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Abstract: Future communication networks would be required to deliver data on a far greater 

scale than is known to us today, thus mandating the maximal utilization of the available radio 

spectrum using cognitive radios. In this paper, we have proposed a novel cooperative 

spectrum sensing approach for cognitive radios. In cooperative spectrum sensing, the fusion 

center relies on reports of the cognitive users to make a global decision. The global decision 

is obtained by assigning weights to the reports received from cognitive users. Computation 

of such weights requires prior information of the probability of detection and the probability 

of false alarms, which are not readily available in real scenarios. Further, the cognitive users are 

divided into reliable and unreliable categories based on their weighted energy by using some 

empirical threshold. In this paper, we propose a method to classify the cognitive users into 

reliable, neutral and unreliable categories without using any pre-defined or empirically-obtained 

threshold. Moreover, the computation of weights does not require the detection, or false 

alarm probabilities, or an estimate of these probabilities. Reliable cognitive users are 

assigned the highest weights; neutral cognitive users are assigned medium weights (less than 

the reliable and higher than the unreliable cognitive users’ weights); and unreliable users are 

assigned the least weights. We show the performance improvement of our proposed method 

through simulations by comparing it with the conventional cooperative spectrum sensing 

scheme through different metrics, like receiver operating characteristic (ROC) curve and 
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mean square error. For clarity, we also show the effect of malicious users on detection 

probability and false alarm probability individually through simulations. 

Keywords: cognitive users’ classification; cooperative spectrum sensing; reliable users; 

neutral users; unreliable users; weights assignment; security in cognitive radios 

 

1. Introduction 

Information and communication technologies have experienced phenomenal growth in the past 

fifteen years. This growth has spawned tools and services that have redefined how we communicate and 

interact with each other. Billions of users share petabytes of data in the form of pictures and videos 

through social networking sites and services, like Facebook, Twitter, WhatsApp, YouTube and 

numerous others. The scale of multimedia content that today’s communication technologies have to cater 

for can be gauged from the fact that on YouTube alone, 300 h of video is uploaded every minute, which 

is equivalent to 49 years of multimedia content every day [1]. We are practically living in the era of “Big 

Data”. The future, with the proliferation of the Internet of Things (IoT) and ubiquitous computing, will 

see an even greater surge in the generation, sharing and processing of data. The scale of data that future 

networks have to handle would pose diverse challenges, like security, privacy, radio spectrum scarcity, etc. 

Future communication networks would undoubtedly require the most efficient use and maximal 

utilization of the radio spectrum, which would be the predominant medium for most of the data 

communication. 

The solution to the inherent problems of spectrum scarcity and spectrum under-utilization came in 

the shape of cognitive radio. Cognitive radio is a promising technology, which overcomes the spectrum 

scarcity and spectrum under-utilization by allowing the non-licensed users to use the licensed spectrum 

when it is not used by the licensed users [2,3]. Due to the less privileged status of the non-licensed or 

cognitive users, they are bound to leave the licensed spectrum instantly when the privileged or primary 

user (PU) needs the spectrum. This necessitates the cognitive user (CU) to have accurate and timely 

information of the spectrum’s utilization by the PU. This makes spectrum sensing one of the most 

important feature of the cognitive radios to protect the PU [4–6]. 

The sensing performance and reliability of a single CU highly deteriorates in an environment where 

the channel suffers from destructive effects, such as fading and shadowing or when the hidden terminal 

problem occurs. Therefore, cooperative spectrum sensing was proposed to overcome the channel destructive 

effects, to avoid the hidden terminal problem and to improve spectrum sensing performance [7,8].  

In cooperative spectrum sensing, the location diversity of multiple CUs is exploited by their cooperation, 

which helps to detect even a weak primary signal and consequently improves the detection performance 

of the cognitive radio network, decreases interference to the PU caused by misdetection and increases 

the protection of the PU. The individual reports generated by CUs are forwarded to a central decision 

entity, usually called the fusion center (FC). The size of an individual CU’s report may be one bit (in the 

case of a hard decision), l bits (1 < l < m, in the case of a quantized decision) [9,10] or m bits (in the 

case of a soft decision). The fusion center computes the global decision by using weighted sum of the 

CUs’ reports. 
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However, the advantages of the cooperation are also accompanied by certain challenges. For example, 

the cooperation incurs potential security vulnerabilities. The security vulnerabilities can be exploited by 

different types of attacks that can be launched in a cognitive radio network, for example primary user 

emulation (PUE) attack, jamming disruption attack and spectrum sensing data falsification (SSDF) or 

Byzantine attack [11]. In this work, we consider the SSDF attack in which the malicious users send 

wrong sensing reports to the fusion center either to degrade the sensing performance of the network or 

to achieve their selfish greedy objectives. 

The presence of the malicious user(s) in a cooperative environment severely degrades the sensing 

performance of the cognitive radio network [12]. A variety of approaches have been proposed in the 

literature [13–15] to restrict malicious users in different applications. In [15], the authors proposed an 

encrypted identification tag for the authentication of CUs and a reliability test for the detection of 

unreliable and malicious users. In [16], the authors proposed a distributed and lightweight method for 

the detection of intrusion in wireless sensor networks based on traffic monitoring and fuzzy inference 

system. Authentication-based security approaches are discussed in [17–19]. In [20], a cryptographic 

technique, like blind signature and electronic coin, is used to achieve mobility, reliability, anonymity 

and flexibility in a mobile wireless network. The weight-based cooperative spectrum sensing  

methods [21–23], where the weight coefficients of the CUs are computed using the Bayesian criterion 

or maximum likelihood ratio test, provide optimal detection performance. However, such methods, for 

the computation of weight coefficients, require prior knowledge of the PU’s steady-state probability, 

detection probability and false alarm probability or an estimate of these probabilities. Unfortunately, the 

prior unavailability of these probabilities in real scenarios makes such methods less practical. In [22], 

the authors use an empirical threshold to classify the CUs into reliable and unreliable categories. 

In this work, we propose a simple method that classifies the CUs into reliable, neutral and unreliable 

categories with no need for any pre-defined or empirical threshold. Each category is assigned a different 

weight. The computation of weights for different CUs in a particular category is carried out similar to 

the technique presented in our previous work [15]. The reliable CUs get the highest weights, whereas 

the unreliable CUs are assigned the lowest weights. The weights of the neutral CUs lay in between the 

reliable and unreliable CUs’ weights. For the computation and assignment of weights to different CUs, 

our proposed approach does not require the detection and false alarm probabilities. The weight 

coefficients are computed and updated by the current observation of the CUs. 

The rest of this paper is outlined as follows. The system model is described in Section 2. In  

Section 3, the proposed CU classification and weight computation are presented. Simulations results and 

a discussion are presented in Section 4. Finally, the paper is concluded in Section 5. 

2. System Model 

We consider a cognitive radio network as shown in Figure 1 that consists of N CUs, of which l CUs 

may experience fading or the shadowing effect and M (M << N) CUs are malicious users (MU). We 

assume three types of malicious users: always present (AP), always absent (AA) and always different (AD). 

In the first two types, malicious users always send a high or low signal, respectively, regardless of the 

actual status of the PU, whereas in the last type, the malicious user always sends an opposite signal of 
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PU status. We assume an error-free common control channel between CU and FC. We use the soft fusion 

rule, where each CU reports its observation to the fusion center in m bits. 

 

Figure 1. The considered cognitive radio network. PU, primary user; CU, cognitive user; 

FC, fusion center; MU, malicious user. 

Detection of the primary signal by the CU is a binary hypothesis testing problem. The signal received 

by the i-th CU is given as: 
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where H0 and H1 correspond to the hypotheses of the absence and presence of the PU signal, respectively, 

s(n) represents the primary signal received at the CU, hi(n) represents the channel gain and u(n) is the 

additive white Gaussian noise (AWGN) with zero-mean and σ𝑢
2 -variance. We assume that s(n) and u(n) 

are completely independent. Without loss of generality, the variance of noise is assumed to be the same 

at every CU. 

The local observation of the i-th CU is denoted by Yi and is obtained using the energy detection 

technique [24] given as: 
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where S is the number of samples measured in sensing period (τ). Yi can be approximated as a Gaussian 

random variable for larger S (e.g., S > 200), under both hypotheses H0 and H1 with means μ0, μ1 and 

variances σ0
2, σ1

2, respectively [25] as follows: 
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where γi is the signal-to-noise ratio (SNR) of the primary signal at the i-th CU. In the conventional 

cooperative spectrum sensing (CCSS), each CU performs local sensing in the sensing period and 

forwards its observation Yi in the reporting period, as shown in Figure 2, to the FC, where reports from 

all CUs are combined to obtain Z, to make a global decision (H0 and H1) as below: 
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where λ is the global threshold. The detection performance of the CR network is measured by the 

probability of detection (Pd) and probability of false alarm (Pf). The probability of detection is an 

indicator of interference to the PU. A high value of detection probability means minimum interference 

to the PU and high protection of the quality of service (QoS) of the PU. On the other hand, the probability 

of false alarm is an indicator of the spectrum utilization. A high value of false alarm probability means 

less spectrum utilization. For more protection of the PU and improved utilization of the spectrum, a high 

value of the detection probability and a low value of the false alarm probability are required. The 

detection and false alarm probabilities of the i-th CU are given, respectively, as: 
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where Q(.) is a monotonically-decreasing function defined as 
21

( ) exp
22π x

t
Q x dt
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Figure 2. Slot structure of the cognitive user’s operation. 

Since the fusion center receives local observations from the CUs, the local decision of the CUs is 

computed at the fusion center by applying the same energy threshold. The local decision of the i-th CU 

is denoted by DL,i and is given as below:  
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The energy threshold λ is assumed to be same for local and global decisions. In order to minimize the 

influence and bias of the i-th CU on global decision and weight assignments, the local decision and local 

observation of the i-th CU is skipped. The global decision computed by excluding the i-th CU 

observation/local decision is called partial global decision and is denoted by DG,i. Weighted observation 

of the CUs excluding the i-th CU is given as: 
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where wj(k − 1) is the weight coefficient assigned to the j-th CU in the previous slot. The weight 

coefficient, or simply weight, computation for all CUs is explained in Section 3.2. The partial global 

decision is computed using the following expression: 
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where 𝐻̂𝑞, 𝑞 = {0,1} is the global decision without considering the i-th CU. This results in N number of 

partial global decisions. The final global decision is obtained by applying the majority rule on the partial 

global decisions as below: 
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where 𝐶(𝐻̂𝑞), 𝑞 = {0,1} shows the number or count of 𝐻̂𝑞 . The accuracy of the global decision is 

assumed to be more than that of the partial global decisions and is assumed to be an exact approximation 

of the PU’s real status. 

For simulation, we calculate the global probability of detection and the global probability of false 

alarms as follows: 
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In the above equation, H shows the real status of the PU and is a stream of ones and zeros, where one 

represents the presence of the PU and zero represents the absence of the PU. The 𝑛((.)&&(.)) represents 

the number of times that the condition in the subscript is satisfied. 

3. Classification of the Cognitive Users and Weight Coefficients’ Computation 

The fusion center classifies the CUs into three categories, i.e., reliable, neutral and unreliable, and 

assigns weights to each category as described in the subsections to follow. 

3.1. Classification of the Cognitive Users 

The CUs are classified into reliable, neutral and unreliable categories on the basis of local decisions, 

partial global decisions and global decisions, i.e., DL,i, DG,i and DG, as below. 

3.1.1. Reliable Cognitive Users 

If the local decision of a CU is similar to the global decision, but is different from the partial global 

decision, this means that the CU is highly reliable and influential. This implies that the absence of such 

a CU produces a result that is different from the accurate result (global decision). Such CUs are classified 
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as reliable users, and the CUs in this category are assigned the highest weight coefficients, as shown in 

Figure 3. The weight coefficient of each CU in this category is computed in Section 3.2. 

 

Figure 3. Relationship of the weights of the reliable, neutral and unreliable cognitive users. 

The mathematical expression for reliable CUs can be expressed as below. 
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The set of reliable CUs and their observations (energy) are denoted by Ur and Er, respectively, and 

are given by the following expressions. 

,{ :  The value of  that satisfy Equation 12}r r iU U i  (13) 

{ :  The value of  that satisfy Equation 12}r iE Y i  (14) 

Let 𝑁+ be the total number of reliable CUs, i.e., the size of Ur or Er. 

3.1.2. Neutral Cognitive Users 

If the local decision of a CU and partial global decision are equal to the global decision, then the CU 

is classified as a neutral user. The same partial global decision and global decision implies that the 

presence or absence of the CU has no impact on the decision and shows a neutral behavior in decision 

making. The weights assigned to neutral CUs will be less than the reliable CUs, but greater than the 

unreliable CUs. The mathematical expression for the neutral CUs is given as: 

, , ,arg{(( ) & &( )) 1}n j L j G G j G
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
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(15) 

The set of neutral CUs and their observations (energy) are denoted by Un and En, respectively, and 

are given by: 

,{ :  The value of  that satisfy Equation 15}n n jU U j  (16) 

{ :  The value of  that satisfy Equation 15}n jE Y j  (17) 

Let 𝑁𝑜 be the total number of neutral CUs, i.e., a size of Un or En. 

3.1.3. Unreliable Cognitive Users 

If the local decision of a CU is different from the global decision, the CU is classified as an unreliable 

CU. The unreliable users are assigned the least weight coefficients. The mathematical expression for the 

unreliable CUs is given as: 
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The set of unreliable CUs and their observations are denoted by Uu and Eu, respectively, and are given 

as below: 

,{ :  The value of  that satisfy Equation 18}u u kU U k  (19) 

{ :  The value of  that satisfy Equation 18}u kE Y k  (20) 

Let 𝑁− be the total number of unreliable CUs, i.e., the size of Uu or Eu. The total number of CUs is 

the summation of reliable, neutral and unreliable CUs, as given by the following equation: 

oN N N N     (21) 

3.2. Weight Updating and Assignment 

Depending on the type of CUs, different weights are assigned to them, as shown in Figure 3. The highest 

weights are assigned to the reliable CUs, whereas the lowest weights are assigned to the unreliable CUs. 

Neutral CUs are assigned weights that are less than the weights of the reliable CUs and greater than the 

weights of the unreliable CUs. 

To compute the weight coefficients for the CUs, observations of the reliable, neutral and unreliable 

CUs (elements of Er, En and Eu) are sorted in ascending or descending order depending on the global 

decision, as follows: 
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where 𝑌𝐽
𝑆 represents the energy of the CU at the J-th index in the ordered set of energies. Note that 𝑌𝑁

𝑆 

is the highest energy and 𝑌1
𝑆 is the lowest energy in case of H1 and vice versa in the case of H0. The 

normalized weight coefficients of reliable CUs are computed by Equations (25) and (26). 
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The normalized weight coefficients of neutral CUs are given by Equations (27) and (28). 
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The normalized weight coefficients of unreliable CUs are given by Equations (29) and (30). 
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From the Equations (25)–(30), the weights of reliable, neutral and unreliable CUs are related as  

𝑤𝑘 < 𝑤𝑗 < 𝑤𝑖. Note that the maximum weight assigned to a neutral CU is less than the minimum weight 

of reliable CUs, and similarly, the maximum weight assigned to an unreliable CU is less than the 

minimum weight of neutral CUs. This relationship is shown, mathematically, below: 

max( ) min( )
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k j

j i

w w

w w
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where ,  ,  and u n rk U j U i U   . 

4. Simulation Results and Discussion 

The performance effectiveness of our proposed approach is shown through simulations in this section. 

We compare our proposed approach with the conventional cooperative spectrum sensing scheme. 

Simulation parameters are summarized in Table 1. We observe the ROC, probability of detection, 

probability of false alarms and mean square error of our proposed approach and conventional CSS.  

The minimum detection probability and maximum false alarm probability of the system are set to 0.8 

and 0.25, respectively. 

Table 1. Simulation parameters. 

Description Symbol Value 

Number of iterations l 1000 

Number of SUs N 15 

PU busy probability P(H1) 0.5 

Sensing duration τ 1 ms 

Sampling frequency fs 300 KHz 

Number of samples S 600 

Signal-to-noise ratio γ [−25 dB, −11 dB] with 1 dB decrement 

Number of malicious users M [0,1,2,3] 

Figure 4 shows the performance comparison of our proposed scheme and the conventional CSS 

scheme in terms of the ROC under the effect of zero, one and two malicious users (AD type). It is clear 

from the figure that as the number of malicious users increases, the detection performance of both 

schemes decreases. When there is no malicious user among the CUs, the gap between the performance curve 
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of our proposed approach and the conventional CSS is minimum. In this case, our approach performs slightly 

better than conventional CSS. By introducing malicious users (i.e., one or two), the gap between our 

proposed and conventional CSS is increased due to the more severe effect by MUs on conventional CSS. 

Our proposed approach minimizes the effect of MUs by judiciously categorizing the CUs into reliable, 

neutral and unreliable categories and assigning them weights accordingly. The effect of malicious users is 

suppressed by assigning low weights to them, which makes our proposed approach more robust  

and efficient. 

 

Figure 4. Performance comparison of the proposed method with conventional cooperative 

spectrum sensing in the presence of no, one and two malicious users. 

Figure 5 shows a comparison of the detection probability of our proposed scheme with the 

conventional CSS in the presence of no and three malicious users (one of each type), respectively. It is 

evident from the figure that the detection probability of conventional CSS drops to an unacceptable level 

(below 0.8) in the presence of malicious users, whereas the detection probability of our proposed 

approach maintains a stable and acceptable level (above 0.8) as the number of iterations increases after 

experiencing a slight initial degradation. The decreased detection probability occurs due to the presence 

of AF and AD types of malicious users on which conventional CSS has no control, whereas our proposed 

approach restricts them by properly placing in the unreliable category and assigning low weight coefficients. 

Figure 6 shows a comparison of the false alarm probability of our proposed approach with the 

conventional CSS in the presence of no and three malicious users (one of each type). It can be observed 

from the figure that when there are no malicious users, both schemes show similar false alarm 

probabilities, but when malicious users are introduced into the network, then our proposed scheme 

outperforms the conventional CSS scheme in terms of false alarm probability. The increased false alarm 

probability is due to the presence of AP and AD types of malicious users, which cannot be curtailed by 

conventional CSS, while our proposed approach restrains them by assigning low weight coefficients. 
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Figure 5. Effect of the malicious users on the detection probability of the proposed method 

and conventional cooperative spectrum sensing. 

 

Figure 6. Effect of the malicious users on false alarm probability of the proposed method 

and conventional cooperative spectrum sensing. 

In Figure 7, we compare the mean square error (MSE) of our proposed approach with that of the 

conventional CSS. The mean squared error has statistical equivalence to the probability of error in 

detection. The probability of error can be described in terms of the global misdetection probability and 

the global false-alarm probability as follows: 

1 0( ) * ( ) * ( )m fP e P P H P P H   (32) 

where Pm, PF are the global misdetection probability and the global false-alarm probability, respectively. 

In this paper, the MSE is obtained using the following equation. 
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where 𝐻𝑗 = {0 (PU absent),1 (PU present)}  represents the actual status of the PU and 𝐷𝐺,𝑗 =

{0 (PU absent),1 (PU present)} represents the global decision of our proposed approach at the j-th 

iteration. When Hj = 1 and DG,j = 0, related to Pm * P(H1), or when Hj = 0 and DG,j = 1, related to PF * P(H0), 

an error occurs. 

 

Figure 7. Mean square error of the proposed method and conventional cooperative spectrum 

sensing scheme in the presence of malicious user. P(H0) = P(H1) = 0.5. 

It can be observed from the figure that when the network is free of malicious users, both schemes 

show almost similar mean square error, but when malicious users are introduced into the network, then the 

error of conventional CSS becomes significantly greater than that of our proposed approach. The increased 

value of error in conventional CSS occurs due to high misdetection and high false alarm probabilities. 

5. Conclusions 

The unavailability of prior information of the detection and false alarm probabilities makes the 

schemes, which are based on these probabilities, less practical. In this paper, we proposed a simple, but 

efficient classification method that classifies the CUs into reliable, neutral and unreliable categories 

without requiring any empirical or pre-defined threshold for such classification. Malicious users are 

restricted by assigning the lowest weight, and the trustworthy CUs are encouraged by assigning higher 

weights accordingly. Weights are computed by the actual observation of the CUs, rather than detection 

and false alarm probabilities. The effectiveness of the proposed method of CUs’ classification and weight 

assignment has been demonstrated through simulations. 
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