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Abstract: The Standard-Model Extension (SME) provides a comprehensive effective field-theory
framework for the study of CPT and Lorentz symmetry. This work reviews the structure and
philosophy of the SME and provides some intuitive examples of symmetry violation. The results of
recent gravitational tests performed within the SME are summarized including analysis of results from
the Laser Interferometer Gravitational-Wave Observatory (LIGO), sensitivities achieved in short-range
gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary
ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests,
tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics
is augmented by several original extensions of the relevant work. We present new examples of
symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on
81 additional operators.
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1. Introduction

Our present description of nature is based on two enormously successful theories: General
Relativity (GR), a classical theory describing all gravitational phenomena, and the Standard Model
(SM) of particle physics, which provides a quantum description of all other interactions. It is widely
expected that these theories are merely the low-energy limit of some more fundamental theories that
would take over as the characteristic energies involved in experiments approach the Planck scale,
1019 GeV. Experimental information to guide the development of a Planck-scale theory would, by
conventional thinking, come from Planck-energy experiments, which are likely to remain infeasible
far into the future. An alternative approach is to search for small deviations from known physics
(the SM and GR) in present-day experiments, with the hope that small deviations, if found, would
encode information about the underlying theory.

Lorentz symmetry, the idea that physical results are unchanged under rotations and boosts of
the system, and CPT symmetry, the associated invariance of the system under the combination of
discrete symmetries of charge conjugation, parity, and time reversal, are pillars of both the SM and
GR. Hence, violations of these symmetries, if found, would provide a novel signal of new physics.
Moreover, the possibility of violations of these symmetries has been demonstrated in candidates for
the underlying theory, like strings [1,2].

The systematic search for Lorentz and CPT violation using the comprehensive effective field theory
based framework of the Standard-Model Extension (SME) [3–8] provides a method of searching for
Planck-suppressed effects in known physics in a complete and organized way. In a nut shell, the SME
adds to known physics all Lorentz and CPT violating effects at the level of the action. The terms added
to the action of the SM and GR to form the SME are generated from Lorentz and CPT violating operators
acting on SM and GR fields along with coefficients for Lorentz and CPT violation that parameterize
the amount of symmetry violation in the theory. The addition of Lorentz and CPT violating terms
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can be thought of as a series expansion about known physics in ever increasing mass dimension of
the operators involved. The SME coefficients can then be sought in experiments. Over 1000 limits
on SME coefficients have been set via experiments and observations [9], but much remains to be
explored, particularly in the case of the so-called non-minimal operators of mass dimension greater
than four, where few constraints have been set by the direct analysis of experimental data. It should
be emphasized that the SME is a test framework designed for a broad search for yet-unobserved
symmetry violation, a philosophy that is quite different from model building. Though the SME is
unique in providing a comprehensive test framework at the level of the action [10], other approaches
to the study of Lorentz and CPT violation exist [11] and the idea of a general test framework over
specific models has philosophical resonance with efforts to parameterize deviations from GR [12,13].

In the next section, Section 2, a basic introduction to both Lorentz and CPT symmetries is
provided along with introductory-physics level examples that illustrate behaviors that arise from
violations of these symmetries. Following these basics, Section 3 provides a summary of the SME
philosophy and the effective-field theory based structure it employs. An alternative and somewhat
more in-depth treatment paralleling Sections 1–3 can be found in Ref. [10] along with some more
general review of other areas of activity within the SME. Section 4 reviews recent experimental results
and phenomenological proposals that are connected with gravitational physics. One recent work [14]
places tight initial constraints on 74 Lorentz-violating operators of mass dimension 6 and 8 in the
pure-gravity sector. In Section 5, we extend this analysis to obtain another 81 tight initial constraints
on dimension 10 operators. Throughout this work, we use natural units and metric signature +2.

2. Symmetry Violation

In this section, we consider several examples of symmetries and their violation. Though the
examples are comparatively simple, the nature of these examples will map directly onto the SME
structure in Section 3. Lorentz symmetry contains both rotations and boosts. In the first subsection, we
will appeal to the visual nature of rotation invariance and consider examples of rotation invariance
and rotation-invariance violation as examples of the Lorentz-symmetry case. In the second subsection,
CPT symmetry and CPT violation will be considered.

2.1. Rotations

To begin our example, consider the classical, nonrelativistic Lagrangian for a particle of mass m,
position~r, and charge q in a magnetic field ~B given by a vector potential ~A (~B = ~∇× ~A):

L = 1
2 m~̇r2 + q~̇r · ~A (1)

We will first do what is known as an observer transformation on this system, in this case a rotation.
This corresponds to the experimenter turning his or her head and taking their coordinates with
them. This transformation is carried out by acting with the standard rotation matrix R on all vector
components such that the components of a generic vector ~V transforms as Vj → ~Vj′ = Rj′ jVj. Doing
this transformation to all vector components in (1) reveals that it is form invariant. This is a signal
that the theory in (1) possesses “observer–rotation invariance” as might have been expected. In other
words, the outcome of experiments governed by (1) does not depend on the coordinates used.

To see even more explicitly that the theory is invariant, we can perform the following series of
steps: (i) Set up a system with some initial conditions; (ii) Calculate the final configuration using the
original theory, where in the example above, the acceleration of the particle~a suffices as a proxy for the
final configuration; (iii) Apply the symmetry transformation to the result; (iv) Apply the symmetry
transformation to the initial conditions; and (v) Calculate the final configuration using the transformed
theory. As shown in Figure 1, when these steps are applied for observer rotations, the results of
steps (iii) and (v) match, reflecting the obvious observer–rotation invariance of the system.
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Figure 1. Illustration of observer symmetry in a sample system.

We can next apply the same procedure for a particle rotation. This procedure leaves the observer
and the coordinates fixed but rotates all fields. Operationally, the procedure is carried out the same
way on this rotation-invariant system, and as result of the symmetry, the outcome will be identical.
While we could draw this procedure in an identical way, observer and particle transformations will be
distinct when spacetime symmetries are broken, and we draw the pictures in Figure 2 for the particle
transformation case somewhat differently to highlight the difference between rotating the coordinates
and rotating the physical system.

Figure 2. Illustration of particle-rotation symmetry in a sample system.

We can now use this system as a toy model for broken Lorentz invariance. Suppose that the
experimenter were unaware of the physics generating the vector potential and hence the magnetic
field. Perhaps it exists on a much larger scale than their lab. If they now perform a particle rotation
on “the system,” they will rotate the apparatus in their lab, but not the magnetic field. Here, the
transformed theory will be

L = 1
2 m~̇r′2 + q~̇r′ · ~A,

= 1
2 m~̇r2 + q~̇rRT · ~A (2)
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where RT is the transposed rotation matrix. Note that the theory is no longer particle-rotation invariant
as the form has changed. Applying this transformation to our cartoon example leads to the situation
shown in Figure 3 in which the acceleration found in the transformed system is different (acceleration
is smaller under the conditions shown) than the original system.

Figure 3. Illustration of effective particle-rotation symmetry violation in a sample system.

Workers in the lab will then know if the system is particle-Lorentz invariant or not by performing
their experiment, then rotating it, then comparing the results. If the acceleration is different in the
rotated system, particle-Lorentz invariance is broken. In our discussion of the SME to follow, it will
be large-scale fields called coefficients for Lorentz violation, perhaps associated with spontaneous
breaking of Lorentz symmetry at the Planck scale, which will play the role of ~B and be sought in
this manner. We also note in passing that if an undetected large-scale “conventional” field existed
in the lab, it could also be detected in this way, an idea that has been applied to efforts to detect
spacetime torsion [15] and gravitomagnetic effects in the lab [16]. Additional examples similar to the
one presented here can be found in Refs. [10,17].

2.2. CPT

The role of CPT symmetry and CPT violation can also be illustrated in the above example. Under
CPT, q and ~A change signs, but nothing else. Hence, the theory is invariant. A subtlety is that although
~A changes sign, ~B does not. Figure 4 illustrates the usual procedure for seeing that our example is
CPT invariant.

If we again treat ~A as a nontransforming background while workers in the lab build the CPT
transformed version of their device, then ~A will not change under CPT and the second term in
the theory will change sign for the laboratory CPT transformed system. Hence, the presence of
a background ~A leads to effective CPT violation as well as Lorentz violation. The effective CPT
violation induced by ~A is illustrated in Figure 5.

The violation of both CPT and Lorentz symmetry is a feature shared quite generally by
backgrounds with odd numbers of indices. For a somewhat more technical review of the connection
between CPT and Lorentz symmety, see the contribution to this issue by Lehnert [18]. For simple
examples having backgrounds with even numbers of indices, see Refs. [10,17].
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Figure 4. Illustration of CPT symmetry in a sample system.

Figure 5. Illustration of an effective CPT-symmetry violation in a sample system.

3. The SME

In this section, we present the SME action with a focus on the sectors relevant for the discussion
and development of the gravitational results considered in the rest of this work. For a similar review
focused on neutrinos, see the contribution to this issue by Díaz [19]. For some review of other sectors,
see Ref. [10]. Gravitational phenomenology in the SME can be thought of as originating in two places:
the pure-gravity sector, which describes the dynamics of the gravitational field itself, and gravitational
couplings in the other sectors. We consider first the gravitationally coupled fermion section, and then
the pure-gravity sector below.

3.1. Gravitationally Coupled Matter

The implications of gravitational couplings in the minimal fermion sector have been studied
considerably. Here, we review the structure of this limit, and use it as an example of the SME structure
more generally. The Lagrange density for the minimal fermion sector with gravitational couplings
reads [5]:

Lψ−g = 1
2 ieeµ

aψΓa
↔
Dµ ψ− eψMψ (3)



Symmetry 2016, 8, 111 6 of 16

where

Γa ≡ γa − cµνeνaeµ
bγb − dµνeνaeµ

bγ5γb − eµeµa − i fµeµaγ5 − 1
2 gλµνeνaeλ

beµ
cσbc (4)

M ≡ m + aµeµ
aγa + bµeµ

aγ5γa + 1
2 Hµνeµ

aeν
bσab (5)

Here, ψ is the fermion field, Dµ is the covariant derivative for gravity as well as U(1), and e a
µ is the

vierbein, which, along with its determinant e and the covariant derivative, provides the couplings
to gravity by linking each point on spacetime manifold with a Minkowski tangent space. The
Dirac gamma matricies are denoted γa, and γ5 and σab denote standard combinations there of [20].
The objects a . . . H are coefficient fields for Lorentz violation, which, in general, are different for
different types of particles. The interpretation of the coefficient fields is developed further below.
The field-theoretic and geometric structure suggested by the objects introduced above is rich, but a full
review of this would take us too far afield from the phenomenological development, which is the
primary subject of this work. For more on these issues, see Ref. [10] and references therein.

Before developing the gravitational implications of (3), we point out several features of (3) with
the goal of generating a broader understanding of the SME structure. First, note that the form
of the Minkowski-spacetime SME [4] can be recovered in the limit e a

µ → δa
µ, and the standard

Lorentz-invariant Dirac Lagrange density can be recovered with the additional restriction a . . . H → 0.
This last limit reflects a key feature of the SME structure: it contains known physics and can be thought
of as providing an expansion about known physics in Lorentz-violating operators. The action (3) is
known as the minimal SME limit as it contains operators of dimension 3 and 4 that are power-counting
renormalizable. For a basic introduction to the idea of operator dimension, see Ref. [21]. The expansion
about known physics can be continued beyond dimension 3 and 4 and the full series of Lorentz
violating operators in the fermion sector has been studied [8] in the Minkowski-spacetime limit,
as have other sectors [6,7]. Consideration of higher dimension operators in the pure-gravity sector has
also begun [14,22–24] and the key points are reviewed in the next subsection.

The content of the coefficient fields a . . . H is in principle determined by how Lorentz symmetry is
broken, though in practice we proceed under general considerations without specializing to a particular
model of Lorentz-symmetry breaking. The ways in which Lorentz-symmetry can be broken can be
divided into two classes: explicit and spontaneous. Explicit breaking involves coefficients for Lorentz
violation that are externally prescribed properties of the spacetime. When Lorentz violation arises
spontaneously, the underlying theory is Lorentz-invariant, but the low-energy solutions violate Lorentz
symmetry through a process of spontaneous symmetry-breaking analogous to electroweak symmetry
breaking in the SM. In flat-spacetime studies, the coefficient fields are typically taken as constant
coefficients, satisfying, for example, ∂αcµν = 0. This can be thought of as either a particular explicit
choice or as a search for a constant vacuum expectation value given to the field via spontaneous
breaking. The consideration of constant coefficients maintains energy-momentum conservation and
could be thought of as a leading contribution to more complex spacetime dependence. In curved
spacetime, constant coefficients fields are typically not compatible with a theory of gravity based
on Riemannian geometry [5,25,26] and specialization to spontaneous breaking is chosen for most
SME phenomenology. Here, the coefficient fields can be thought of as involving a constant vacuum
value plus a fluctuation about the vacuum, for example cµν = cµν +

7̃cµν. In the asymptotically
flat studies considered here, the vacuum values such as cµν are taken as a constant and can be
identified with the coefficients for Lorentz violation explored in flat-spacetime studies. Hence, we
refer to the vacuum values as the coefficients for Lorentz violation. Under fairly general assumptions
in the work considered here, the fluctuations can be integrated out prior to the development of
phenomenology [27–29]. An approach that considers non-constant coefficient fields under a different
set of assumptions has also now been developed [30].

For most gravitational experiments, the classical, post-Newtonian implications of the relativistic
quantum field theory (3) is what is relevant. As a result, tools corresponding to (3) including the
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relativistic Hamiltonian, the nonrelativistic Hamiltonian, and the classical Lagrangian have been
developed to third post Newtonian order [27]. Note that the matter theory impacts the structure of
the spacetime since the metric is derived from the matter theory involving coefficients for Lorentz
violation associated with the source, as well as the motion of test particles in that spacetime, which
involves coefficients for Lorentz violation associated with the test particle. As an example of the tools
that result, in the Newtonian limit, the equation of motion for a particle in an Earth-based laboratory
associated with spin-independent effects takes the form

Fj = mjk ẍk (6)

where

mjk = mT
(

1 + (cT)tt

)
δjk + 2mT(cT)(jk) (7)

and the vertical component of the force is

Fz = −mTg
[
1 +

2α

mT (aT
eff)t +

2α

mS (aS
eff)t + (cT)tt + (cS)tt

]
(8)

Here, α is a constant that characterizes couplings in the underlying theory of spontaneous breaking,
mT and mS are masses of the test and source bodies, respectively, and superscripts T and S refer to
the coefficients associated with the test and source bodies, respectively. The combination aµ −meµ

is denoted (aeff)µ. Note that in addition to generating the annual and sidereal variations associated
with boost and rotation invariance in the lab, violations of the Weak Equivalence Principle (WEP) are
induced by the particle-species dependence in this result.

3.2. Pure Gravity

Maxwell’s electrodynamics is famously a linear theory, meaning that if one takes the potential
Aµ as the fundamental object, the field equations are linear in Aµ. This permits linear superposition
as a convenient method of constructing solutions. General Relativity is a nonlinear theory of gravity
based on the curvature of spacetime encoded in the spacetime metric gµν, which can be written in terms
of the Minkowski metric ηµν plus an object hµν, typically called the metric perturbation. By analogy
with electrodynamics, if hµν is taken as the fundamental object, the GR field equations are nonlinear in
hµν, hence nonlinear Lorentz-violating corrections to GR might be expected in an SME expansion about
the GR action. However, it should also be noted that such nonlinearities are negligibly small in practice
in large classes of experiments where the spacetime can be considered asymptotically Minkowski and
hµν can be treated as a small correction.

Progress toward phenomenology in the pure-gravity sector of the SME began with the
development [5] and exploration [29] of its minimal limit. While the construction at the level of
the action developed in these works includes the full nonlinear theory of gravity, the development of
phenomenological tools is specialized to the linearized-gravity limit [29]. More recently, exploration
of the nonminimal pure-gravity sector has begun [14,22–24], including consideration of some terms
associated with the nonlinearities of gravity [24]. To provide a maximally coherent treatment of
phenomenology and experiment, we consider first the full SME expansion under the restriction
of linearized gravity, then offer some comments about current proposals to explore effects in
nonlinear gravity.

The generic form of the Lagrange density in the linearized limit including both the
Lorentz-violating and Lorentz-invariant contributions can be written: [23],

LK(d) = 1
4 hµνK̂(d)µνρσhρσ (9)

where the operator
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K̂(d)µνρσ = K(d)µνρσε1ε2 ...εd−2 ∂ε1 ∂ε2 . . . ∂εd−2 (10)

has mass dimension d ≥ 2, and the coefficients K(d)µνρσε1ε2 ...εd−2 are taken as constant and small.
An exploration of the operator (10) by decomposition into irreducible parts reveals that 14 classes of
operators are involved. Of these, three classes, written as follows,

K̂(d)µνρσ ⊃ ŝµνρσ + q̂µνρσ + k̂µνρσ (11)

are consistent with the usual gauge invariance of GR. The term

ŝµνρσ = ∑
even d≥4

s(d)µρ◦νσ◦d−3
(12)

contains operators at each even dimension greater than or equal to four, hence it contains a minimal
contribution. Here, a circle denotes a contraction with a partial derivative. The contribution

q̂µνρσ = ∑
odd d≥5

q(d)µρ◦ν◦σ◦d−4
(13)

involves operators of odd dimension greater than or equal to five, and

k̂µνρσ = ∑
even d≥6

k(d)µ◦ν◦ρ◦σ◦d−5
(14)

contributes operators of even dimension greater than or equal to six. For further discussion of their
properties, see [23]. Study to date has been focused on these operators, which are associated with
spontaneous Lorentz violation.

Operators q̂µνρσ and k̂µνρσ are associated with birefringence of gravitational waves. Constraints
on the dimension 5 and 6 coefficients they contain [23] have been placed using the initial direct
observation of gravitational waves by LIGO [31]. Constraints based on the dispersion triggered by
isotropic combinations of coefficients at dimentions 4, 5, and 6 have also been attained [32] based
on LIGO observations of merger events [31,33]. We note in passing that LIGO has also been used to
achieve photon-sector sensitivities by interpreting a suitable aspect of the 2006–2007 LIGO data as
providing a Michelson–Morley-type test [34]. Matter-sector implications have also been noted [35].

The nature of ŝµνρσ can be elucidated by introducing a dual operator as follows:
ŝµρνσ = −εµρακεανσβλ ŝκλ∂α∂β. In terms of the dual, the Lagrange density can be written,

L = 1
4 εµρακενσβλhµν(ηκλ − ŝκλ)∂α∂βhρσ,+ 1

4 hµν(q̂µρνσ + k̂µνρσ)hρσ (15)

where ηκλ in the first term is the appropriate limit of the standard Einstein–Hilbert contribution.
The use of the dual operator reveals that ŝµρνσ acts as a momentum-dependent perturbation to the
Minkowski metric. As in the case of the general operator introduced in Equation (11), ŝµν can be
expanded in terms of coefficients for Lorentz violation at each dimension d, which are taken as constant
and small in most studies, and an appropriate number of derivatives. Explicitly,

ŝµν ≡ ∑
even d≥4

(s(d))µν
α1 ...αd−4 ∂α1 . . . ∂αd−4 (16)

Here, s(4)µν ≡ sµν is the coefficient studied in numerous minimal SME investigations as noted in the
next section. An additional coefficient coupling to the Weyl tensor, tµνρσ was considered in the original
investigation of the minimal gravity sector [5], but phenomenological implications stemming from this
coefficient have not been found [36]. Additionally, elements of the sum (16) at dimension 4, 6, and 8
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have been sought via gravitational Čerenkov radiation. We summarize this method and expand on the
result in Section 5 of this work where constraints on the d = 10 coefficients are achieved.

A combination of ŝµρνσ and k̂µρνσ coefficients at d = 6 named (k̄eff)jklm have been identified [22]
as contributing to short-range gravity experiments via the modified Poisson equation

−∇2U = 4πGNρ + (k̄eff)jklm∂j∂k∂l∂mU (17)

Here U(~r) is the modified Newtonian gravitational potential, and GN is Newton’s constant.
Initial studies of Lorentz violation in nonlinear gravity have also been performed [24] that focus

on the d = 8 (12 index) coefficient field that couples to three Riemann curvature tensors in the action.
The phenomenology of a subset of the vacuum values associated with this coefficient field denoted Kjk
has been established.

4. Gravitational Tests: Existing Results and Proposals

A large amount of experimental and observational work has been done based on the theory
reviewed above, and numerous proposals exist to extend and improve these results. In Table 1, we list
systems that have been used to achieve constraints on coefficients for Lorentz violation. The first
column identifies the system; the second, the coefficients constrained; the third, references to the
associated phenomenological proposals; and the fourth, references to the work in which the constraints
were achieved. Note that in some cases there is overlap between the last two columns. In some cases,
initial constraints on coefficients for Lorentz violation are achieved in the paper proposing the work
based on a reinterpretation of published information. In other cases, the work is essentially proposed
in the experimental paper. An asterisk (∗) denotes coefficients constrained in Section 5 of this work.
In addition to information provided in the papers cited, the constraints achieved in each test are
summarized in [9].

Table 1. Gravitational tests constraining Standard-Model Extension (SME) coefficients

System Coefficients Proposal Constraints

gravitational Čerenkov radiation s(4)µν , s(6)µνα1α2 , s(8)µνα1α2α3α4 , s(10)∗
µνα1α2α3α4α5α6 [14] [14] [∗]

superconducting gravimeters (aeff)µ, cµν, s(4)µν [27,29] [37]
short-range gravity devices (k̄eff)jklm (aeff)µ [22,27,29] [38–42]

gravitational-wave interferometers s(4)µν , s(6)µνα1α2 , q(5)µρανβσγ, k(6)µανβργσδ [23] [23,32]
lunar laser ranging s(4)µν [29] [43,44]

binary-pulsar observations s(4)µν [29] [45–47]
planetary ephemerides (aeff)µ, s(4)µν [48] [48]

gravity probe B s(4)µν [29] [49]
bound kinetic energy WEP (aeff)µ, cµν [27,50] [50]

atom interferometers (aeff)µ, cµν, s(4)µν [27,29] [51–53]
comagnetometry (aeff)µ, s(4)µν [16] [16]

perihelion precession (aeff)µ, cµν [27] [27]
equivalence-principle pendulum (aeff)µ [28] [28]

Solar-spin precession s(4)µν [29] [29]

In Table 2, we highlight some of the cases in which existing or planned experiments could provide
improvement over published limits. Here, improvements could involve extending the maximum
reach for a given coefficient, generating sensitivities to new linear combinations of coefficients that
lead to either more independent constraints or a discovery, or the generation of cleaner constraints
that involve fewer assumptions. The first three columns are the same as in Table 1. The last column
lists references to some existing and planned experiments associated with the given system that hold
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promise for improving sensitivities to the coefficients listed. Note that no such table can be exhaustive.
The list provided here is merely intended to highlight the breath of possibilities.

Table 2. Some systems that could improve upon existing sensitivities.

System Coefficients Proposal Experiments

atom interferometer (aeff)µ, cµν, s(4)µν [27] [54]
ring-laser gyroscopes s(4)µν [55,56] [57]

torsion pendula (aeff)µ, cµν [27] [58]
binary pulsars (aeff)µ, cµν, s(4)µν Kjk [24,59] [60]

short-range gravity Kjk [24] [38,39,42]
gravitational-wave detectors s(d)µρανσβ..., k(d)µανβργσδ..., q(d)µρανβσγ... [23] [31,33]

space-based WEP tests (aeff)µ, cµν [29,61] [61–64]
antimatter gravity (aeff)µ, cµν [27,65] [66–69]

charged matter WEP (aeff)µ [27] [70]
muonium free fall (aeff)µ, cµν [27] [71]

light bending (aeff)µ, cµν, s(4)µν [72] [73]
time-delay & Doppler tests s(4)µν [27,74] [75–77]

5. Gravitational Čerenkov

In this section, we obtain and present the first limits on the dimension 10 coefficients contained
within ŝαβ by following the methods of Ref. [14]. Prior to presenting the results, we summarize some
of the key ideas used.

As is well known, when charged particles exceed the phase speed of light in media, the Čerenkov
radiation of photons results. In the presence of the Lorentz violation in the SME, the vacuum exhibits
many of the properties of the medium, and vacuum Čerenkov radiation becomes kinematically allowed.
This feature extends to the case of gravitational waves, where, in the presence of certain coefficients
for Lorentz violation, particles may exceed the speed of gravity and emit Čerenkov gravitons [14,78].
This feature is possible for massive particles as well as photons, and, in the presence of suitable SME
coefficients, can be both anisotropic and momentum dependent [14].

The idea of vacuum gravitational Čerenkov radiation can be used to constrain coefficients for
Lorentz violation through consideration of high-energy cosmic rays. The fact that these rays arrive at
Earth from great distances with high energy limits the amount of energy they could have radiated to
gravitational waves, and hence limits the coefficients for Lorentz violation involved.

To begin our analysis, we note that the dispersion relation associated with ŝαβ can be written

l2
0 =~l2 + ŝαβlαlβ (18)

where lµ is the graviton momentum. The form of Equation (18) implies that it is convenient to introduce
an effective momentum-dependent vacuum index of refraction for gravity,

n(~l) =
√

1− ŝαβ l̂α l̂β (19)

Standard decay-rate and energy-loss equations can then be used to find the rate of energy loss to
gravitational waves by a faster-than-gravity particle, which can be written

dE
dt

= − 1
8|~p|

√
m2

w + ~p2

∫ d3l
(2π)2|~l|

|M|2δ(cos θ − cos θC) (20)
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Here, pµ is the particle momentum, mw is its mass,M is a matrix element from quantum field theory,
the angle between ~p and~l is θ, and θC is a generalized Čerenkov angle that takes the form

cos θC =

√
m2

w + ~p2

|~p|
1

n(|~l|)
+
|~l|

2|~p|

(
1− 1

[n(|~l|)]2

)
(21)

Inserting the matrix element associated with the given radiating particle and integrating over graviton
momentum yields an explicit form for the power loss to radiated gravitons. The result is the same
for each type of particle considered (photons, scalars, and fermions) up to a dimension d dependent
factor. This result can then be integrated to get a relation between the initial energy Ei at the start of
the particle’s trip, the final energy E f at detection, and the time of flight t:

t =
Fw(d)

GN(s(d))2

 1
E2d−5

f

− 1
E2d−5

i

 (22)

Here Fw(d) is the species-dependent factor. In the analysis to follow, we consider fermions for which

Fψ(d) =
(d− 2)(d− 3)(2d− 3)

4(2d2 − 7d + 9)
(23)

The dependence on Lorentz violation in Equation (22) is through the combination

s(d)( p̂) ≡ (s(d))µνα1 ...αd−4 p̂µ p̂ν p̂α1 . . . p̂αd−4 (24)

which can also be expressed in terms of spherical harmonics and spherical coefficients for Lorentz
violation as

s(d)( p̂) = ∑
jm

Yjm( p̂)s(d)jm (25)

Constraints on the coefficients s(d) are achieved via high-energy cosmic ray observations
from the following projects: Akeno Giant Air Shower Array (AGASA) [79,80], Fly’s Eye [81],
Haverah Park [79,82], HiRes [83], Pierre Auger [84], Sydney University Giant Air-shower Recorder
(SUGAR) [79,85], Telescope Array [86], Volcano Ranch [79,87], and Yakutsk [79,88]. For details on the
events used, see Table 1 in Ref. [14]. Extracting a constraint requires knowledge of the initial and final
energy and the distance traveled, L. To generate conservative constraints, we take Ei = ∞ and solve
for the coefficients

s(d)( p̂) <

√√√√ Fw(d)
GN E2d−5

f L
(26)

To generate a value for L we consider the likely origin of the highest energy cosmic rays, which
are believed to be nuclei originating from an active galactic nucleus nearby. For a conservative and
definite number, we take L ≈ 10 Mpc. Finally, we need the final energy as the particles arrive at Earth,
which is based on the observed energy. Again proceeding toward conservative constraints, we assume
that a partonic fermion carrying 10% of the proton energy in an iron nucleus is the radiator of gravitons.
Hence, we take E f as 1/560 of the observed energy.

One observation typically yields a one-sided constraint on a combination of coefficients for Lorentz
violation, since gravitational Čerenkov radiation is only possible for particles moving faster than the
speed of gravity. However, with the exception of the isotropic coefficients, two-sided constraints
are achieved using cosmic rays originating from multiple places on the sky. In Ref. [14], a series of
six models were constrained. The models included three isotropic models containing the isotropic
coefficient at d = 4, d = 6, and d = 8, respectively, and three anisotropic models containing the rest
of the coefficients at each dimension. The numerical constraints were obtained from the energy and
direction of origin for observed cosmic rays using a linear programming scheme (for details, see [89]).
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Here, we perform the same operations on the same data for two more models: an isotropic d = 10
model and an anisotropic d = 10 model. The constraints that result, which are the first on d = 10
coefficients in the gravity sector, appear in Table 3.

Table 3. Conservative constraints on coefficients s(10)
jm in GeV−6.

j Lower Bound Coeff. Upper Bound j Lower Bound Coeff. Upper Bound
0 s(10)

00 < 2× 10−66

6

−2× 10−61 < s(10)
60 < 2× 10−61

1
−1× 10−61 < s(10)

10 < 2× 10−61 −1× 10−61 < Re s(10)
61 < 1× 10−61

−1× 10−61 < Re s(10)
11 < 1× 10−61 −1× 10−61 < Im s(10)

61 < 1× 10−61

−1× 10−61 < Im s(10)
11 < 1× 10−61 −8× 10−62 < Re s(10)

62 < 2× 10−61

2

−2× 10−61 < s(10)
20 < 1× 10−61 −1× 10−61 < Im s(10)

62 < 1× 10−61

−1× 10−61 < Re s(10)
21 < 1× 10−61 −1× 10−61 < Re s(10)

63 < 9× 10−62

−1× 10−61 < Im s(10)
21 < 1× 10−61 −1× 10−61 < Im s(10)

63 < 1× 10−61

−1× 10−61 < Re s(10)
22 < 1× 10−61 −1× 10−61 < Re s(10)

64 < 1× 10−61

−1× 10−61 < Im s(10)
22 < 1× 10−61 −1× 10−61 < Im s(10)

64 < 1× 10−61

3

−2× 10−61 < s(10)
30 < 2× 10−61 −1× 10−61 < Re s(10)

65 < 1× 10−61

−1× 10−61 < Re s(10)
31 < 1× 10−61 −1× 10−61 < Im s(10)

65 < 1× 10−61

−1× 10−61 < Im s(10)
31 < 1× 10−61 −1× 10−61 < Re s(10)

66 < 1× 10−61

−1× 10−61 < Re s(10)
32 < 1× 10−61 −1× 10−61 < Im s(10)

66 < 1× 10−61

−1× 10−61 < Im s(10)
32 < 1× 10−61

7

−2× 10−61 < s(10)
70 < 2× 10−61

−1× 10−61 < Re s(10)
33 < 1× 10−61 −9× 10−62 < Re s(10)

71 < 1× 10−61

−1× 10−61 < Im s(10)
33 < 1× 10−61 −1× 10−61 < Im s(10)

71 < 9× 10−62

4

−2× 10−61 < s(10)
40 < 1× 10−61 −1× 10−61 < Re s(10)

72 < 9× 10−62

−2× 10−61 < Re s(10)
41 < 1× 10−61 −1× 10−61 < Im s(10)

72 < 1× 10−61

−1× 10−61 < Im s(10)
41 < 1× 10−61 −1× 10−61 < Re s(10)

73 < 1× 10−61

−1× 10−61 < Re s(10)
42 < 1× 10−61 −1× 10−61 < Im s(10)

73 < 1× 10−61

−1× 10−61 < Im s(10)
42 < 1× 10−61 −1× 10−61 < Re s(10)

74 < 1× 10−61

−1× 10−61 < Re s(10)
43 < 9× 10−62 −1× 10−61 < Im s(10)

74 < 1× 10−61

−1× 10−61 < Im s(10)
43 < 1× 10−61 −1× 10−61 < Re s(10)

75 < 1× 10−61

−1× 10−61 < Re s(10)
44 < 1× 10−61 −1× 10−61 < Im s(10)

75 < 1× 10−61

−1× 10−61 < Im s(10)
44 < 1× 10−61 −1× 10−61 < Re s(10)

76 < 1× 10−61

5

−1× 10−61 < s(10)
50 < 2× 10−61 −1× 10−61 < Im s(10)

76 < 1× 10−61

−1× 10−61 < Re s(10)
51 < 1× 10−61 −1× 10−61 < Re s(10)

77 < 1× 10−61

−1× 10−61 < Im s(10)
51 < 1× 10−61 −2× 10−61 < Im s(10)

77 < 1× 10−61

−1× 10−61 < Re s(10)
52 < 1× 10−61

8

−2× 10−61 < s(10)
80 < 2× 10−61

−1× 10−61 < Im s(10)
52 < 1× 10−61 −1× 10−61 < Re s(10)

81 < 1× 10−61

−1× 10−61 < Re s(10)
53 < 2× 10−61 −1× 10−61 < Im s(10)

81 < 1× 10−61

−1× 10−61 < Im s(10)
53 < 1× 10−61 −1× 10−61 < Re s(10)

82 < 1× 10−61

−1× 10−61 < Re s(10)
54 < 1× 10−61 −1× 10−61 < Im s(10)

82 < 1× 10−61

−1× 10−61 < Im s(10)
54 < 1× 10−61 −1× 10−61 < Re s(10)

83 < 1× 10−61

−1× 10−61 < Re s(10)
55 < 9× 10−62 −1× 10−61 < Im s(10)

83 < 1× 10−61

−1× 10−61 < Im s(10)
55 < 1× 10−61 −1× 10−61 < Re s(10)

84 < 2× 10−61

−1× 10−61 < Im s(10)
84 < 1× 10−61

−1× 10−61 < Re s(10)
85 < 1× 10−61

−1× 10−61 < Im s(10)
85 < 1× 10−61

−1× 10−61 < Re s(10)
86 < 2× 10−61

−1× 10−61 < Im s(10)
86 < 1× 10−61

−1× 10−61 < Re s(10)
87 < 1× 10−61

−1× 10−61 < Im s(10)
87 < 1× 10−61

−1× 10−61 < Re s(10)
88 < 1× 10−61

−1× 10−61 < Im s(10)
88 < 1× 10−61
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6. Conclusions

This work summarizes and expands upon gravity-related tests of Lorentz symmetry in the SME.
We begin in Section 2 by providing some examples of symmetry and symmetry violation that highlight
CPT and Lorentz violation conceptually and provide context for the SME structure reviewed in
Section 3. The gravitationally coupled fermion sector and the pure gravity sector are presented as
generic examples of the SME construction to provide context for the phenomenology. Existing and
proposed tests are summarized in Section 4. Section 5 provides some more detail on one recent test
that achieved tight first constraints on dimension 6 and 8 coefficients in the gravity sector through
the analysis of gravitational Čerenkov radiation effects on cosmic rays. Following review of that
work, 81 tight new constraints on dimension 10 coefficients are achieved following the same methods.
Both the new results achieved and the existing proposals for expansion discussed here highlight the
bright future for the continued expansion of tests of Lorentz invariance in gravitational experiments.

Conflicts of Interest: The author declares no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
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