lie’s classical
symmetries of Equation (24) were computed in [40–45]. Indeed, Equation (24) admits the Lie group of symmetry
with infinitesimal generator:

X = ξ∂x + η∂y + τ∂t + φ∂u,

where τ = k1 + k2t, ξ = ξ(x, y), η = η(x, y) and ξ, η and φ satisfy the following constraints:

φ = (2k2 − 2ξx)u, ξx − ηy = 0, ηx + ξy = 0. (25)

Clearly, the function ξ = ξ(x, y) satisfies the two-dimensional Laplace equation:

ξxx + ξyy = 0.

Solving Equation (25), we obtain the following infinitesimal generators admitted by Equation (24):

X1 = ∂x + ∂y, X2 = y∂x − x∂y, X3 = x∂x + y∂y − 2u∂u

X4 = xy∂x +
1
2
(y2 − x2)∂y − 2yu∂u, X5 =

1
2
(x2 − y2)∂x + xy∂y − 2xu∂u,

X6 = sinh(ax) sin(ay)∂x − cosh(ax) cos(ay)∂y − 2a cosh(ax) sin(ay)u∂u,

X7 = sinh(ax) cos(ay)∂x + cosh(ax) sin(ay)∂y − 2a cosh(ax) cos(ay)u∂u,

X8 = sinh(ay) sin(ax)∂x + cosh(ay) cos(ax)∂y − 2a sinh(ay) cos(ax)u∂u,

X9 = sinh(ay) cos(ax)∂x − cosh(ay) sin(ax)∂y + 2a sinh(ay) sin(ax)u∂u, etc.
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Here, a is a non-zero arbitrary constant. On the other hand, the corresponding infinitesimal
generators admitted by the Equation (21) can be obtained by the transformation u = 1/U, i.e.,

u −→ 1
U

, ∂u −→ −U2∂U,

which reduce Equation (21) to one-dimensional equations. We denote them by X̃i (i = 1, · · · , 9).

(1) X̃1. For X̃1, its invariants are Ũ = U and z = x + y. The corresponding invariant solutions of (21)
are U = Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = 2(ŨŨzz − Ũ2
z ) ≡ J̃1[Ũ].

(2) X̃2. For X̃2, its invariants are Ũ = U and z = x2 + y2. The corresponding invariant solutions
of (21) are v = Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = 4zŨŨzz − 4zŨ2
z + 4ŨŨz ≡ J̃2[Ũ].

(3) X̃3. For X̃3, its invariants are Ũ = Ux−2 and z = y/x. The corresponding invariant solutions
of (21) are U = x2Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = (1 + z2)ŨŨzz − (1 + z2)Ũ2
z + 2zŨŨz − 2Ũ2 ≡ J̃3[Ũ].

(4) X̃4. For X̃4, its invariants are Ũ = vx−2 and z = x + y2/x. The corresponding invariant solutions
of (21) are U = x2Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = z2ŨŨzz − z2Ũ2
z + 2zŨŨz − 2Ũ2 ≡ J̃4[Ũ].

(5) X̃5. For X̃5, its invariants are Ũ = y−2U and z = y + x2/y. The invariant solutions of (21) are
U = y2Ũ(z, t), where Ũ(z, t) satisfies Ũt = J̃4[Ũ].

(6) X̃6. For X̃6, its invariants are Ũ = sinh−2(ax)U and z = cos(ay)/ sinh(ax). The invariant solutions
of (21) are U = sinh2(ax)Ũ(z, t), where Ũ(z, t) satisfies Ũt = a2 J̃3[Ũ].

(7) X̃7. For X̃7, its invariants are Ũ = sinh−2(ax)U and z = sin(ay)/ sinh(ax). The invariant solutions
of (21) are U = sinh2(ax)ṽ(z, t), where Ũ(z, t) satisfies Ũt = a2 J̃3[Ũ].

(8) X̃8. For X̃8, its invariants are Ũ = cosh−2(ay)U and z = sin(ax)/ cosh(ay). The invariant solutions
of (21) are U = cosh2(ay)Ũ(z, t), where Ũ(z, t) satisfies:

Ũt = a2(1− z2)ŨŨzz + a2(z2 − 1)Ũ2
z − 2a2zŨŨz + 2a2Ũ2 ≡ J̃5[Ũ].

(9) X̃9. For X̃9, its invariants are Ũ = U cosh−2(ay) and z = cos(ax)/ cosh(ay). The invariant
solutions of (21) are U = cosh2(ay)Ũ(z, t), where Ũ(z, t) satisfies Ũt = J̃5[Ũ].

Using the invariant subspace method for the one-dimensional case, we find that the nonlinear
operators J̃i[Ũ](i = 1, · · · , 5) only admit two- and three-dimensional subspaces determined by spaces
of solutions of linear ODEs as:

dnw
dzn + bn−1(z)

dn−1w
dzn−1 + · · ·+ b0(z)w = 0.

We concentrate on the three-dimensional invariant subspaces, which are listed as below:
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(1) The operator J̃1[Ũ] admits the invariant subspaces:

W̃3 =


L{1, z, z2}, b = 0,
L{1, cos(cz), sin(cz)}, b = c2,
L{1, exp(cz), exp(−cz)}, b = −c2,

determined by the spaces of solutions of the ODE:

d3w
dz3 + b

dw
dz

= 0.

(2) The operator J̃2[Ũ] admits the invariant subspaces:

W3 =


L{z, z ln z, z(ln z)2}, b = −1,
L{z, z1−c, z1+c}, b = −1 + c2,
L{z, z sin(c ln z), z cos(c ln z)}, b = −1− c2,

determined by the spaces of solutions of the ODE:

d3w
dz3 +

b
z2

dw
dz
− b

z3 w = 0.

(3) The operator J̃3[Ũ] admits the invariant subspaces:

W̃3 =


L{(1 + z2), (1 + z2) arctan z, (1 + z2)(arctan z)2}, b = −4,
L{(1 + z2), (1 + z2) sin(c arctan z), (1 + z2) cos(c arctan z)}, b = −4 + c2,
L{(1 + z2), (1 + z2) exp(c arctan z), (1 + z2) exp(−c arctan z)}, b = −4− c2,
L{1, z, z2}, b = 0,

determined by the spaces of solutions of the ODE:

d3w
dz3 +

b
(1 + z2)2

dw
dz
− 2bz

(1 + z2)3 w = 0.

(4) The operator J̃4[Ũ] admits the invariant subspaces:

W̃3 =


L{z2, z2 exp(− c

z ), z2 exp( c
z )}, b = 2c2,

L{z2, z2 sin( c
z ), z2 cos( c

z )}, b = −2c2,
L{1, z, z2}, b = 0,

determined by the spaces of solutions of the ODE:

d3w
dz3 −

b
2z4

dw
dz

+
b
z5 w = 0.

(5) The operator J̃5[Ũ] admits the invariant subspaces:

W̃3 =


L{(z2 − 1), (z2 − 1) ln( z+1

z−1 ), (z
2 − 1)(ln( z+1

z−1 ))
2}, b = 8,

L{(z2 − 1), (z2 − 1) exp(carctanhz), (z2 − 1) exp(−carctanhz)}, b = −8 + 8c2,
L{(z2 − 1), (z2 − 1) sin(carctanhz), (z2 − 1) cos(carctanhz)}, b = −8− 8c2,
L{1, z, z2}, b = 0,



Symmetry 2016, 8, 128 16 of 23

determined by the spaces of solutions of the ODE:

d3w
dz3 −

b
2(z2 − 1)2

dw
dz

+
bz

(z2 − 1)3 w = 0,

where and hereafter b is an arbitrary constant, and c is a non-zero arbitrary constant.

Then, we can obtain the corresponding invariant subspaces preserved by J[U], which are presented
as below:

W3 = L{1, x + y, (x + y)2},
W3 = L{1, cos(c(x + y)), sin(c(x + y))},
W3 = L{1, cosh(c(x + y)), sinh(c(x + y))},
W3 = L{x2 + y2, (x2 + y2) ln(x2 + y2), (x2 + y2)(ln(x2 + y2))2},
W3 = L{x2 + y2, (x2 + y2)1−c, (x2 + y2)1+c},
W3 = L{x2 + y2, (x2 + y2) sin(c ln(x2 + y2)), (x2 + y2) cos(c ln(x2 + y2))},

W3 = L{x2 + y2, (x2 + y2) arctan(
y
x
), (x2 + y2)(arctan(

y
x
))2},

W3 = L{x2 + y2, (x2 + y2) sin(c arctan(
y
x
)), (x2 + y2) cos(c arctan(

y
x
))},

W3 = L{x2 + y2, (x2 + y2) cosh(c arctan(
y
x
)), (x2 + y2) sinh(c arctan(

y
x
))},

W3 = L{x2, xy, y2},

W3 = L{(x2 + y2)2, (x2 + y2)2 cosh(
cx

x2 + y2 ), (x
2 + y2)2 sinh(

cx
x2 + y2 )},

W3 = L{(x2 + y2)2, (x2 + y2)2 sin(
cx

x2 + y2 ), (x
2 + y2)2 cos(

cx
x2 + y2 )},

W3 = L{x2, x(x2 + y2), (x2 + y2)2},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) arctan
cos ay
sinh ax

,

(cos2 ay + sinh2 ax)(arctan
cos ay
sinh ax

)2},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) sin(c arctan
cos ay
sinh ax

),

(cos2 ay + sinh2 ax) cos(c arctan
cos ay
sinh ax

)},

W3 = L{(cos2 ay + sinh2 ax), (cos2 ay + sinh2 ax) cosh(c arctan
cos ay
sinh ax

),

(cos2 ay + sinh2 ax) sinh(c arctan
cos ay
sinh ax

)},

W3 = L{sinh2 ax, cos ay sinh ax, cos2 ay},

W3 = L{(sin2 ax− cosh2 ay), (sin2 ax− cosh2 ay) ln
sin ax + cosh ay
sin ax− cosh ay

,

(sin2 ax− cosh2 ay)(ln
sin ax + cosh ay
sin ax− cosh ay

)2},
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W3 = L{(sin2 ax− cosh2 ay), (sin2 ax− cosh2 ay) sin(carctanh
sin ax

cosh ay
)

(sin2 ax− cosh2 ay) cos(carctanh
sin ax

cosh ay
)},

W3 = L{(sin2 ax− cosh2 ay), (sin2 ax− cosh2 ay) cosh(carctanh
sin ax

cosh ay
),

(sin2 ax− cosh2 ay) sinh(carctanh
sin ax

cosh ay
)}.

Since the operator J[U] is symmetric with respect to the variables x and y, the following invariant
subspaces can also be obtained from the above invariant subspaces:

W3 = L{cos2(ax), sinh(ay) cos(ax), sinh2(ay)},
W3 = L{sin2(ay), cosh(ax) sin(ay), cosh2(ax)}.

Example 5. Consider the two-dimensional porous medium equation:

ut = (upux)x + (upuy)y, p 6= 0,−1, (26)

which can be changed into the equation:

Ut = U(Uxx + Uyy) +
1
p
(U2

x + U2
y) ≡ Jp[U] (27)

by the transformation U = up. Equation (27) admits the scaling invariance with the infinitesimal generator:

X̃3 = x∂x + y∂y + 2U∂U, (28)

which possesses the invariants:

Ũ =
1
x2 U(z, t), z =

y
x

, t̃ = t.

Under the Lie symmetry X̃3, this equation is reduced to:

Ũt = (1 + z2)ŨŨzz +
1
p
(1 + z2)Ũ2

z −
2(p + 2)

p
zŨŨz +

2(p + 2)
p

Ũ2 ≡ J̃p[Ũ].

The operator J̃p[Ũ] admits invariant subspace W3 = L{1, z, z2} determined by ODE d3w/dz3 = 0.
Hence, the operator Jp[U] admits the invariant subspaces W3 = L{x2, xy, y2}. On the other hand,
for p = −4/3, the operator J̃p[Ũ] admits another invariant subspace W3 = L{1, z2 + 1,

√
z2 + 1}

determined by the ODE:
d3w
dz3 −

3
z(z2 + 1)

d2w
dz2 +

3
z2(1 + z2)

dw
dz

= 0.

Therefore, the corresponding invariant subspace admitted by the operator J− 4
3
[U] is:

W3 = L{x2, x2 + y2, x
√

x2 + y2} ≡ L{x2, y2, x
√

x2 + y2}.

Accordingly, some invariant subspaces of J[U] can be obtained from the invariant subspace
L{1, z, z2} admitted by the operator J̃i[Ũ], which is the polynomial subspace. The polynomial
subspaces of nonlinear operators are studied in many papers, which were used to construct exact
solutions of nonlinear evolution equations, including porous medium equations, thin film equations
and Euler equations [1–3,12–14,28,29,46–49]. Using the Lie symmetry method, we may obtain
polynomial invariant subspaces of some two-dimensional nonlinear operators. Note that in Examples 4
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and 5, the invariant subspace W3 = L{x2, xy, y2} can be obtained from the one-dimensional invariant
subspace W̃3 = L{1, z, z2} and the Lie group of symmetry (28). The subspace L{1, z, z2} is determined
by the space of solutions of linear ODE Ũzzz = 0, which can be explained by the conditional
Lie–Bäcklund symmetry with character Ũzzz [1,32,33]). Besides those, the nonlinear evolution equation
Ut = (UUx)y also admits the Lie group of transformation with the infinitesimal generator (28).
By the similar calculations as above, we find that the operator (UUx)y admits the invariant subspace
L{x2, xy, y2}. In [10], the operators preserving a given invariant subspace were discussed, for instance
the spaceM = {x2, xy, y2}, which was regarded as a “simple” problem for the affine annihilator.

Example 6. Consider the evolution Monge–Ampère equation:

ut = uxxuyy − u2
xy. (29)

It is easy to verify that this equation admits the Lie groups of transformations with
infinitesimal operators:

X1 = y∂x ± x∂y, X2 = y∂x ±
1
2

∂y, X3 = x∂y ±
1
2

∂x.

We find that X1 has invariants ũ = u(z, t), z = x2± y2 and t̃ = t. With respect to this Lie symmetry,
Equation (29) is reduced to:

ũt = ±(−8zũzũzz + 4ũ2
z) ≡ M̃±[ũ].

The operator M̃±[ũ] admits the invariant subspace W̃3 = L{1,
√

z, z2} determined by the ODE:

d3w
dz3 +

1
2z

d2w
dz2 −

1
2z2

dw
dz

= 0,

and the invariant subspace W̃3 = L{1, z, z2} determined by ODE d3w/dz3 = 0. Hence, the
Monge–Ampère operator M[u] = uxxuyy − u2

xy admits the invariant subspaces:

W3 = L{1,
√

x2 ± y2, (x2 ± y2)2}, and W3 = L{1, x2 ± y2, (x2 ± y2)2}

Similarly, under the Lie symmetries X2,3, we obtain the following invariant subspaces preserved
by the Monge–Ampère operator:

W3 = L{1, (x± y2)
3
2 , (x± y2)3}, W4 = L{1, (x± y2), (x± y2)2, (x± y2)3},

In general, assume that nonlinear evolution Equation (6) admits the Lie group of transformation
with infinitesimal generator X, which has invariants:

z = p(x, y), ũ =
u

r(x, y)
, t̃ = t,

and reduces it to the one-dimensional nonlinear evolution equation:

ũt = F̃(z, ũ, ũz, ũzz, · · · ) ≡ F̃[ũ].

We then obtain the following proposition.

Proposition 5. If the nonlinear differential operator F̃ admits the invariant subspaces
W̃n = L{ f1(z), · · · , fn(z)}, then two-dimensional nonlinear differential operator F preserves the invariant
subspaces Wn = L{r(x, y) f1(p(x, y)), · · · , r(x, y) fn(p(x, y))}.
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The proof is similar to that of Proposition 4. Clearly, in this approach, the estimate on the
dimension of invariant subspace obeys Theorem 1.

5. Concluding Remarks

In this paper, several approaches are developed to obtain invariant subspaces of the
two-dimensional nonlinear operators, including two direct extensions to the invariant subspace
method in R, the method of the general change of variables and the one-dimensional invariant subspace
method combined with the Lie symmetry method. In particular, we find that the subspaces Wxy

nm
and Wxy

n+m−1 of the two-dimensional nonlinear differential operators are extensions of the invariant
subspaces for one-dimensional nonlinear differential operators, which are determined by the spaces of
solutions of ODEs completely. In R2, the invariant subspaces admitted by the quadratic operator A[u]
and their applications are considered. In general, the extensions of the concept of invariant subspaces
in RN could be introduced. Assume that { f j1(xj), · · · , f jmj(xj)} is a finite set of linearly independent

functions, and W
xj
mj denotes their linear span W

xj
mj = L{ f j1(xj), · · · , f jmj(xj)}, where j = 1, · · · , N.

The (m1 · · · · ·mN)-dimensional subspace:

W̃ =

{
∑

i1,··· ,iN

Ci1···iN f1i1(x1) · · · · · fNiN (xN),∀Ci1···iN ∈ R, ij = 1, · · · , mj, j = 1, · · · , N

}

can be introduced as an extension to the subspace Wxy
nm in RN. Consider the N-dimensional

nonlinear operator:
F[u] ≡ F(u, Du, D2u, · · · , Dku),

where Du = (ux1 , · · · , uxN ), D2u = (ux1x1 , · · · , ux1xN , ux2x2 , · · · , ux2xN , · · · , uxN xN ), etc. Assume that
the subspace W

xj
mj is the space of solutions of the ODE:

Lxj [vj] ≡
dmj vj

dx
mj
j

+ ajmj−1(xj)
dmj−1vj

dx
mj−1
j

+ · · ·+ aj0(xj)vj = 0, j = 1, · · · , N.

Then, the invariance condition of the subspace W̃ preserved by the operator F[u] (i.e.,
F[W̃] ⊆ W̃) is:

Lxj [F[u]]|[H̃] ≡ 0, j = 1, · · · , N,

where [H̃] denotes Lxj [u] = 0, and their differential consequences with respect to xi, i, j = 1, · · · , N.
Similarly, we assume that {1, f j1(xj), · · · , f jmj(xj)} is a set of basis of solutions of the ODE system:

Lxj [vj] ≡
dmj vj

dx
mj
j

+ ajmj−1(xj)
dmj−1vj

dx
mj−1
j

+ · · ·+ aj1(xj)
dvj

dxj
= 0, j = 1, · · · , N.

Let W
xj
mj = L{1, f j1(xj), · · · , f jmj(xj)} denote the space of solutions of this ODE, where

j = 1, · · · , N. We can introduce the (m1 + · · ·+ mN − N + 1)-dimensional subspace:

W = L{1, f12(x1), · · · , f1m1(x1), · · · , fN2(xN), · · · , fNmN (xN)}

as an extension of Wxy
n+m−1 in RN . Then, the invariance condition of the subspace W preserved by the

operator F[u] (i.e., F[W] ⊆W) is:

Lxj [F[u]]|[H̄] ≡ 0, (F[u])xixj |[H̄] ≡ 0,
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where [H̄] denotes Lxj [u] = 0, uxixj = 0, and their differential consequences with respect to xi,
i, j = 1, · · · , N, i 6= j. The invariant subspaces obtained by this method can be regarded as original
subspaces and used to obtain new ones by the general changes of variables in Section 3.

To obtain more invariant subspaces of nonlinear differential operators, we adopt the direct sum of
invariant subspaces, which was used by Galaktionov and Svirshchevskii [1] to obtain the new invariant
subspaces preserved by a given operator. For example, in Proposition 6.1 of [1], it was shown that the
direct sum of the subspaces Wq

n = L{1, xixj, 1 6 i 6 j 6 N} and Wlin
N = L{x1, · · · , xN} is preserved

by the operator K[u]. It is expected that the formulation of the direct sum can be used to obtain the
invariant subspaces W91 and W92 of J[U] by them. Indeed, the following result is always true.

Proposition 6. Given a nonlinear differential operator F. If the linear subspaces Wn and Wm are preserved by
the operator F and Wn ∩Wm = {0}, then the direct sum of Wn and Wm, i.e., Wn ⊕Wm is invariant or partially
invariant under the operator F.

Clearly, for the “nonlinear property” of the nonlinear operator, F[Wn ⊕Wm] ⊆ Wn ⊕Wm is not
always true. However, in the case of F[Wn ⊕Wm] 6⊆ Wn ⊕Wm, it is said to be partially invariant
under the operator F (see [1]). The linear space Wn is partially invariant under the operator F, i.e.,
F[Wn] 6⊆Wn, but for some part M of Wn, F[M] ⊆Wn. If the subspace Wn is partially invariant under
a given operator, then the corresponding evolution equation can be reduced to an over-determined
system of ODEs. One can verify whether the direct sum of two invariant subspaces is invariant under
the given operator by a direct computation.

The following result is a further extension to Proposition 6.

Proposition 7. Let F be a given nonlinear differential operator. If the linear subspaces W1
n1

, · · · , Wm
nm are

preserved by the operator F, then the subspace W1
n1
∪ · · · ∪Wm

nm is invariant or partially invariant under the
operator F.

Let us return to the invariant subspaces W91 and W92. We can express:

W91 = W1
3 ∪W2

3 ∪W3
3 ∪W4

3 ,

where:
W1

3 = L{1, x, y}, W2
3 = L{x2, xy, y2},

W3
3 = L{x2, x(x2 + y2), (x2 + y2)2}, W4

3 = L{y2, y(x2 + y2), (x2 + y2)2}.

and express:
W92 = W1

5 ∪W2
3 ∪W3

3 ∪W4
3 ∪W5

3 ,

where:
W1

5 = L{1, cos 2y, sin 2y, cosh 2x, sinh 2x},
W2

3 = L{cos2 y, cosh x cos y, cosh2 x}, W3
3 = L{cos2 y, sinh x cos y, sinh2 x},

W4
3 = L{sin2 y, cosh x sin y, cosh2 x}, W5

3 = L{sin2 y, sinh x sin y, sinh2 x}.

Note that 2 cos2 y−1 = −2 sin2 y+1 = cos 2y, sinh2 x = (sinh 2x−1)/2, cosh2 x = (cosh 2x + 1)/2,
and every component of W91 and W92 can be obtained by the knowledge of algebra and ODEs

(see Sections 2 and 4). The following invariant subspace ̂̂Wxy
3+3−1 of J[U] can be obtained from Ŵxy

3+3−1
by the discrete symmetry x→ y, y→ x. Indeed, we have:
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(1) Ŵxy
3+3−1 = W1

3 ∪W2
3 , with:

W1
3 = L{(x2 + y2)2, (x2 + y2)2 cos(b1

x
x2 + y2 ), (x

2 + y2)2 sin(b1
x

x2 + y2 )},

W2
3 = L{(x2 + y2)2, (x2 + y2)2 exp(b1

y
x2 + y2 ), (x

2 + y2)2 exp(−b1
y

x2 + y2 )};

(2) ̂̂Wxy
3+3−1 = W3

3 ∪W4
3 , with:

W3
3 = L{(x2 + y2)2, (x2 + y2)2 cos(b1

y
x2 + y2 ), (x

2 + y2)2 sin(b1
y

x2 + y2 )},

W4
3 = L{(x2 + y2)2, (x2 + y2)2 exp(b1

x
x2 + y2 ), (x

2 + y2)2 exp(−b1
x

x2 + y2 )}.

Here, Wi
3(i = 1, · · · , 4) can be obtained by the method in Section 4. Similarly, we can check that

both the operator (UUx)y and Jp[U] admit the invariant subspace L{1, x, y, x2, xy, y2} = L{1, x, y} ∪
L{x2, xy, y2}. Hence, the porous medium Equation (26) has the exact solution of the more general form:

u = (c1(t) + c2(t)x + c3(t)y + c4(t)x2 + c5(t)xy + c6(t)y2)
1
p .

On the other hand, it was shown that the operator J− 4
3
[U] admits the following invariant subspaces

(see Example 5):

W1
3 = L{x2, xy, y2}, W2

3 = L{x2, y2, x
√

x2 + y2}, W3
3 = L{x2, y2, y

√
x2 + y2}

By direct calculation, one can check that the operator J− 4
3
[U] admits another invariant subspace:

W5 = L{x2, xy, y2, x
√

x2 + y2, y
√

x2 + y2} = W1
3 ∪W2

3 ∪W3
3 .

Hence, for p = −4/3, the porous medium Equation (26) has another solution of the form:

u = (c1(t)x2 + c2(t)xy + c3(t)y2 + c4(t)x
√

x2 + y2 + c5(t)y
√

x2 + y2)−
3
4 .

Finally, we would like to address some open questions. Firstly, although we have several operable
approaches to obtain the invariant subspaces of two-dimensional nonlinear operators, we do not
have a systematic approach to obtain the invariant subspaces of J[U] as W91 and W92 and those of the
Monge–Ampère operator as:

W13 = L{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x2y2, y4}.

Secondly, as mentioned in the Introduction, what is the maximal dimension of the certain types
of invariant subspaces of multi-dimensional k-th order nonlinear differential operators? All of these
questions will be the content of our future research.
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