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Abstract: This expository article explores the connection between the polar duality
from polyhedral geometry and mirror symmetry from mathematical physics and algebraic
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1. Introduction

In 1991, a group of physicists astounded the algebraic geometry community with conjectures for the
number of rational curves of degree d lying on the famous quintic threefold, a variety of dimension three
and degree five in 4-dimensional projective space. The key tool used in the paper [1] is mirror symmetry,
which is an isomorphism of quantum field theories that turns a difficult counting problem on the quintic
threefold into a much simpler problem on the so-called quintic mirror.

All of this seems far removed from the polar duality of polytopes, but as we will see in this article,
there is a surprisingly deep connection based on the reflexive polytopes introduced by Batyrev [2] in the
context of toric geometry.

2. Reflexive Polytopes

A polytope P ⊆ Rd is the convex hull of finitely many points in Rd. If 0 ∈ Int(P ), then its polar or
dual is

P ◦ = {u ∈ Rd | u ·m ≥ −1 for all m ∈ P}.

It is well-known that P ◦ is a polytope with 0 ∈ Int(P ◦) and (P ◦)◦ = P (see, for instance, ([3] 2.3)).
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Figure 1 shows a classic example of a polytope and its dual in three dimensions. The polytopes
relevant to mirror symmetry have dimension four. In Example 2.1, we give the polytopes that underlie
the quintic threefold and its mirror.

Figure 1. A cube P ⊆ R3 and its dual octahedron P ◦. Reprinted from [4] (p. 81) with
permission of the American Mathematical Society.

Example 2.1. Consider the Standard 4-Simplex

∆4 = Conv(0, e1, e2, e3, e4) = {(m1,m2,m3,m4) ∈ R4 | mi ≥ 0, m1 +m2 +m3 +m4 ≤ 1},

where e1, e2, e3, e4 are the standard basis of R4 and “Conv” denotes convex hull. Then 0 is an interior
point of the polytope

P = 5∆4 − (1, 1, 1, 1),

and the dual of P is
P ◦ = Conv(e1, e2, e3, e4, (−1,−1,−1,−1)).

As polytopes, P and P ◦ are simplices. But in terms of lattice points (points with integer coordinates,
i.e., Z4 ⊆ R4), there is a substantial difference:

• P has 125 lattice points, i.e., |P ∩ Z4| = 125.
• P ◦ has 6 lattice points, i.e., |P ◦ ∩ Z4| = 6.

We will see later that P and P ◦ give rise to mirror manifolds where a hard problem on P transforms into
a simpler problem on P ◦ because of the small number of lattice points.

This example suggests that lattice points have an important role to play. In general, a lattice polytope
or integer polytope is the convex hull of a finite subset of Zd ⊆ Rd. The book [5] gives a nice introduction
to lattice polytopes and their associated counting problems.

The cube P in Figure 1 becomes a lattice polytope when we choose coordinates so that its vertices
are ±e1 ± e2 ± e3 for the standard basis e1, e2, e3 of R3. Then P ◦ is the lattice polytope with vertices
±e1, ±e2, ±e3.
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In general, polar duality interacts poorly with lattice polytopes—what happened in Figure 1 is rather
special. For example, if we double the size of the cube to get 2P , then its dual is

(2P )◦ = 1
2
P ◦,

which fails to be a lattice polytope. This leads to the following definition, due to Batyrev [2].

Definition 2.1. A lattice polytope P is reflexive if 0 ∈ Int(P ) and P ◦ is also a lattice polytope.

Figure 2 shows a less obvious example of a reflexive polytope.

Figure 2. A reflexive polytope in R3 with 14 vertices. Reprinted from [6] (p. 180) with
permission of the American Mathematical Society.

If P is reflexive, then it is straightforward to show that 0 is the unique interior lattice point of P .
For another way to see what reflexive means, we first recall another description of the dual polytope.
Given an arbitrary polytope with 0 ∈ Int(P ), every facet F of P has a unique inward-pointing facet
normal uF with the property that

F = {m ∈ P | m · uF = −1}.

Then one can show that
P ◦ = Conv(uF | F is a facet of P ).

Hence, a lattice polytope P with 0 ∈ Int(P ) is reflexive if and only if uF ∈ Zd for all facets F of P .
Classifying reflexive polytopes in Rd is an important problem because of their relevance to mirror

symmetry. By “classify”, we mean up to a lattice equivalence of Zd, i.e., up to coordinate change by an
element of GL(d,Z). In dimension two, the 16 classes of reflexive polygons are shown in Figure 3. It is
a fun exercise to match polygons with their duals. In some cases, one needs to change coordinates by an
element of GL(2,Z) to identify the dual. Some of the polygons are self-dual up to GL(2,Z).

In dimension three, there are 4319 classes of reflexive polytopes, and such number balloons to
473,800,776 in dimension four, an impressive calculation done by Kreuzer and Skarke [7] in 2002.
As we will soon see, 4-dimensional reflexive polytopes are important in mirror symmetry.
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Figure 3. The 16 classes of reflexive lattice polygons in R2. The open circles represent
the origin and the labels record the number of boundary lattice points. Reprinted from [4]
(p. 382) with permission of the American Mathematical Society.

3. Mirror Symmetry

String theory from mathematical physics is based on a 10-dimensional universe, where four
dimensions are the familiar space-time of general relativity and the remaining six dimensions are where
the quantum effects take place. The Elegant Universe by Greene [8] describes this model of the universe
for a general audience.

The 6-dimensional quantum piece is a (very small) compact manifold, about the size of Planck’s
constant. To make this manifold support the kind of quantum field theory required by string theory,
the manifold needs to have a complex structure with a trivial canonical bundle and vanishing first Betti
number. Six real dimensions mean three complex dimensions, and the complex manifolds that arise are
called Calabi–Yau threefolds. We recommend The Shape of Inner Space by Yau and Nadis [9] for a
non-technical account of these spaces.

Example 3.1. The simplest Calabi–Yau threefold is the quintic threefold. We start with P4, the
4-dimensional projective space over the complex numbers. Points in P4 have homogeneous coordinates
(x0, x1, x2, x3, x4), where the coordinates never vanish simultaneously and two sets of coordinates give
the same point if and only if they differ by a nonzero scalar multiple. A homogeneous equation

F (x0, x1, x2, x3, x4) = 0, deg(F ) = 5,
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defines the quintic threefold V ⊆ P4. For most choices of F , V is smooth, i.e., is a manifold. Then
having degree five guarantees that V is a Calabi–Yau threefold.

Mirror symmetry involves some sophisticated physics and algebraic geometry. The string theories
used in mirror symmetry are superconformal field theories (SCFTs) with twisted versions called the
A-model and the B-model. The SCFT on a Calabi–Yau threefold V depends on two types of parameters:

• Kähler moduli parameters that encode the metric on V and control the A-model.
• Complex moduli parameters that encode the complex structure of V and control the B-model.

The number of parameters of each type is determined by the Hodge numbers of V , defined by

hpq(V ) = dimHq(V,Ωp
V ). (1)

In particular, h11(V ) is the number of Kähler parameters and h21(V ) is the number of
complex parameters.

The central idea of mirror symmetry is that given a family of Calabi–Yau threefolds V , there should
be a mirror family of Calabi–Yau threefolds V ◦ such that the corresponding SCFTs are isomorphic in
a way that interchanges the A- and B-models and hence interchanges Kähler and complex moduli. In
particular, V and V ◦ satisfy

h11(V ◦) = h21(V ) and h21(V ◦) = h11(V ). (2)

The first explicit example of mirror symmetry involves the quintic threefold V ⊆ P4 and its mirror,
which is defined as follows.

Example 3.2. To construct the quintic mirror, we begin with the threefold in W ⊆ P4 defined by

x50 + x51 + x52 + x53 + x54 + ψx0x1x2x3x4 = 0, ψ ∈ C \ {0}. (3)

Let ζ = e2πi/5 and note that the group

G = {(ζa0 , ζa1 , ζa2 , ζa3 , ζa4) | a0 + a1 + a2 + a3 + a4 ≡ 0 mod 5}

acts on W . The quotient W/G is not smooth, so one needs to do a resolution of singularities to produce
a smooth variety. If done carefully, the result is Calabi–Yau. This is the quintic mirror V ◦.

The single parameter ψ in the above equation gives the complex moduli parameter λ = ψ5, so that
h21(V ◦) = 1. This is consistent with (2) since the quintic threefold V has h11(V ) = 1.

As explained in the 1991 paper [1], we have the following miracle:

• Rational curves on V of various degrees are important in enumerative algebraic geometry. These
can be encoded into Gromov–Witten invariants that are intimately related to Kähler moduli and
the A-model of V .
• By mirror symmetry and the mirror map, we can switch to the B-model of V ◦, where the complex

moduli and B-model can be studied by the differential equations that arise in the variation of
Hodge structure on V ◦. This is straightforward to study since h21(V ◦) = 1.
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• The result is an explicit formula for all of the Gromov–Witten invariants! A careful description of
the formula is appears in ([10] Chapter 2).

This formula astounded the algebraic geometers: a far-out theory from physics turns a hard problem
in enumerative algebraic geometry into a solvable problem in Hodge theory. Mind blowing!

Since SCFTs are not mathematically rigorous, the formulas in [1] were regarded as conjectures by
the mathematics community. These formulas are now theorems (see ([10] Chapter 11) for proofs and
references to the original papers), though the full story of the relation between rational curves on the
quintic threefold and Gromov–Witten invariants is still not fully understood.

4. Mirror Symmetry and Reflexive Polytopes

After the quintic threefold, many other examples of mirror manifolds were discovered using weighted
projective spaces. However, there were some examples where the mirrors seemed to be missing. This
was rectified in 1994 when Batyrev [2] pointed out that a 4-dimensional reflexive polytope gives a pair
of Calabi–Yau threefolds that are natural candidates for a mirror pair.

An elementary approach to the transition from 4-dimensional reflexive polytopes to Calabi–Yau
threefolds can be found in the paper [11], which is accessible to undergraduates. A more sophisticated
approach uses the theory of toric varieties, which is an important part of modern algebraic geometry.
A brief introduction to toric varieties can be found in [12], while [4] gives a comprehensive treatment.

For us, the starting point is that a lattice polytope P ⊆ Rd gives a d-dimensional toric variety XP

as follows. Let t1, . . . , td be coordinates on the torus (C∗)d, where C∗ = C \ {0}. Then a lattice point
m = (a1, . . . , ad) ∈ Zd gives the Laurent monomial

tm = ta11 · · · t
ad
d .

Negative exponents are allowed, but this is fine since ti ∈ C∗. If P has “enough lattice points” (this can
be made precise) and P ∩ Zd = {m0, . . . ,ms}, then the map

t = (t1, . . . , td) ∈ (C∗)d 7−→ (tm0 , . . . , tms) ∈ Ps

is injective, and the toric variety XP ⊆ Ps is defined to be the closure of the image. Note that XP

contains the torus (C∗)d, hence the name “toric variety”. (When P does not have enough lattice points,
one uses nP for n� 0 in Z—see [4] §2.2 and §2.3.)

Besides helping to define XP , the lattice points of P also give some interesting hypersurfaces of XP .
Namely, if P ∩ Zd = {m0, . . . ,ms} as above, then the equation

c0 t
m0 + · · ·+ cs t

ms = 0 (4)

defines a hypersurface in (C∗)d. Its closure in XP is the desired hypersurface V ⊆ XP .

Example 4.1. When we apply this process to the polytope P = 5∆4 − (1, 1, 1, 1) from Example 2.1,
we get XP = P4, and the hypersurface is our friend the quintic threefold V ⊆ P4.
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If instead we use P ◦ = Conv(e1, e2, e3, e4, (−1,−1,−1,−1)), then we get the toric variety
XP ◦ = P4/G, where G is the group defined in Example 3.2. The six lattice points of P ◦ consist of
the origin and the five vertices, so that Equation (4) reduces to

c0 + c1 t1 + c2 t2 + c3 t3 + c4 t4 + c5 t
−1
1 t−12 t−13 t−14 = 0.

When we apply the homogenization process described in ([12] Section 13) and ([4] §5.4), this
equation becomes

c0x
5
0 + c1x

5
1 + c2x

5
2 + c3x

5
3 + c4x

5
4 + c5x0x1x2x3x4 = 0.

Rescaling the coordinates x0, . . . , x5 appropriately, one can assume that c0 = · · · = c4 = 1. Hence we
recover the Equation (3), which here defines the hypersurface of XP ◦ = P4/G that was denoted W/G in
Example 3.2. As explained in that example, this gives the quintic mirror V ◦ after a suitable resolution of
singularities.

It is satisfying to see how P and P ◦ lead naturally to the quintic threefold and its mirror. In 1994,
Batyrev [2] (see also ([10] Section 4.1)) proved the following general results:

• A 4-dimensional reflexive polytope P gives a hypersurface in XP that becomes a Calabi–Yau
threefold V after a suitable resolution of singularities.
• The dual polytope P ◦ gives a Calabi–Yau threefold V ◦, and the Hodge numbers of V and V ◦ are

related by
h11(V ◦) = h21(V ) and h21(V ◦) = h11(V ),

as required by mirror symmetry.

In 1995, the paper [13] used reflexive polytopes to supply the “missing mirrors” mentioned at the
beginning of this section. This was first clear indication of the deep relation between mirror symmetry
and 4-dimensional reflexive polytopes. However, there are two things to keep in mind:

• Not all Calabi–Yau threefolds arise from Batyrev’s construction. We will learn more about this
later in the paper.
• It is still an open question in physics as to whether V and V ◦ give isomorphic SCFTs when P is an

arbitrary 4-dimensional reflexive polytope. The evidence is compelling, but an actual isomorphism
is only known for certain special cases, such as the quintic threefold and its mirror.

5. Duality and Symmetry in Mirror Symmetry

Given the themes of duality and symmetry, it makes sense to say more about what they mean in the
context of mirror symmetry. The duality aspect is clear, given how P and P ◦ give a mirror pair V and
V ◦. But what about symmetry?

When considering a smooth projective threefold V , its Hodge numbers hpq = hpq(V ) from
Equation (1) are often represented in the Hodge diamond shown in Figure 4.
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Figure 4. The Hodge diamond of an arbitrary smooth projective threefold (a); the Hodge
diamond of a Calabi–Yau threefold (b).

In this figure, the Hodge diamond on the right follows from standard facts about smooth projective
threefolds and the definition of Calabi–Yau. In particular, the Hodge diamond of a Calabi–Yau threefold
is completely determined by h11 = h11(V ) and h21 = h21(V ). Since mirror symmetry gives

h11(V ◦) = h21(V ) and h21(V ◦) = h11(V ),

we see that the Hodge diamond of V is the mirror image of the Hodge diamond of V ◦ about the 45◦ line
through the center of the diamond. This is the origin of the name “mirror symmetry”.

The Hodge diamond symmetry applies to a single mirror pair V and V ◦. If we take the Hodge
numbers of all mirror pairs, then another remarkable picture emerges. We noted in Section 2 that there
were 473,800,776 4-dimensional reflexive polytopes. This gives a lot of mirror pairs, all of which have
symmetric of Hodge numbers. When plotted in two dimensions, we get Figure 5.

Figure 5. χ = 2(h11 − h21) (horizontal) versus h11 + h21 (vertical) for Calabi–Yau
threefolds coming from 4-dimensional reflexive polytopes. Reprinted from [14] (p. 432)
with permission of International Press of Boston.

This iconic image is taken from [14]. Since the Betti numbers are the row sums of the of Hodge
diamond, the topological Euler characteristic is χ = 2(h11−h21). This invariant from algebraic topology
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is important in mathematical physics, where it shows up in various guises (central charge of a Virasoro
algebra, ±2× number of fermion generations, etc.). Mirror symmetry interchanges h11 and h21. This
leaves the vertical coordinate h11 + h21 of Figure 5 unchanged but replaces the horizontal coordinate
χ = 2(h11−h21) with its negative. Hence mirror symmetry underlies the bilateral symmetry of Figure 5.

The 2015 paper [15] presents a state-of-the-art discussion of Figure 5, which includes data for other
mirror pairs beyond those arising from 4-dimensional reflexive polytopes. That paper also describes the
website [16] where the reader can find the most current version of Figure 5.

6. CICYs and Duality of Cones

We mentioned earlier that not all Calabi–Yau threefolds come from 4-dimensional reflexive polytopes.
Currently, there is no classification of Calabi–Yau threefolds, although many constructions are known.
Some involve toric varieties, while others, such as those described in ([10] Section 4.4), have nothing to
do with toric methods.

Within the toric realm, there is more to the story than just hypersurfaces in 4-dimensional toric
varieties. For example:

• A generic intersection of two cubic hypersurfaces in P5 is a Calabi–Yau threefold.
• A generic intersection of two quadric hypersurfaces and a cubic hypersurface in P6 is a

Calabi–Yau threefold.

There are similar examples in higher dimensional projective spaces. These are example of complete
intersection Calabi–Yau threefolds, often written CICYs. The term “complete intersection” refers to the
fact that the number of defining equations equals the codimension.

These examples can be generalized to the toric setting where higher dimensional reflexive polytopes
take center stage. The construction is based on work of Batyrev and Borisov. We will follow the version
presented in [17], focusing on the case of CICY threefolds. The reader should consult [17] for references
to the original papers.

Before we can begin, we need some tools from polyhedral geometry:

• The Minkowski sum of polytopes P1, P2 ⊆ Rd is defined by

P1 + P2 = {u+ v | u ∈ P1, v ∈ P2}.

Note that P1 + P2 is a lattice polytope whenever P1 and P2 are.
• Points m1, . . . ,ms ∈ Zd generate the rational convex polyhedral cone

σ = Cone(m1, . . . ,ms) = {λ1m1 + · · ·+ λsms | λi ≥ 0} ⊆ Rd.

• Given such a cone σ, its dual is

σ∨ = {u ∈ Rd | u ·m ≥ 0 for all m ∈ σ}.

Then σ∨ is again a rational convex polyhedral cone, and we have the duality (σ∨)∨ = σ.
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Proofs of these standard facts can be found in [3].
Now suppose that we have a (r + 3)-dimensional reflexive polytope P that is a Minkowski sum

P = P1 + · · ·+ Pr, (5)

where each Pi is a lattice polytope containing the origin. This is called a nef-partition for reasons having
to do with numerically effective divisors on toric varieties.

Given a nef-partition Equation (5), we get the toric varietyXP of dimension r+3, and using the lattice
points of the Minkowski summands P1, . . . , Pr as in Equation (4), we get hypersurfaces Y1, . . . , Yr ⊆
XP . If the equations of the Yi are sufficiently generic, then the intersection

Y1 ∩ · · · ∩ Yr

is complete intersection threefold whose resolution of singularities (carefully done) is a Calabi–Yau
threefold V . This is CICY threefold determined by the nef-partition Equation (5). The examples
presented at the beginning of this section are instances of this construction.

To create the mirror family, we use duality, but we have to be careful since in Equation (5), the Pi
contain 0, but not as an interior point. This means that the dual P ◦i is an unbounded polyhedron. The key
idea of the Batyrev–Borisov construction is to define “dual” polytopes Q1, . . . , Qr as follows:

Qi = {u ∈ Rd | u ·m ≥ −1 for all m ∈ Pi, u ·m ≥ 0 for all m ∈ Pj, j 6= i}. (6)

Here are the key properties of Q1, . . . , Qr:

• Q1, . . . , Qr are lattice polytopes containing the origin.
• Q = Q1 + · · ·+Qr is a reflexive polytope of dimension r + 3.

In other words, Q = Q1 + · · · + Qr is a nef-partition, called the dual nef-partition. This also works in
reverse, since P = P1 + · · ·+ Pr is the dual of Q = Q1 + · · ·+Qr.

The dual nef-partition Q = Q1 + · · · + Qr gives the toric variety XQ and the hypersurfaces coming
from Q1, . . . , Qr. The resulting CICY threefold V ◦ is a candidate for the mirror of the CICY V of the
original nef-partition P = P1 + · · ·+ Pr.

To get a better sense of what Equation (6) means from the point of view of duality, let us focus on Q1.
First observe that the cone

Cone(P2 ∪ · · · ∪ Pr) = Cone(P2 + · · ·+ Pr)

is rational polyhedral since it is the cone generated by the vertices of P2, . . . , Pr. Then we can write Q1

as follows:

Q1 = {u ∈ Rd | u ·m ≥ −1 for all m ∈ P1, u ·m ≥ 0 for all m ∈ Pj, j = 2, . . . , r}
= P ◦1 ∩ Cone(P2 ∪ · · · ∪ Pr)∨.

Individually, P ◦1 and Cone(P2 ∪ · · · ∪ Pr)∨ are unbounded polyhedra. Their intersection is bounded,
i.e., is a polytope, because 0 is an interior point of P1 + · · · + Pr. This works not just for Q1 but for all
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of the Qi. The surprise, as noted in the above bullets, is that the Qi are lattice polytopes with reflexive
Minkowski sum.

The resulting “duality” between P and Q is remarkable: we take P and decompose it into pieces via
P = P1 + · · ·+Pr. For each piece Pi, we modify the usual dual P ◦i using the cone dual to the remaining
pieces. This gives Qi, and then we assemble the Qi to create Q = Q1 + · · ·+Qr.

Here is an example of what this looks like in an especially simple case.

Example 6.1. Consider the reflexive polygon P = 3∆2 − (1, 1) ⊆ R2. This is the polygon labeled “9”
in Figure 3. Note that P is the 2-dimensional analog of the polytope 5∆4 − (1, 1, 1, 1) ⊆ R4 that gives
the quintic threefold.

Figure 6 shows a nef-partition of P and the resulting dual nef-partition. In the figure, note that Q1 is
a line segment. The “dual” Q is equivalent to the polygon labeled “5a” in Figure 3, while the usual dual
P ◦ of P is the polygon labeled “3” in Figure 3.

Figure 6. Dual nef-partitions P = P1 + P2 and Q = Q1 +Q2.

This example shows that the duality of nef-partitions differs from the usual duality of polytopes.
It is also possible to encode the duality of nef-partitions into the standard duality of cones. Given the

nef-partition P = P1 + · · ·+ Pr in Rd, consider the cone in Rd × Rr defined by

C{Pi} = Cone(P1 × e1) + · · ·+ Cone(Pr × er) ⊆ Rd × Rr,

and define C{Qi} similarly. Then one can show that C{Pi} and C{Qi} are dual cones under the standard
dot product in Rd × Rr.

The cones C{Pi} and C{Qi} are examples of dual reflexive Gorenstein cones. The duality of these
cones leads to additional examples relevant to mirror symmetry. We refer the reader to [17] for details
and further reading.

7. Conclusions

In this article we have explored several types of duality of polytopes that relate to mirror symmetry.
Although both physics and algebraic geometry have moved beyond the “classical” picture of mirror
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symmetry presented here, we hope to have made a convincing demonstration that something wonderful
happened in 1994 when Batyrev suggested that the duality of reflexive polytopes was relevant to mirror
symmetry.

Acknowledgments

I am grateful to Benjamin Nill for several useful comments and for creating Figure 2. I also thank the
reviewers for their helpful suggestions.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Candelas, P.; de la Ossa, X.; Green, P.; Parkes, L. A pair of Calabi–Yau manifolds as an exactly
soluble superconformal field theory. AMS IP Stud. Adv. Math. 1998, 9, 31–96.

2. Batyrev, V. Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties.
J. Algebr. Geom. 1994, 10, 493–535.

3. Ziegler, G. Lectures on Polytopes; Springer: New York, NY, USA, 1995.
4. Cox, D.A.; Little, J.; Schenck, H. Toric Varieties; American Mathematical Society: Providence,

RL, USA, 2011.
5. Beck, M.; Robins, S. Computing the Continuous Discretely, 2nd ed.; Springer: New York, NY,

USA, 2015.
6. Beck, M.; Nill, B.; Reznick, B.; Savage, C.; Soprunov, I.; Xu, Z. Let me tell you my

favorite lattice-point problem. . . . In Integer Points in Polyhedra—Geometry, Number Theory,
Representation Theory, Algebra, Optimization, Statistics; Beck, M., Haase, C., Reznick, B.,
Vergne, M., Welker, V., Yoshida, R., Eds.; American Mathematical Society: Providence, RL, USA,
2008; pp. 179–187.

7. Kreuzer, M.; Skarke, H. Complete classification of reflexive polyhedra in four-dimensions.
Adv. Theor. Math. Phys. 2002, 4, 1209–1230.

8. Greene, B. The Elegant Universe; Norton: New York, NY, USA, 1999.
9. Yau, S.-T.; Nadis, S. The Shape of Inner Space; Basic Books: New York, NY, USA, 2010.

10. Cox, D.A.; Katz, S. Mirror Symmetry and Algebraic Geometry; American Mathematical Society:
Providence, RL, USA, 1999.

11. Doran, C.; Whitcher, U. From polygons to string theory. Math. Mag. 2012, 85, 343–359.
12. Cox, D.A. What is a toric variety? In Topics in Algebraic Geometry and Geometric Modeling;

Goldman, R., Krasauskas, R., Eds.; American Mathematical Society: Providence, RL, USA, 2003;
pp. 203–223.

13. Candelas, P.; de la Ossa, X.; Katz, S. Mirror symmetry for Calabi–Yau hypersurfaces in weighted
P4 and extensions of Landau-Ginzburg theory. Nucl. Phys. B 1995, 450, 267–292.

14. Candelas, P.; de la Ossa, X.; He, Y.; Szendroi, B. Triadophilia: A special corner in the landscape.
Adv. Theor. Math. Phys. 2008, 12, 429–473.



Symmetry 2015, 7 1645

15. Altman, R.; Gray, J.; He, Y.-H.; Jejjala, V.; Nelson, B. A Calabi–Yau database: Threefolds
constructed from the Kreuzer–Skarke list. J. High Energy Phys. 2015, 2015, doi:10.1007/
JHEP02(2015)158.

16. A Database of Toric Calabi–Yau Threefolds. Available online: http://nuweb1.neu.edu/cydatabase
(accessed on 10 September 2015).

17. Batyrev, V.; Nill, B. Combinatorial aspects of mirror symmetry. In Integer Points in
Polyhedra—Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics;
Beck, M., Haase, C., Reznick, B., Vergne, M., Welker, V., Yoshida, R., Eds.; American
Mathematical Society: Providence, RL, USA, 2008; pp. 35–66.

c© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Reflexive Polytopes
	Mirror Symmetry
	Mirror Symmetry and Reflexive Polytopes
	Duality and Symmetry in Mirror Symmetry
	CICYs and Duality of Cones
	Conclusions

