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Abstract: We introduced an analysis to identify structural characterization of  

two-dimensional regular and amorphous networks. The analysis was shown to be reliable to 

determine the global network rigidity and can also identify local floppy regions in the 

mixture of rigid and floppy regions. The eigenmode analysis explores the structural 

properties of various networks determined by eigenvalue spectra. It is useful to determine 

the general structural stability of networks that the traditional Maxwell counting scheme 

based on the statistics of nodes (degrees of freedom) and bonds (constraints) does not 

provide. A visual characterization scheme was introduced to examine the local structure 

characterization of the networks. The eigenmode analysis is under development for various 

practical applications on more general network structures characterized by coordination 

numbers and nodal connectivity such as graphenes and proteins. 
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1. Introduction 

In nature, all materials can be considered a collection of atoms in specific patterns, and their properties 

are determined by the interactions between the atoms. The structures of materials, even in continuous 

limits, can be approximated by discrete nodes and bonds [1,2]. A simple model to describe these 

properties in the set of many atoms and their interactions would be a network model. Research on the 

network structures has a long history mostly back to the Lagrange era for mechanical properties [3]. The 

analogy of network structures to real materials in small scale has been widely employed to address 
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material characterizations both in analytic and computational approaches [3–6]. Mathematical 

formalisms in many different forms have been developed to predict statistics and kinematics of the 

networks by solving linear sets of equations of motion [7]. One of the fundamental mathematical 

analyses has been developed in the form of spectral graph theory to explore the topological 

characteristics of matrices constructed by nodal connectivity [8,9]. In the network structures, topological 

connectivity between each structural unit can construct a Laplacian matrix, which includes intrinsic 

structural information. The spectral analysis on the networks can provide structural stability by 

determining vibrational modes by matrix diagonalization. Afterwards, many other methods of the 

eigenmode analysis have been developed originating from the spectral graph theory. However, network 

analyses in distinct details and application fields shared similarity of their mathematical frameworks, 

which is originated from the spectral graph theory.  

The network models have been successfully employed in various characterizations of materials in 

nanoscale, and have been investigated due to interest in their applications in mechanical, electrical, and 

biological devices. It has been shown that the network models in specific atomic arrangements either in 

certain lattice or in amorphous can reflect most of the nanomaterials in infinitesimal variation limits. The 

material properties such as structural stability and energetics can be dependent on the specific network 

structures [10]. For instance, covalent bonds in atomic structures can be strong enough to maintain 

topology in low temperature regime. Graphenes or proteins can be typical network objects on which the 

spectral graph theory can be applied to address structural characteristics. One of the widely-known 

network models would be Gaussian network model (GNM), which decomposes normal modes by the 

diagonalization of Laplacian (Kirchhoff) matrix. Residual fluctuations and correlations of biomolecules 

such as B-factor (or Debye-Waller factor) of proteins can be determined by GNM and shown consistent 

with the X-ray crystallography [11]. It has been generalized to be an isotropic network model (ANM) to 

determine three-dimensional characteristics of directional preferences [12]. A computationally efficient 

model called flexibility and rigidity index (FRI) has been recently proposed to determine localized 

properties of the networks without performing full eigenmode decomposition [13]. The FRI method 

utilizes only local geometries to determine localized properties such as B-factors in proteins and 

chemical reactivity in atomic molecules. By utilizing geometry of networks and specific environment, 

the FRI method is considered highly suitable and efficient for the prediction of localized 

biological/chemical functions and stabilities. 

In this study, we employed a full eigenvalue decomposition method to address the structural 

characterization of the elastic networks of nanomaterials, such as graphenes not limited to specific 

biomolecules like proteins, and compared with previous rigidity percolation studies [5,6]. From the 

numerical analysis, amplitude variations of nodes for eigenvalues (frequencies) were obtained for 

various lattices and amorphous networks with defects. Due to its intrinsic dynamic nature, the eigenmode 

analysis provides structural stabilities of the networks in dynamic environment. It was applied to 

determine global rigidity characterization of the networks, and also to identify local structural 

characteristics such as floppy and rigid regions. Pristine lattices and inhomogeneous networks with void, 

topological defects, and bond removals were numerically analyzed to obtain variations of the eigenmode 

spectra. Using the eigenvalue spectra, structural stability of the networks was visually characterized. 

Similarly, vibration energy of specific local regions was successfully identified to predict actively 
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responsive to external dynamic inputs. The eigenmode analysis provided insight on geometric effects on 

the vibrational density of states and structural stability in global scale and local scale as well. 

2. Rigidity Analysis 

One of the genius characterizations of network stability would be Maxwell counting to determine 

rigidity of networks [4]. It is based on a simple constraint counting on nodes (degrees of freedom) and 

bonds (constraints). Extra zero frequencies other than translational and rotational motions of whole body 

can allow virtual motion without energy variation, which corresponds to floppy modes [5]. Rigidity 

percolation study is a fascinating subject providing physical understanding on continuous random 

network models for glasses by relatively simple geometric models [2,5]. As numerical capability to solve 

large network models is enhanced, various numeric algorithms replace the analytic approach to 

investigate generalized network models (with defects, amorphous, and complex connectivity). One of 

the recently developed, simple and fast combinatorial algorithms would be a pebble algorithm originated 

from ancient children’s play [14]. It was applied to large central-force and bond-bending networks to 

determine rigidity percolation characteristics and to identify locally floppy, rigid, over-constraint 

regions. It was shown to agree well with neutron scattering measurement of the density of states [6]. The 

structural stability sometimes had been investigated in dynamical point of view by considering realistic 

interactions between the nodes [15]. It can provide more versatile characterization tools, e.g., assessment 

of network rigidity and mechanical strength which the Maxwell’s constraint counting cannot provide. 

For rigorous study, until recently, it still requires high computational cost because enormous large set of 

linear equations should be resolved. 

One characteristic of the rigidity of networks would be mechanical strength to resist under certain 

deformation. A network structure made of nodes and bonds can be characterized by certain geometric 

parameters, e.g., coordination number and nodal connectivity. Rigidity percolation is a phenomenon that 

cohesive rigidity occurs for a structure beyond a certain threshold of these parameters. A general network 

structure can have floppy, rigid, and over-constraint regions [16]. Nodes in the floppy region can freely 

move without any energy cost in infinitesimal displacement. If the infinitesimal displacement of the 

nodes changes the energy, it is called rigid. In an over-constraint region, there are more constraints to 

be marginally rigid. 

The network shown in Figure 1 is globally rigid by the Maxwell counting rule with more constraints 

than the degrees of freedom, but it is noted that the network can have a locally floppy region. Two nodes 

in the red dotted box are only in the floppy region and the rest nodes in the rest part of the network are 

completely rigid. It is shown that one can remove a bond without destroying the rigidity of the whole 

network. For example, the removal of a diagonal bond connecting A and B does not change the structural 

property of the network. Thus, this bond is an excessive bond in the over-constraint region. It should be 

noted that the Maxwell counting rule is simply to determine the rigidity, but it does not provide any 

detail information of locally floppy, rigid, and over-constraint. 

Suppose that one may add a bond between C and D, and an over-constraint bond at the center is 

removed. We can have a completely rigid structure without any locally floppy region. This new network 

structure has the same number of bonds as the original network. There are four zero-frequency modes 

for the structure deformation without any energy cost. Two transitional modes and one rotational mode 
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are all trivial modes in two-dimensional networks with open boundary conditions. The one nontrivial 

zero-frequency mode is determined that for which the floppy region moves horizontally with 

infinitesimal amount. Here we regard the zero frequency mode is the case where the longitudinal length 

is not changed for all bonds in the first order approximation. 

 

Figure 1. Square lattice with diagonal bonds added with open boundary condition. Nodes in 

the dotted box denote a floppy region. 

3. Methodology: Eigenmode Analysis 

We employed an eigenmode analysis to investigate structural properties on various types of 

networks [7,17]. A set of linear Lagrange equations induced for various network structures was 

constructed and implemented for computational analysis of their eigenmode spectra. The networks 

consist of nodes with mass and bonds by Hook’s law subject to infinitesimal deformation limits [15]. It 

was applied to analyze the structural properties and energetics of networks. 

3.1. Equation of Motion 

The eigenmode analysis has been introduced for the study of normal mode properties of some  

two-dimensional network structures. For this, we have derived a set of linear equations for small 

oscillation of d × n coordinates where n is the number of nodes and d is the spatial dimension. In two 

dimensions (d = 2), we establish a 2n × 2n matrix with the coefficients of these linear equations and, 

hence, the normal mode vibrations were investigated in two-dimensional networks. Force equation for 

i-th node exerted by j-th node for the updated positions (𝑟𝑖 , 𝑟𝑗) of two nodes from the initial positions 

(𝑟𝑖,0, 𝑟𝑗,0) is given by 

𝐹⃗𝑖𝑗 = −𝑘𝑖𝑗(|𝑟𝑖 − 𝑟𝑗| − |𝑟𝑖,0 − 𝑟𝑗,0|)
(𝑟𝑖−𝑟𝑗)

|𝑟𝑖 − 𝑟𝑗|
 (1) 

where 𝑘𝑖𝑗  is the spring constant of the bond between i-th and j-th node. For small displacements of  

𝑑𝑖 = 𝑟𝑖 − 𝑟𝑖,0 and some derivations under the first order approximation, this becomes 
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𝐹⃗𝑖𝑗 = −𝑘𝑖𝑗

𝐿⃗⃗𝑖𝑗,0

𝐿𝑖𝑗,0
2 (𝐿⃗⃗𝑖𝑗,0 ∙ 𝑑𝑖𝑗) (2) 

where 𝐿⃗⃗𝑖𝑗,0 = 𝑟𝑖,0 − 𝑟𝑗,0 and 𝑑𝑖𝑗 = 𝑑𝑖 − 𝑑𝑗 . All nodes in a normal mode are subject to vibrate with the 

same resonant frequency ω from the equilibrium positions as the following (only x-component is under 

investigation and y-component is in the same form) 

𝑑𝑖
𝑥(𝑡) = A𝑖𝑥sinω𝑡 (3) 

Then, the equation of motion of the x-component of the i-th node (𝑑𝑖
𝑥) surrounded by the j-th nodes 

is represented by  

𝑚𝑖ω
2𝑑𝑖

𝑥 = −∑𝑘𝑖𝑗

𝐿𝑖𝑗,0
𝑥

𝐿𝑖𝑗,0
2

𝑗

(𝐿⃗⃗𝑖𝑗,0 ∙ 𝑑𝑖𝑗) (4) 

Here, 𝑚𝑖 is the mass of the i-th node and all 𝑚𝑖 are considered equal as M. For the spring constant,  

𝑘𝑖𝑗 = 𝑘𝑗𝑖 in general. The matrix form of the linear equations is represented by 

Mω2 (
𝑑𝑖

𝑥

𝑑𝑖
𝑦) = −(

M𝑥𝑥 M𝑥𝑦

M𝑦𝑥 M𝑦𝑦
) (

𝑑𝑖
𝑥

𝑑𝑖
𝑦) (5) 

where 

M𝑥𝑥 =

[
 
 
 
 
 
 
 
 
 
 
∑ η1𝑗𝑘1𝑗

〈𝑛𝑛〉

𝑗

𝐿1𝑗,0
𝑥 2

𝐿1𝑗,0
2 −η12𝑘12

𝐿12,0
𝑥 2

𝐿12,0
2

−η21𝑘21

𝐿21,0
𝑥 2

𝐿21,0
2 ∑ η2𝑗𝑘2𝑗

〈𝑛𝑛〉

𝑗

𝐿2𝑗,0
𝑥 2

𝐿2𝑗,0
2

⋯

−η1𝑛𝑘1𝑛

𝐿1𝑛,0
𝑥 2

𝐿1𝑛,0
2

−η2𝑛𝑘2𝑛

𝐿2𝑛,0
𝑥 2

𝐿2𝑛,0
2

⋮ ⋱ ⋮

−η𝑛1𝑘𝑛1

𝐿𝑛1,0
𝑥 2

𝐿𝑛1,0
2 −η𝑛2𝑘𝑛2

𝐿𝑛2,0
𝑥 2

𝐿𝑛2,0
2

⋯ ∑ η𝑛𝑗𝑘𝑛𝑗

〈𝑛𝑛〉

𝑗

𝐿𝑛𝑗,0
𝑥 2

𝐿𝑛𝑗,0
2
]
 
 
 
 
 
 
 
 
 
 

 (6) 

and 

M𝑥𝑦 =

[
 
 
 
 
 
 
 
 
 
 
∑ η1𝑗𝑘1𝑗

〈𝑛𝑛〉

𝑗

𝐿1𝑗,0
𝑥 𝐿1𝑗,0

𝑦

𝐿1𝑗,0
2 −η12𝑘12

𝐿12,0
𝑥 𝐿12,0

𝑦

𝐿12,0
2

−η21𝑘21

𝐿21,0
𝑥 𝐿21,0

𝑦

𝐿21,0
2 ∑ η2𝑗𝑘2𝑗

〈𝑛𝑛〉

𝑗

𝐿2𝑗,0
𝑥 𝐿2𝑗,0

𝑦

𝐿2𝑗,0
2

⋯

−η1𝑛𝑘1𝑛

𝐿1𝑛,0
𝑥 𝐿1𝑛,0

𝑦

𝐿1𝑛,0
2

−η2𝑛𝑘2𝑛

𝐿2𝑛,0
𝑥 𝐿2𝑛,0

𝑦

𝐿2𝑛,0
2

⋮ ⋱ ⋮

−η𝑛1𝑘𝑛1

𝐿𝑛1,0
𝑥 𝐿𝑛1,0

𝑦

𝐿𝑛1,0
2 −η𝑛2𝑘𝑛2

𝐿𝑛2,0
𝑥 𝐿𝑛2,0

𝑦

𝐿𝑛2,0
2 ⋯ ∑ η𝑛𝑗𝑘𝑛𝑗

〈𝑛𝑛〉

𝑗

𝐿𝑛𝑗,0
𝑥 𝐿𝑛𝑗,0

𝑦

𝐿𝑛𝑗,0
2

]
 
 
 
 
 
 
 
 
 
 

 (7) 

Here, Myy and Myx can be determined in a similar manner with Mxx and Mxy. The sum of ∑ Element𝑖𝑗
〈𝑛𝑛〉
j  

for i-th node is taken for all connected node (j). In the matrices η𝑖𝑗 is 1 when two nodes of i and j are 

connected and 0 otherwise. These matrices are sparse because only the nearest neighbors are connected. 
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Solutions of the above Equation (5) can describe entire normal mode motions of the network system. 

Eigenmodes with zero eigenvalue, equivalently zero frequency, are those which require no energy for 

the vibrational motions. Under open boundary conditions, there are three trivial modes, two translational 

modes and one rotational mode. Under a periodic boundary condition, the rotational mode does not exist. 

If there are zero energy modes other than these trivial modes, they are floppy modes of the network 

structure and show that the network is floppy. Here, it should be noted that if the network contains a 

single locally floppy region, the analysis generates zero energy mode and the network is considered 

floppy. Thus, it may not distinguish global rigidity and local rigidity. However, as we observed in 

Figure 1, it is possible for globally rigid network to possess a locally floppy region. Since the global 

rigidity (or structural stability) might be crucial in many real structural applications, one leaves this study 

for an important future work. 

Figure 2a shows a triangular network with randomly removed bonds. Before one removes any bond, 

the perfect triangular network is completely rigid, and, hence, the number of nontrivial zero energy mode 

is zero. One may expect that as more bonds are removed, the number of nontrivial zero energy modes 

increases. If nearly all bonds are removed, that is, all nodes are nearly independent, the number of 

nontrivial zero energy modes reaches its maximum value and this result is shown in Figure 2b. 

Obviously, this agrees with the results of previous studies including the pebble game algorithm. The 

value of bond impurity fraction, at which the second derivative of the nonzero energy mode fraction with 

respect to the bond impurity fraction reaches the maximum value, is the threshold of the rigidity 

percolation for this structure. The value of the fraction of connected bonds is reported as 0.66 from the 

previous studies [6], and the result from our eigenmode analysis on relatively small sized samples is 

shown to be well matched with the prediction. 

  

(a) (b) 

Figure 2. (a) Triangular network with randomly removed bonds. The dotted box denotes the 

unit box for periodic boundary condition. (b) Rigidity percolation behavior is shown in the 

plot for the fraction of nonzero energy mode vs. bond impurity fraction. 
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3.2. Nodal Amplitude 

Normal mode behavior of a network structure is well represented by the eigenvalue distribution. Since 

the eigenvalue is a square of the normal mode frequency, the eigenvalue distribution shows some aspects 

such as the bandwidth, that is, the maximum frequency and the probability distribution of the 

frequencies, which is related to the degeneracy of the specific eigenvalue. As in our previous 

studies [7,17], the eigenvalue distribution, that is, the vibrational density of states can be represented by 

a continuous form as a sum of Gaussian functions as Equation (8). The width of the Gaussian function 

σ is arbitrarily chosen and each Gaussian function represents a single eigenmode and, therefore, 

eigenvalues with large degeneracies are represented with high peaks. 

g(λ, σ) =
1

2𝑛σ√2π
∑ exp(−(λ − λ𝑖)

2/2σ2)
2𝑛

𝑖=1
 (8) 

For each normal mode, the nodes in the network structure vibrate in some patterns and with certain 

amplitudes. In order to represent a normal mode in two-dimensional structure with n nodes, we have 2n 

amplitudes. Therefore, for a given eigenvalue λ and node j, there are two amplitudes in two directions, 

A𝑗,𝑥(λ) and A𝑗,𝑦(λ). The two amplitudes in each axis can be combined to a radial amplitude A𝑗,𝑟(λ) as 

follows: 

A𝑗,𝑟
2 (λ) = A𝑗,𝑥

2 (λ) + A𝑗,𝑦
2 (λ) (9) 

This radial amplitude A𝑗,𝑟(λ) is the level of the motion of j-th node at the normal mode with the 

eigenvalue λ. In order to represent this in a continuous form, we multiply A𝑗,𝑟(λ) by the Gaussian 

function g(λ, σ) as  

𝑓𝑗(λ) = A𝑗,𝑟
2 (λ)g(λ, σ) (10) 

While the above represents the response of the j-th node to the normal mode with certain eigenvalue λ, 

one may want the response of the node to many normal modes with the eigenvalues within a certain 

domain λa~λb. We just sum the value in the Equation (10) over this eigenvalue domain as follows: 

𝐹𝑗(λa, λb) = ∫ A𝑗,𝑟
2 (λ)g(λ, σ)

λb

λa

dλ (11) 

This is a form of amplitude spectrum of the j-th node, which represents how the level of the motion of 

j-th node changes according to the eigenvalue in this domain of the eigenvalue. For the full amplitude 

spectrum, we set 

𝐹𝑗(λ1, λ2n) = ∫ A𝑗,𝑟
2 (λ)g(λ, σ)

λ2n

λ1

dλ (12) 

4. Structural Analysis 

The radial amplitude can be simultaneously determined for all nodes in the network structure. By 

calculating and showing a scalar value for all nodes, one can show certain properties for the structure. 

One can add up squared values of radial amplitude for an eigenvalue domain as follows: 
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F𝑗(λ1, λ2) = ∑ A𝑗,𝑟
2

λ2

λ=λ1

(λ) (13) 

This value F𝑗(λ1, λ2) can be calculated for all node j and be shown together in order to represent node 

responses for the eigenvalue range of λ1~λ2. We will call this quantity as a squared amplitude sum. 

With this squared amplitude sum, we can identify individual node or set of the nodes which are more 

reactive under external dynamic inputs with a certain range of eigenvalue. 

4.1. Triangular Network with Bond Defects 

In a network structure, the floppy region costs no energy to be deformed while others cost a certain 

amount of energy. If we choose the eigenvalue domain only for zero eigenvalue, we may find the floppy 

regions with the squared amplitude sum. Other than the trivial modes such as translational modes, only 

nodes in floppy regions may move for zero eigenvalues, that is, for zero energy modes. In general, there 

are degeneracies for zero eigenvalue and there are many zero energy modes other than the trivial modes 

for large networks. Therefore, the squared amplitude sum for zero eigenvalue has much larger value for 

nodes in floppy regions than for the rests. Figure 3 shows the triangular network with randomly removed 

bonds. All nodes in the network have the same mass and the spring constant is uniform. In the figure, 

the size of the node denotes the squared amplitude sum for zero eigenvalue. Only two nodes show large 

amplitude for the zero energy modes representing floppy nodes. This method can be applied not only for 

zero energy modes but also for the finite energy modes. By calculating this squared amplitude sum for 

various eigenvalue domains, one can find structural properties of a network regarding normal 

mode dynamics.  

 

Figure 3. Triangular network with randomly removed bonds. Dotted box denotes the unit box 

for periodic boundary condition. Size of the node denotes amplitude for zero energy modes, 

that is, floppy nodes. Note two floppy nodes have longer radii than the other rigid nodes. 

4.2. Randomized Hexagonal Networks 

As mentioned earlier, the squared amplitude sum for higher eigenvalue domains enables us to determine 

stiffer regions. Nodes in these regions are more responsive for normal modes with higher eigenvalues. 

Here we introduce a hexagonal lattice network as an illustrative example. Two-dimensional hexagonal 
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network is geometrically identical to the graphene in real world [18]. Numerous characterizations were 

performed on the superior properties of the graphenes with realistic defects. One of the typical defects 

in graphene is the Stone-Wales defect [19,20]. Figure 4a shows a structure of 800 node hexagonal 

network with five Stone-Wales defects. Here, we calculated the amplitude sum for the eigenvalues larger 

than 3.0, F𝑗(λ > 3) and showed as the color for all nodes. Nodes with large values of F𝑗(λ > 3) are 

mostly in the Stone-Wales defects and nearly all other nodes have very small values of F𝑗(λ > 3) except 

for a few. In addition, these few nodes are all rather close to the defects. The reason to choose the 

eigenvalues above 3.0 is that adding these Stone-Wales defects to the hexagonal network creates 

eigenvalues above 3.0 as shown in Figure 4c. Figure 4c represents the vibrational density of states for 

various networks plotted with the sum of the Gaussian function g(λ, σ) with σ = 0.05 according to 

Equations (8) and (12) [17]. 

  

(a) (b) 

 

(c) 

Figure 4. (a) A hexagonal network with five Stone-Wales defects. (b) Nearly random 

network of the hexagonal network with 65 Stone-Wales defects. Color of the node denotes 

sum of the amplitude for eigenvalue larger than 3.0. (c) Vibrational density of states of 

hexagonal networks: pristine graphene, five Stone-Wales defects, and random network. 
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By adding more Stone-Wales defects and relaxing with molecular dynamics, one can get a random 

network as shown in Figure 4b [1,5,17] and here we also showed the squared amplitude sum F𝑗(λ > 3). 

Nodes with large values of F𝑗(λ > 3) are distributed in an irregular pattern; however, we find these are 

located near the regions with more deformed local structure. Especially, nodes in the square box have 

highest values of F𝑗(λ > 3) and three pentagons are neighboring here, that is, this is the mostly deformed 

region. The center point where these three pentagons meet has a very small value of F𝑗(λ > 3). Normal 

modes with λ > 3 create radial motions of nodes in each pentagon, and the destructive interference of 

these three radial motions at a given frequency destroyed the amplitude of the center node. From Figure 

4c, one can see that there are a lot more eigenvalues larger than 3.0 for the random network than for the 

network with five Stone-Wales defects. This is consistent with the fact that there are more deformed 

regions and more nodes are involved with the motions with the eigenvalues larger than 3.0.  

5. Energy Analysis 

While the squared amplitude sum describes the dynamic property of a network for a specified 

eigenvalue range, one may need a more universal quantity obtained through whole eigenvalue domain 

to describe overall network properties. One can try to add up the amplitude sum for all eigenvalues λ1 

to λ2𝑛, that is, F𝑗(λ1, λ2𝑛). From Equations (9) and (12) 

F𝑗(λ1, λ2n) = ∑ A𝑗,𝑟
2

λ2𝑛

λ=λ1

(λ) = ∑ (A𝑗,𝑥
2 (λ) + A𝑗,𝑦

2 (λ))

λ2𝑛

λ=λ1

 (14) 

And this is a sum of squared amplitudes of two orthonormal eigenvectors and hence is just two in any case.  

C𝑗(λ1, λ2𝑛) = ∑ A𝑗,𝑟
2

λ2𝑛

λ=λ1

(λ)λ (15) 

In the above Equation (15), λ is multiplied to the squared amplitudes before we sum up. We will consider 

this quantity as an averaged eigenvalue. For a normal mode in a system with uniform mass for all nodes, 

𝑚 = 1 and λ = ω2 = 𝑘. Then, the above has a form of ∑A𝑗,𝑟
2 (λ) 𝑘 and has a meaning of a sum of energy 

stored in the springs connected to the j-th node. Unless the network is uniform both for the coordination 

number and the spring constant, this quantity C𝑗(λ1, λ2𝑛) is nontrivial. By calculating this value for all 

nodes, one can show an energy contour to describe certain network properties. 

5.1. Triangular Network with Bond Removals  

Figure 5 shows a triangular network with randomly removed bonds and the averaged eigenvalue 

C𝑗(λ1, λ2𝑛) denoted for all nodes. This network has uniform spring constants, and the nodes have various 

coordination numbers varying from one to six. As one might conjecture, the averaged eigenvalue is the 

coordination number in this case since C𝑗(λ1, λ2𝑛) has a sense of sum of spring energy connected to a  

j-th node mention above. 
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Figure 5. Triangular network with randomly removed bonds. Dotted box denotes the unit 

box for periodic boundary condition. Color of the node denotes the averaged eigenvalue. 

5.2. Hexagonal Networks 

Figure 6 shows a hexagonal network with inhomogeneous spring constants with Gaussian distribution 

𝛥𝑘/𝑘 = 0.1. The homogeneous spring constant case is rather trivial, that is, the averaged eigenvalue 

C𝑗(λ1, λ2𝑛) would be three for all nodes, but this inhomogeneous case is different. Nodes connected with 

springs with higher spring constant have higher values of C𝑗(λ1, λ2𝑛). Regions containing these nodes 

are stiffer and have more mechanical energy stored. Similarly, nodes connected with springs with lower 

spring constant have lower values of C𝑗(λ1, λ2𝑛). Node A and B have highest and lowest values of 

C𝑗(λ1, λ2𝑛), respectively. 

 

Figure 6. Two-dimensional Hexagonal lattice with inhomogeneous spring constant, Δk/k = 0.1. 

Dotted box denotes the unit box for periodic boundary condition. Color of the bond denotes 

the value of the spring constant and color of the node denotes the averaged eigenvalue. 

For these extreme nodes A and B, Figure 7 shows the amplitude spectra F𝑗(λ1, λ2𝑛) in Equation (12). 

FA(λ1, λ2𝑛) has a large value for high eigenvalues and a small value for middle and low eigenvalues. 

FB(λ1, λ2𝑛) has very small value for high eigenvalues and large value for middle and low eigenvalues. 
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The amplitude spectra F𝑗(λ1, λ2𝑛)  represent physically more active frequencies and less active 

frequencies for a specific node. 

 

Figure 7. Amplitude spectra F𝑗(λ1, λ2𝑛) in Equation (12) of the hexagonal lattice for nodes 

with highest and lowest values of C𝑗(λ1, λ2𝑛). 

6. Conclusions 

In this study, we have investigated various network properties by using the eigenmode analysis. A 

full eigenvalue decomposition scheme was introduced to explore structural information of the networks 

in a wide range of normal modes. This method was shown to determine and visualize various 

characteristics of normal modes for specific frequency ranges or a full range of spectrums. By using the 

amplitude analysis, we were able to identify floppy regions in a network without energy cost under 

infinitesimal deformations. For this, we searched those regions containing nodes with large amplitudes 

for the zero eigenvalue. By searching the same for higher eigenvalues, more deformed regions were 

visually identified for the Stone-Wales defects added on the hexagonal network and the random network. 

In general, with this structural analysis, we can find dynamic response behavior of the networks for 

normal modes in any frequency domain. Along with the change of the network structure such as adding 

structural impurities and random networks, inhomogeneity of the spring constant is also a possible 

generalization for the network problem. The energy analysis was utilized for this problem and hence an 

energy contour map was visualized.  

It is clear that our eigenmode analysis may be implemented to calculate the vibrational density of 

states for a given system, which is comparable to the phonon spectrum by experiments such as Raman 

spectroscopy and other calculation methods [21]. Introducing longer-range bonds and angular force 

terms may be possible along with various structures with different masses to simulate real materials. 

Unlike the quantum mechanical calculations, our method has the capability to explore much larger sizes 

of the system. This is because one can solve the eigenvalue problem for tens of thousands of matrix 

dimensions even without using the sparse matrix technique [22]. The amplitude spectrum may replace 

the vibrational density of states in order to investigate the locality dependence of the structural property. 

Hence, this enables us to predict certain results of some other methods. 
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