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1. Introduction

Harmonic maps play a central role in geometry; they are critical points of the energy functional
E(ϕ) = 1

2

∫
M
|dϕ|2 vg for smooth maps ϕ of (M, g) into (N, h). The Euler–Lagrange equations are

given by the vanishing of the tension field τ(ϕ). In 1983, J. Eells and L. Lemaire extended [1] the notion
of harmonic maps to biharmonic maps, which are, by definition, critical points of the bienergy functional:

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg (1)

After G.Y. Jiang studied [2] the first and second variation formulas of E2, extensive studies in this
area have been done (for instance, see [3–42]). Notice that harmonic maps are always biharmonic
by definition.

The outline of this survey is the following:

(1) Preliminaries.
(2) Chen’s conjecture and the generalized Chen’s conjecture.
(3) Outline of the proofs of Theorems 3–5.
(4) Harmonic maps and biharmonic maps into compact Lie groups or compact symmetric spaces.
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(5) The CR analogue of harmonic maps and biharmonic maps.
(6) Biharmonic hypersurfaces of compact symmetric spaces.

2. Preliminaries

In this section, we prepare materials for the first and second variational formulas for the bienergy
functional and biharmonic maps. Let us recall the definition of a harmonic map ϕ : (M, g)→ (N, h), of
a compact Riemannian manifold (M, g) into another Riemannian manifold (N, h), which is an extremal
of the energy functional defined by:

E(ϕ) =

∫
M

e(ϕ) vg

where e(ϕ) := 1
2
|dϕ|2 is called the energy density of ϕ. That is, for any variation {ϕt} of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

E(ϕt) = −
∫
M

h(τ(ϕ), V )vg = 0 (2)

where V ∈ Γ(ϕ−1TN) is a variation vector field along ϕ, which is given by V (x) = d
dt
|t=0ϕt(x) ∈

Tϕ(x)N , (x ∈ M), and the tension field is given by τ(ϕ) =
∑m

i=1B(ϕ)(ei, ei) ∈ Γ(ϕ−1TN), where
{ei}mi=1 is a locally-defined frame field on (M, g), and B(ϕ) is the second fundamental form of ϕ
defined by:

B(ϕ)(X, Y ) = (∇̃dϕ)(X, Y )

= (∇̃Xdϕ)(Y )

= ∇X(dϕ(Y ))− dϕ(∇XY ) (3)

for all vector fields X, Y ∈ X(M). Here, ∇ and ∇N are connections on TM , TN of (M, g),
(N, h), respectively, and ∇ and ∇̃ are the induced ones on ϕ−1TN and T ∗M ⊗ ϕ−1TN , respectively.
By Equation (2), ϕ is harmonic if and only if τ(ϕ) = 0.

The second variation formula is given as follows. Assume that ϕ is harmonic. Then,

d2

dt2

∣∣∣∣
t=0

E(ϕt) =

∫
M

h(J(V ), V )vg (4)

where J is an elliptic differential operator, called the Jacobi operator acting on Γ(ϕ−1TN) given by:

J(V ) = ∆V −R(V ) (5)

where ∆V = ∇∗∇V = −
∑m

i=1{∇ei∇eiV −∇∇eieiV } is the rough Laplacian andR is a linear operator
on Γ(ϕ−1TN) given by R(V ) =

∑m
i=1R

N(V, dϕ(ei))dϕ(ei), and RN is the curvature tensor of (N, h)

given by RN(U, V ) = ∇N
U∇N

V −∇N
V∇N

U −∇N
[U,V ] for U, V ∈ X(N).

J. Eells and L. Lemaire [1] proposed polyharmonic (k-harmonic) maps, and Jiang [2] studied the first
and second variation formulas of biharmonic maps. Let us consider the bienergy functional defined by:

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2vg (6)

where |V |2 = h(V, V ), V ∈ Γ(ϕ−1TN).
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Then, the first variation formula of the bienergy functional is given (the first variation formula) by:

d

dt

∣∣∣∣
t=0

E2(ϕt) = −
∫
M

h(τ2(ϕ), V )vg (7)

Here,
τ2(ϕ) := J(τ(ϕ)) = ∆(τ(ϕ))−R(τ(ϕ)) (8)

which is called the bitension field of ϕ, and J is given in Equation (5).
A smooth map ϕ of (M, g) into (N, h) is said to be biharmonic if τ2(ϕ) = 0.

3. Chen’s Conjecture and the Generalized Chen’s Conjecture

Recall the famous Chen’s conjecture on biharmonic submanifold of the Euclidean space:

Chen’s conjecture: A biharmonic submanifold in the Euclidean space must be minimal.
One can consider biharmonic submanifolds of a Riemannian manifold of non-positive curvature, and

the generalized Chen’s conjecture is the following (cf., R. Caddeo, S. Montaldo, P. Piu [7] and also
S. Montaldo, C. Oniciuc [20], etc.):

The generalized Chen’s conjecture: A biharmonic submanifold in a Riemannian manifold of
non-positive curvature must be minimal.

Notice that the generalized Chen’s conjecture was solved negatively by giving a counter example by
Ou and Tang [27,41]. We first give several comments on Chen’s conjecture. It should be emphasized
that Chen’s conjecture has been still unsolved until now.

Second, we will treat the generalized Chen’s conjecture. K. Akutagawa and S. Maeta [3] gave a
remarkable breakthrough to Chen’s conjecture, by giving the following answer to this conjecture in the
case of properly-immersed submanifolds of the Euclidean space:

If we do not assume the properness condition, N. Koiso and myself [43] gave recently a partial answer
in the case of generic hypersurfaces of the Euclidean space. Namely, we obtained the following:

Theorem 1. Let ι : (Mn, g) ⊂ En+1 be an isometrically-immersed biharmonic hypersurface of the
Euclidean space. Assume that (1) every principal curvature λi has multiplicity one, i.e., λi 6= λj (i 6= j),
and (2) the principal curvature vector fields vi (i = 1, · · · , n) along ι satisfy that g(∇vivj, vk) 6= 0 for
all distinct triplets of integers i, j, k = 1, · · · , n. Then, it is minimal.

For harmonic maps, it is well known that:
If a domain manifold (M, g) is complete and has non-negative Ricci curvature and the sectional

curvature of a target manifold (N, h) is non-positive, then every energy finite harmonic map is a constant
map (cf., [44]).

See [15,45–49] for recent works on harmonic maps. Therefore, it is a natural question to consider
biharmonic maps into a Riemannian manifold of non-positive curvature. In this connection, Baird,
Fardoun and Ouakkas (cf., [4]) showed that:

If a non-compact Riemannian manifold (M, g) is complete and has non-negative Ricci curvature and
(N, h) has non-positive sectional curvature, then every bienergy finite biharmonic map of (M, g) into
(N, h) is harmonic.
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In our paper [21–23], we showed that:

Theorem 2. Assume that (M, g) is complete and (N, h) has non-positive sectional curvature.
(1) Every biharmonic map ϕ : (M, g) → (N, h) with finite energy E(ϕ) < ∞ and finite bienergy

E2(ϕ) <∞, is harmonic.
(2) In the case Vol(M, g) = ∞, every biharmonic map ϕ : (M, g) → (N, h) with finite bienergy

E2(ϕ) <∞, is harmonic.

We do not need any assumption on the Ricci curvature of (M, g) in Theorem 3. If (M, g)

is a non-compact complete Riemannian manifold whose Ricci curvature is non-negative, then
Vol(M, g) =∞ (cf., Theorem 7, p. 667, [50]). Thus, Theorem 3, Equation (2), recovers the result
of Baird, Fardoun and Ouakkas. Theorem 3 is sharp, since one cannot weaken the assumptions. Indeed,
the generalized Chen’s conjecture does not hold if (M, g) is not complete (cf., the counter examples
of Ou and Tang [27]). The two assumptions of finiteness of the energy and bienergy are necessary.
Indeed, there exists a biharmonic map ϕ, which is not harmonic, but the energy and bienergy are infinite.
For example, f(x) = r(x)2 =

∑m
i=1(xi)

2, x = (x1, · · · , xm) ∈ Rm is biharmonic, but not harmonic,
and has infinite energy and bienergy.

As the first bi-product of our method, we obtained (cf., [21,22]):

Theorem 3. Assume that (M, g) is a complete Riemannian manifold, and let ϕ : (M, g) → (N, h) be
an isometric immersion; the sectional curvature of (N, h) is non-positive. If ϕ : (M, g) → (N, h) is
biharmonic and

∫
M
|ξ|2 vg <∞, then it is minimal. Here, ξ is the mean curvature normal vector field of

the isometric immersion ϕ.

Theorem 4 gave an affirmative answer to the generalized B.Y. Chen’s conjecture (cf., [7]) under some
natural conditions.

For the second bi-product, we can apply Theorem 3 to a horizontally-conformal submersion
(cf., [51,52]). Then, we obtain:

Theorem 4. Let (Mm, g) be a non-compact complete Riemannian manifold (m > 2) and (N2, h),
a Riemannian surface with non-positive curvature. Let λ be a positive function on M belonging to
C∞(M) ∩ L2(M), and ϕ : (M, g) → (N2, h), a horizontally-conformal submersion with a dilation λ.
If ϕ is biharmonic and λ |Ĥ|g ∈ L2(M), then ϕ is a harmonic morphism. Here, Ĥ is trace of the second
fundamental form of each fiber of ϕ.

4. Outline of the Proofs of Theorems 3–5

In this section, we first give a sketch of the proof of Theorem 3.
The first step: For a fixed point x0 ∈M , and for every 0 < r <∞, we first take a cut-off C∞ function

η on M satisfying that: 0 ≤ η(x) ≤ 1 (x ∈M), η(x) = 1 (x ∈ Br(x0))

η(x) = 0 (x 6∈ B2r(x0)), |∇η| ≤ 2

r
(x ∈M)

(9)
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For a biharmonic map ϕ : (M, g)→ (N, h), the bitension field is given as:

τ2(ϕ) = ∆(τ(ϕ))−
m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei) = 0 (10)

so we have: ∫
M

〈∆(τ(ϕ)), η2 τ(ϕ)〉 vg =

∫
M

η2
m∑
i=1

〈RN(τ(ϕ), dϕ(ei))dϕ(ei), τ(ϕ)〉 vg

≤ 0 (11)

since the sectional curvature of (N, h) is non-positive.

The second step: Therefore, by Equation (11) and noticing that ∆ = ∇∗∇, we obtain:

0 ≥
∫
M

〈∆(τ(ϕ)), η2 τ(ϕ)〉 vg

=

∫
M

〈∇τ(ϕ),∇(η2 τ(ϕ))〉 vg

=

∫
M

m∑
i=1

〈∇eiτ(ϕ),∇ei(η
2 τ(ϕ))〉 vg

=

∫
M

m∑
i=1

{
η2 〈∇eiτ(ϕ),∇eiτ(ϕ)〉+ ei(η

2) 〈∇eiτ(ϕ), τ(ϕ)〉
}
vg

=

∫
M

η2
m∑
i=1

∣∣∣∣∇eiτ(ϕ)

∣∣∣∣2 vg + 2

∫
M

m∑
i=1

〈η∇eiτ(ϕ), ei(η) τ(ϕ)〉 vg (12)

where we used ei(η2) = 2η ei(η) at the last equality. By moving the second term in the last equality of
Equation (12) to the left-hand side, we have:∫

M

η2
m∑
i=1

|∇eiτ(ϕ)|2 vg ≤ −2

∫
M

m∑
i=1

〈η∇eiτ(ϕ), ei(η) τ(ϕ)〉 vg

= −2

∫
M

m∑
i=1

〈Vi,Wi〉 vg (13)

where we put Vi := η∇eiτ(ϕ) and Wi := ei(η) τ(ϕ) (i = 1 · · · ,m).
Now, recall the following Cauchy–Schwartz inequality:

± 2 〈Vi,Wi〉 ≤ ε|Vi|2 +
1

ε
|Wi|2 (14)

for all positive ε > 0 because of the inequality 0 ≤ |
√
ε Vi ± 1√

ε
Wi|2. Therefore, for Equation (14),

we obtain:

−2

∫
M

m∑
i=1

〈Vi,Wi〉 vg ≤ ε

∫
M

m∑
i=1

|Vi|2 vg +
1

ε

∫
M

m∑
i=1

|Wi|2 vg (15)
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If we put ε = 1
2
, we obtain, by Equations (13) and (15),∫

M

η2
m∑
i=1

|∇eiτ(ϕ)|2 vg ≤
1

2

∫
M

m∑
i=1

η2 |∇eiτ(ϕ)|2 vg

+ 2

∫
M

m∑
i=1

ei(η)2 |τ(ϕ)|2 vg (16)

Thus, by Equations (12) and (16), we obtain:∫
M

η2
m∑
i=1

|∇eiτ(ϕ)|2 vg ≤ 4

∫
M

|∇η|2 |τ(ϕ)|2 vg ≤
16

r2

∫
M

|τ(ϕ)|2 vg (17)

The third step: Since (M, g) is complete and non-compact, we can tend r to infinity. By the
assumption E2(ϕ) = 1

2

∫
M
|τ(ϕ)|2 vg <∞, the right-hand side goes to zero. Furthermore, if r →∞, the

left-hand side of Equation (17) goes to
∫
M

∑m
i=1 |∇eiτ(ϕ)|2 vg since η = 1 on Br(x0). Thus, we obtain:∫

M

m∑
i=1

|∇eiτ(ϕ)|2 vg = 0 (18)

Therefore, we obtain, for every vector field X in M ,

∇Xτ(ϕ) = 0 (19)

Then, we have, in particular, |τ(ϕ)| is constant, say c. Because, for every vector field X on M , at
each point in M ,

X |τ(ϕ)|2 = 2〈∇Xτ(ϕ), τ(ϕ)〉 = 0 (20)

Therefore, if Vol(M, g) =∞ and c 6= 0, then:

τ2(ϕ) =
1

2

∫
M

|τ(ϕ)|2 vg =
c2

2
Vol(M, g) =∞ (21)

which yields a contradiction. Thus, we have |τ(ϕ)| = c = 0, i.e., ϕ is harmonic. We have Equation (2).

The fourth step: For Equation (1), assume both E(ϕ) < ∞ and E2(ϕ) < ∞. Then, let us consider a
one-form α on M defined by:

α(X) := 〈dϕ(X), τ(ϕ)〉, (X ∈ X(M)) (22)

Note here that: ∫
M

|α| vg =

∫
M

(
m∑
i=1

|α(ei)|2
)1/2

vg ≤
∫
M

|dϕ| |τ(ϕ)| vg

≤
(∫

M

|dϕ|2 vg
)1/2 (∫

M

|τ(ϕ)|2 vg
)1/2

= 2
√
E(ϕ)E2(ϕ) <∞ (23)
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Moreover, the divergent δα := −
∑m

i=1(∇eiα)(ei) ∈ C∞(M) turns out (cf., [1], p. 9) as:

− δα = |τ(ϕ)|2 + 〈dϕ,∇τ(ϕ)〉 = |τ(ϕ)|2 (24)

Indeed, we have:

−δα =
m∑
i=1

ei〈dϕ(ei), τ(ϕ)〉 −
m∑
i=1

〈dϕ(∇eiei), τ(ϕ)〉

= 〈
m∑
i=1

(
∇ei(dϕ(ei))− dϕ(∇eiei)

)
, τ(ϕ)〉+

m∑
i=1

〈dϕ(ei),∇eiτ(ϕ)〉

= 〈τ(ϕ), τ(ϕ)〉+ 〈dϕ,∇τ(ϕ)〉

which is equal to |τ(ϕ)| since∇τ(ϕ) = 0.
By Equation (24) and E2(ϕ) = 1

2

∫
M
|τ(ϕ)|2 vg < ∞, the function −δα is also integrable over M .

Thus, together with Equation (23), we can apply Gaffney’s theorem (see Theorem 6, below) for the
one-form α. By integrating Equation (24) over M and by Gaffney’s theorem, we have:

0 =

∫
M

(−δα) vg =

∫
M

|τ(ϕ)|2 vg (25)

which yields that τ(ϕ) = 0. We have Theorem 3.

Theorem 5. (Gaffney [53]) Let (M, g) be a complete Riemannian manifold. If a C1 1-form α satisfies
that

∫
M
|α| vg <∞ and

∫
M

(δα) vg <∞ or, equivalently, a C1 vector field X defined by α(Y ) = 〈X, Y 〉
(∀ Y ∈ X(M)) satisfies that

∫
M
|X| vg <∞ and

∫
M

div(X) vg <∞, then:∫
M

(−δα) vg =

∫
M

div(X) vg = 0 (26)

Our method can be applied to an isometric immersion ϕ : (M, g)→ (N, h). In this case, the one-form
α defined by Equation (22) in the proof of Theorem 3 vanishes automatically without using Gaffney’s
theorem, since τ(ϕ) = mξ belongs to the normal component of Tϕ(x)N (x ∈ M), where ξ is the mean
curvature normal vector field and m = dim(M). Thus, Equation (24) turns out as:

0 = −δα = |τ(ϕ)|2 + 〈dϕ,∇τ(ϕ)〉 = |τ(ϕ)|2 (27)

which implies that τ(ϕ) = mξ = 0, i.e., ϕ is minimal. Thus, we obtain Theorem 4.

We also apply Theorem 3 to a horizontally-conformal submersion ϕ : (Mm, g) → (Nn, h) (m >

n ≥ 2) (cf., [52,54]). In the case that a Riemannian submersion from a space form of constant sectional
curvature into a Riemann surface (N2, h), Wang and Ou (cf., [19,28]) showed that it is biharmonic if
and only if it is harmonic. We treat with a submersion from a higher dimensional Riemannian manifold
(M, g) (cf., [51]). Namely, let ϕ : M → N be a submersion, and each tangent space TxM (x ∈ M)

is decomposed into the orthogonal direct sum of the vertical space Vx = Ker(dϕx) and the horizontal
spaceHx:

TxM = Vx ⊕Hx (28)
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and we assume that there exists a positive C∞ function λ on M , called the dilation, such that, for each
x ∈M ,

h(dϕx(X), dϕx(Y )) = λ2(x) g(X, Y ), (X, Y ∈ Hx) (29)

The map ϕ is said to be horizontally homothetic if the dilation λ is constant along horizontally curves
in M .

If ϕ : (Mm, g) → (Nn, h) (m > n ≥ 2) is a horizontally-conformal submersion, then, the tension
field τ(ϕ) is given (cf., [51,52]) by:

τ(ϕ) =
n− 2

2
λ2 dϕ

(
gradH

( 1

λ2
))
− (m− n)dϕ

(
Ĥ
)

(30)

where gradH
(

1
λ2

)
is the H-component of the decomposition according to Equation (28) of grad

(
1
λ2

)
and Ĥ is the trace of the second fundamental form of each fiber, which is given by Ĥ =

1
m−n

∑m
k=n+1H(∇ekek), where a local orthonormal frame field {ei}mi=1 on M is taken in such a way that

{eix|i = 1, · · · , n} belong toHx and {ejx|j = n+1, · · · ,m} belong to Vx where x is in a neighborhood
in M . Then, due to Theorems 3 and Equation (29), we have immediately:

Theorem 6. Let (Mm, g) be a complete non-compact Riemannian manifold and (Nn, h) a Riemannian
manifold with the non-positive sectional curvature (m > n ≥ 2). Let ϕ : (M, g) → (N, h) be a
horizontally-conformal submersion with the dilation λ satisfying that:∫

M

λ2
∣∣∣∣n− 2

2
λ2 gradH

( 1

λ2
)
− (m− n) Ĥ

∣∣∣∣ 2

g

vg <∞ (31)

Assume that, either
∫
M
λ2 vg < ∞ or Vol(M, g) =

∫
M
vg = ∞. Then, if ϕ : (M, g) → (N, h) is

biharmonic, then it is a harmonic morphism.

Due to Theorem 7, we have:

Corollary 7. Let (Mm, g) be a complete non-compact Riemannian manifold and (N2, h) a Riemannian
surface with the non-positive sectional curvature (m > n = 2). Let ϕ : (M, g) → (N, h) be a
horizontally-conformal submersion with the dilation λ satisfying that:∫

M

λ2
∣∣Ĥ∣∣ 2

g
vg <∞ (32)

Assume that either
∫
M
λ2 vg < ∞ or Vol(M, g) =

∫
M
vg = ∞. Then, if ϕ : (M, g) → (N, h) is

biharmonic, then it is a harmonic morphism.

Corollary 8 implies Theorem 5, immediately.

Remark 1. (1) Notice that in Theorem 5, there is no restriction to the dilation λ because of dimN = 2.
This implies that for every positive C∞ function λ in C∞(M) ∩ L2(M) satisfying Equations (31) or
(32), we have a harmonic morphism ϕ : (Mm, g)→ (N2, h).
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(2) For a biharmonic map of (M, g) into (N, h), the non-positivity of (N, h) implies that:

〈τ(ϕ),∆τ(ϕ)〉 =
m∑
i=1

〈RN(τ(ϕ), dϕ(ei))dϕ(ei), τ(ϕ)〉 ≤ 0 (33)

which is stronger than the Bochner-type formula |τ(ϕ)|∆|τ(ϕ)| ≥ 0. However, we can prove Theorem 3
in an alternative way by using the latter one. Here, ∆ =

∑m
i=1(ei

2−∇eiei) denotes the negative Laplace
operator acting on C∞(M).

5. Harmonic Maps and Biharmonic Maps into Compact Lie Groups or Symmetric Spaces

In this section, we treat with harmonic maps and biharmonic maps into compact Lie groups or
symmetric spaces of the compact type.

5.1. Biharmonic Maps into Compact Lie Groups

We first treat with harmonic maps and biharmonic maps into compact Lie groups. Let θ be the
Maurer–Cartan form onG, i.e., a g-valued left invariant one-form onG, which is defined by θy(Zy) = Z,
(y ∈ G, Z ∈ g). For every C∞ map ψ of (M, g) into (G, h), let us consider a g-valued one-form α on
M given by α = ψ∗θ. Then, it is well known (see for example, [55]) that:

Lemma 8. For every C∞ map ψ : (M, g)→ (G, h),

θ(τ(ψ)) = −δα (34)

where α = ψ∗θ and θ is the Maurer–Cartan form of G.
Thus, ψ : (M, g)→ (G, h) is harmonic if and only if δα = 0.

Furthermore, let {Xs}ns=1 be an orthonormal basis of g with respect to the inner product 〈 , 〉. Then, for
every V ∈ Γ(ψ−1TG),

V (x) =
n∑
i=1

hψ(x)(V (x), Xsψ(x))Xsψ(x) ∈ Tψ(x)G

θ(V )(x) =
n∑
s=1

hψ(x)(V (x), Xsψ(x))Xs ∈ g (35)

for all x ∈M . Then, for every X ∈ X(M),

θ(∇XV ) =
n∑
s=1

h(∇XV,Xs)Xs =
n∑
s=1

{X h(V,Xs)− h(V,∇XXs)}Xs

= X(θ(V ))−
n∑
s=1

h(V,∇XXs)Xs (36)

where we regarded a vector field Y ∈ X(G) by Y (x) = Y (ψ(x)) (x ∈M) to be an element in the space
Γ−1(TG) of C∞ sections of ψ−1TG.



Symmetry 2015, 7 660

Here, let us recall that the Levi–Civita connection∇h of (G, h) is given (cf., [56,57] Volume II, p. 201,
Theorem 3.3) by:

∇h
XtXs =

1

2
[Xt, Xs] =

1

2

n∑
`=1

C`
tsX` (37)

where the structure constant C`
ts of g is defined by [Xt, Xs] =

∑n
`=1C

`
tsX`, and satisfies that:

C`
ts = 〈[Xt, Xs], X`〉 = −〈Xs, [Xt, X`]〉 = −Cs

t` (38)

Thus, we have by Equations (37) and (38),

n∑
s=1

h(V,∇XXs)Xs =
1

2

n∑
s,t=1

h

(
V,

n∑
`=1

h(ψ∗X,Xt)C
`
tsX`

)
Xs

= −1

2

n∑
s,t,`=1

h(V,X`)h(ψ∗X,Xt)C
s
t`Xs

= −1

2

n∑
t,`=1

h(V,X`)h(ψ∗X,Xt) [Xt, X`]

= −1

2

[
n∑
t=1

h(ψ∗X,Xt)Xt,
n∑
`=1

h(V,X`)X`

]
= −1

2
[α(X), θ(V )] (39)

because we have:

α(X) = θ(ψ∗X) =
n∑
t=1

h(ψ∗X,Xt)Xt (40)

and

θ(V ) =
n∑
`=1

h(V,X`) θ(X`) =
n∑
`=1

h(V,X`)X` (41)

Substituting Equations (40) and (41) into the above, we have Equation (39).
Therefore, we obtain the following together with Equations (36) and (39).

Lemma 9. For every C∞ map ψ : (M, g)→ (G, h),

θ(∇XV ) = X(θ(V )) +
1

2
[α(X), θ(V )] (42)

where V ∈ Γ(ψ−1TG) and X ∈ X(M).

Then, we see immediately due to this lemma:

Theorem 10. For every ψ ∈ C∞(M,G), we have:

θ(τ2(ψ)) = θ(J(τ(ψ)))

= −δ d δα− Traceg([α, d δα]) (43)

where α = ψ∗θ.
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Here, let us recall the definition:

Definition 11. For two g-valued one-forms α and β on M , we define g-valued symmetric two-tensor
[α, β] on M by:

[α, β](X, Y ) :=
1

2
{[α(X), β(Y )] + [α(Y ), β(X)]} , (X, Y ∈ X(M)) (44)

and its trace Traceg([α, β]) by:

Traceg([α, β]) :=
m∑
i=1

[α, β](ei, ei) (45)

We also use a g-valued two-form [α ∧ β] on M by:

[α ∧ β](X, Y ) :=
1

2
{[α(X), β(Y )]− [α(Y ), β(X)]} , (X, Y ∈ X(M)) (46)

Then, we have immediately by Theorem 11:

Corollary 12. For every ψ ∈ C∞(M,G), we have:
(1) ψ : (M, g)→ (G, h) is harmonic if and only if:

δα = 0 (47)

(2) ψ : (M, g)→ (G, h) is biharmonic if and only if:

δ d δα + Traceg([α, d δα]) = 0 (48)

5.2. Biharmonic Maps into Compact Symmetric Spaces

Now, let θ be the Maurer–Cartan form on G, i.e., a g-valued left invariant one-form on G, which is
defined by θy(Zy) = Z (y ∈ G, Z ∈ g). For every C∞ map ϕ of (M, g) into (G/K, h) with a lift
ψ : M → G, let us consider a g-valued one-form α on M given by α = ψ∗θ and the decomposition:

α = αk + αm (49)

corresponding to the decomposition g = k⊕m. Then, it is well known (see, for example, [55]) that:

Lemma 13. For every C∞ map ϕ : (M, g)→ (G/K, h),

tψ(x)−1∗τ(ϕ) = −δ(αm +
m∑
i=1

[αk(ei), αm(ei)], (x ∈M) (50)

where α = ϕ∗θ, θ is the Maurer–Cartan form of G and δ(αm) is the co-differentiation of the m-valued
one-form αm on (M, g).

Thus, ϕ : (M, g)→ (G/K, h) is harmonic if and only if:

− δ(αm) +
m∑
i=1

[αk(ei), αm(ei)] = 0 (51)
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Furthermore, we obtain:

Theorem 14. We have:

tψ(x)−1∗τ2(ϕ) = ∆g

(
−δ(αm) +

m∑
i=1

[αk(ei), αm(ei)]

)

+
m∑
s=1

[[
−δ(αm) +

m∑
i=1

[αk(ei), αm(ei)] , αm(es)

]
, αm(es)

]
(52)

where ∆g is the (positive) Laplacian of (M, g) acting on C∞ functions on M , and {ei}mi=1 is a local
orthonormal frame field on (M, g).

Therefore, we obtain immediately the following two corollaries.

Corollary 15. Let (G/K, h) be a Riemannian symmetric space and ϕ : (M, g) → (G/K, h) a C∞

mapping. Then, we have:
(1) The map ϕ : (M, g)→ (G/K, h) is harmonic if and only if:

− δ(αm) +
m∑
i=1

[αk(ei), αm(ei)] = 0 (53)

(2) The map ϕ : (M, g)→ (G/K, h) is biharmonic if and only if:

∆g

(
−δ(αm) +

m∑
i=1

[αk(ei), αm(ei)]

)

+
m∑
s=1

[[
−δ(αm) +

m∑
i=1

[αk(ei), αm(ei)] , αm(es)

]
, αm(es)

]
= 0 (54)

Corollary 16. Let (G/K, h) be a Riemannian symmetric space and ϕ : (M, g) → (G/K, h) a C∞

mapping with a horizontal lift ψ : M → G, i.e., ϕ = π ◦ ψ and ψx(TxM) ⊂ Hψ(x), which is equivalent
to αk ≡ 0.

Then, we have:
(1) The map ϕ : (M, g)→ (G/K, h) is harmonic if and only if:

δ(αm) = 0 (55)

(2) and the map ϕ : (M, g)→ (G/K, h) is biharmonic if and only if:

δ d δ(αm) +
m∑
s=1

[[δ(αm), αm(es)] , αm(es)] = 0. (56)

For applications and examples, see [29,30].
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6. The CR Analogue of Harmonic Maps and Biharmonic Maps

In the 1970s, Chern and Moser initiated [58] the geometry and analysis of strictly convex CR

manifolds, and many mathematicians have worked on CR manifolds (cf., [59]). Recently, Barletta,
Dragomir and Urakawa gave [60] the notion of the pseudo-harmonic map, and also Dragomir and
Montaldo settled [10] the one of the pseudo-biharmonic map.

6.1. Conjecture and Results

In this part, we raise:

The CR analogue of the generalized Chen’s conjecture:
Let (M, gθ) be a complete strictly pseudoconvexCRmanifold and assume that (N, h) is a Riemannian

manifold of non-positive curvature.
Then, every pseudo-biharmonic isometric immersion ϕ : (M, gθ) → (N, h) must be

pseudo-harmonic.

We will see that this conjecture holds under some L2 condition on a complete strongly pseudoconvex
CR manifold (cf., Theorem 18) and will give characterization theorems on pseudo-biharmonic
immersions from CR manifolds into the unit sphere or the complex projective space (cf., Theorems 19
and 20). More precisely, we will see:

Theorem 17. (cf., Theorem 21) Let ϕ be a pseudo-biharmonic map of a complete CR manifold
(M, gθ) into a Riemannian manifold (N, h) of non-positive curvature. If the pseudo-energy and the
pseudo-bienergy of ϕ are finite, then ϕ is pseudo-harmonic.

Then, we have:

Theorem 18. Let ϕ be an isometric immersion of a CR manifold (M2n+1, gθ) into the unit sphere
S2n+2(1) of curvature one. Assume that the pseudo-mean curvature is parallel, but not pseudo-harmonic.

Then, ϕ is pseudo-biharmonic if and only if the restriction of the second fundamental form Bϕ to the
holomorphic subspace Hx(M) of TxM (x ∈M) satisfies that:

‖Bϕ|H(M)×H(M) ‖2 = 2n

Furthermore, we have:

Theorem 19. Let ϕ be an isometric immersion of a CR manifold (M2n+1, gθ) into the complex
projective space (Pn+1(c), h, J) of holomorphic sectional curvature c > 0. Assume that the pseudo-mean
curvature is parallel, but not pseudo-harmonic. Then, ϕ is pseudo-biharmonic if and only if one of the
following holds:

(1) J(dϕ(T )) is tangent to ϕ(M) and:

‖Bϕ|H(M)×H(M) ‖2 =
c

4
(2n+ 3)

(2) J(dϕ(T )) is normal to ϕ(M) and:

‖Bϕ|H(M)×H(M) ‖2 =
c

4
(2n) =

n

2
c
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Here, T is the characteristic vector field of (M, gθ), Hx(M) ⊕ RTx = Tx(M) and Bϕ|H(M)×H(M) is
the restriction of the second fundamental form Bϕ to Hx(M) (x ∈M).

Several examples of pseudo-biharmonic immersions of (M, gθ) into the unit sphere or complex
projective space are given in [31].

6.2. Explanations of Notions and Proofs of the CR Rigidity

We explain the terminologies in the above results following Dragomir and Montaldo [10] and also
Barletta, Dragomir and Urakawa [60]. We also prepare the materials on pseudo-harmonic maps and
pseudo-biharmonic maps (see also [61]).

Let M be a strictly pseudoconvex CR manifold of (2n + 1)-dimension, T the characteristic vector
field on M , J the complex structure of the subspace Hx(M) of Tx(M) (x ∈ M) and gθ the
Webster–Riemannian metric on M defined for X, Y ∈ H(M) by:

gθ(X, Y ) = (dθ)(X, JY ), gθ(X,T ) = 0, gθ(T, T ) = 1

Let us recall for a C∞ map ϕ of (M, gθ) into another Riemannian manifold (N, h); the pseudo-energy
Eb(ϕ) is defined [60] by:

Eb(ϕ) =
1

2

∫
M

2n∑
i=1

(ϕ∗h)(Xi, Xi) θ ∧ (dθ)n (57)

where {Xi}2ni=1 is an orthonormal frame field on (H(M), gθ). Then, the first variational formula ofEb(ϕ)

is as follows [60]. For every variation {ϕt} of ϕ with ϕ0 = ϕ,

d

dt

∣∣∣∣
t=0

Eb(ϕt) = −
∫
M

h(τb(ϕ), V ) dθ ∧ (dθ)n = 0 (58)

where V ∈ Γ(ϕ−1TN) is defined by V (x) = d
dt
|t=0ϕt(x) ∈ Tϕ(x)N , (x ∈ M). Here, τb(ϕ) is the

pseudo-tension field, which is given by:

τb(ϕ) =
2n∑
i=1

Bϕ(Xi, Xi) (59)

where Bϕ(X, Y ) (X, Y ∈ X(M)) is the second fundamental form of Equation (3) for a C∞ map of
(M, gθ) into (N, h). Then, ϕ is pseudo-harmonic if τb(ϕ) = 0.

The second variational formula of Eb is given as follows ([60], p.733):

d2

dt2

∣∣∣∣
t=0

Eb(ϕt) =

∫
M

h(Jb(V ), V ) θ ∧ (dθ)n (60)

where Jb is a subelliptic operator acting on Γ(ϕ−1TN) given by:

Jb(V ) = ∆b V −Rb(V ) (61)

Here, for V ∈ Γ(ϕ−1TN)),
∆bV = (∇H

)∗∇H
V = −

2n∑
i=1

{
∇Xi(∇XiV )−∇∇XiXiV

}
Rb(V ) =

2n∑
i=1

Rh(V, dϕ(Xi))dϕ(Xi)

(62)
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where ∇ is the Tanaka–Webster connection, ∇ the induced connection on φ−1TN induced from the
Levi–Civita connection ∇h and {Xi}2ni=1 a local orthonormal frame field on (H(M), gθ), respectively.
Here, (∇H

)XV := ∇XHV (X ∈ X(M), V ∈ Γ(φ−1TN)), corresponding to the decomposition
X = XH + gθ(X,T )T (XH ∈ H(M)). Define πH(X) = XH (X ∈ Tx(M)), and (∇H

)∗ is the formal
adjoint of∇H

.
Dragomir and Montaldo [10] introduced the pseudo-bienergy given by:

Eb,2(ϕ) =
1

2

∫
M

h(τb(ϕ), τb(ϕ)) θ ∧ (dθ)n (63)

where τb(ϕ) is the pseudo-tension field of ϕ. They gave the first variational formula of Eb,2 as
follows ([10], p. 227):

d

dt

∣∣∣∣
t=0

Eb,2(ϕt) = −
∫
M

h(τb,2(ϕ), V ) θ ∧ (dθ)n (64)

where τb,2(ϕ) is called the pseudo-bitension field given by:

τb,2(ϕ) = ∆b

(
τb(ϕ)

)
−

2n∑
i=1

Rh(τb(ϕ), dϕ(Xi)) dϕ(Xi) (65)

Then, a smooth map ϕ of (M, gθ) into (N, h) is said to be pseudo-biharmonic if τb,2(ϕ) = 0.
By definition, a pseudo-harmonic map is always pseudo-biharmonic.

Theorem 20. (cf., Theorem 18) Assume that ϕ is a pseudo-biharmonic map of a strictly pseudoconvex
complete CR manifold (M, gθ) into another Riemannian manifold (N, h) of non-positive curvature.

If ϕ has finite pseudo-bienergy Eb,2(ϕ) < ∞ and finite pseudo-energy Eb(ϕ) < ∞, then it is
pseudo-harmonic, i.e., τb(ϕ) = 0.

(Proof of Theorem 21) The proof is divided into several steps.

The first step: For an arbitrarily fixed point x0 ∈ M , let Br(x0) = {x ∈ M : r(x) < r} where r(x)

is a distance function on (M, gθ), and let us take a cut-off function η on (M, gθ), i.e., 0 ≤ η(x) ≤ 1 (x ∈M), η(x) = 1 (x ∈ Br(x0))

η(x) = 0 (x 6∈ B2r(x0)), |∇gθ η| ≤ 2

r
(x ∈M)

(66)

where r is the distance function and ∇gθ is the Levi–Civita connection of (M, gθ), respectively.
Assume that ϕ : (M, gθ)→ (N, h) is a pseudo-biharmonic map, i.e.,

τb, 2(ϕ) = Jb(τb(ϕ)) = ∆b(τb(ϕ))−
2n∑
j=1

Rh(τb(ϕ), dϕ(Xj)) dϕ(Xj) = 0 (67)

The second step: Then, we have:∫
M

〈∆b(τb(ϕ)), η2 τb(ϕ)〉 θ ∧ (dθ)n

=

∫
M

η2
2n∑
j=1

〈Rh(τb(ϕ), dϕ(Xj)) dϕ(Xj), τb(ϕ)〉 θ ∧ (dθ)n ≤ 0 (68)
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since (N, h) has the non-positive sectional curvature. However, for the left-hand side of Equation (68),
it holds that: ∫

M

〈∆b(τb(ϕ)), η2 τb(ϕ)〉 θ ∧ (dθ)n

=

∫
M

〈∇H
τb(ϕ),∇H

( η2 τb(ϕ) ) 〉 θ ∧ (dθ)n

=

∫
M

2n∑
j=1

〈∇Xjτb(ϕ),∇Xj(η
2 τb(ϕ)) 〉 θ ∧ (dθ)n (69)

Here, let us recall, for V, W ∈ Γ(ϕ−1TN)),

〈∇H
V,∇H

W 〉 =
2n+1∑
α=1

〈∇H

eαV,∇
H

eαW 〉 =
2n∑
j=1

〈∇XiV,∇XiW 〉

where {eα}2n+1
α=1 is a locally-defined orthonormal frame field of (M, gθ), Xj

2n
j=1 is an orthonormal frame

of H(M) and ∇H

XW (X ∈ X(M), W ∈ Γ(ϕ−1TN)) is defined by:

∇H

XW =
∑
j

{(XHfj)Vj + fj∇XH Vj}

for W =
∑

j fi Vj (fj ∈ C∞(M) and Vj ∈ Γ(ϕ−1TN). Here, XH is the H(M)-component of X
corresponding to the decomposition of Tx(M) = Hx(M) ⊕ RTx (x ∈ M), and ∇ is the induced
connection of ϕ−1TN from the Levi–Civita connection∇h of (N, h).

Since

∇Xj(η
2 τb(ϕ)) = 2η Xjη τb(ϕ) + η2∇Xjτb(ϕ) (70)

the right-hand side of Equation (69) is equal to:∫
M

η2
2n∑
j=1

∣∣∇Xjτb(ϕ)
∣∣2 θ ∧ (dθ)n

+ 2

∫
M

2n∑
j=1

〈η∇Xjτb(ϕ), (Xjη) τb(ϕ)〉 θ ∧ (dθ)n (71)

Therefore, together with Equation (68), we have:∫
M

η2
2n∑
j=1

∣∣∇Xj τb(ϕ)
∣∣2 θ ∧ (dθ)n

≤ −2

∫
M

2n∑
j=1

〈η∇Xjτb(ϕ), (Xjη) τb(ϕ)〉 θ ∧ (dθ)n

=: −2

∫
M

2n∑
j=1

〈Vj,Wj〉 θ ∧ (dθ)n (72)

where we define Vj, Wj ∈ Γ(ϕ−1TN) (j = 1, · · · , 2n) by:

Vj := η∇Xj τb(ϕ), Wj := (Xjη) τb(ϕ)
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Then, since it holds that 0 ≤
∣∣√ε Vi ± 1√

ε
Wi

∣∣2 for every ε > 0, we have,

RHS of Equation (72) ≤ ε

∫
M

2n∑
j=1

∣∣Vj ∣∣2 θ ∧ (dθ)n +
1

ε

∫
M

2n∑
j=1

∣∣Wj

∣∣2 θ ∧ (dθ)n (73)

for every ε > 0. By taking ε =
1

2
, we obtain:

∫
M

η2
2n∑
j=1

∣∣∇Xjτb(ϕ)
∣∣2 θ ∧ (dθ)n

≤ 1

2

∫
M

2n∑
j=1

η2
∣∣∇Xjτb(ϕ)

∣∣2 θ ∧ (dθ)n + 2

∫
M

2n∑
j=1

∣∣Xjη
∣∣2∣∣τb(ϕ)

∣∣2 θ ∧ (dθ)n (74)

Therefore, we obtain, due to the properties that η = 1 on Br(x0) and
∑2n

j=1 |Xjη|2 ≤ |∇gθη|2 ≤
(
2
r

)2,∫
Br(x0)

2n∑
j=1

∣∣∇τb(ϕ)
∣∣2 θ ∧ (dθ)n ≤

∫
M

η2
2n∑
j=1

∣∣∇Xjτb(ϕ)
∣∣2 θ ∧ (dθ)n

≤ 4

∫
M

2n∑
j=1

∣∣Xjη
∣∣2 ∣∣τb(ϕ)

∣∣2 θ ∧ (dθ)n ≤ 16

r2

∫
M

|τb(ϕ)|2 θ ∧ (dθ)n (75)

The third step: If we let r →∞, thenBr(x0) goes toM , and the right-hand side of Equation (75) goes
to zero due to our assumptions that Eb, 2(ϕ) = 1

2

∫
M
|τb(ϕ)|2 θ ∧ (dθ)n < ∞ and (M, gθ) is complete.

Thus, we have: ∫
M

2n∑
j=1

∣∣∇Xjτb(ϕ)
∣∣2 θ ∧ (dθ)n = 0 (76)

This implies that:

∇Xτb(ϕ) = 0 (for all X ∈ H(M)) (77)

The fourth step: Let us take a one form α on M defined by:

α(X) =

{
〈dϕ(X),τb(ϕ)〉, (X ∈ H(M))

0 (X = T )

Then, we have:

∫
M

|α| θ ∧ (dθ)n =

∫
M

(
2n∑
j=1

α(Xj)|2
) 1

2

θ ∧ (dθ)n

≤
(∫

M

|dbϕ|2 θ ∧ (dθ)n
) 1

2
(∫

M

|τb(ϕ)|2 θ ∧ (dθ)n
) 1

2

= 2
√
Eb(ϕ)Eb,2(ϕ) <∞ (78)



Symmetry 2015, 7 668

where we put dbϕ :=
∑2n

i=1 dϕ(Xi)⊗Xi,

|dbϕ|2 =
2n∑
i,j=1

gθ(Xi, Xj)h(dϕ(Xi), dϕ(Xj)) =
2n∑
i=1

h(dϕ(Xi), dϕ(Xi))

and

Eb(ϕ) =
1

2

∫
M

|dbϕ|2 θ ∧ (dθ)n (79)

Furthermore, let us define a C∞ function δbα on M by:

δbα = −
2n∑
j=1

(∇Xjα)(Xj) = −
2n∑
j=1

{
Xj(α(Xj))− α(∇XjXj)

}
(80)

where∇ is the Tanaka–Webster connection. Notice that:

div(α) =
2n∑
j=1

(∇gθ
Xj
α)(Xj) + (∇gθ

T α)(T )

=
2n∑
j=1

{
Xj(α ◦ πH(Xj))− α ◦ πH(∇gθ

Xj
Xj)
}

+ T (α ◦ πH(T ))− α ◦ πH(∇gθ
T T )

=
2n∑
j=1

{
Xj(α(Xj))− α(πH(∇gθ

Xj
Xj))

}
=

2n∑
j=1

{
Xj(α(Xj))− α(∇XjXj)

}
= −δbα (81)

where πH : Tx(M) → Hx(M) is the natural projection. We used the facts that ∇gθ
T T = 0 and

πH(∇gθ
XY ) = ∇XY (X, Y ∈ H(M)) ([61], p. 37). Here, recall again that ∇gθ is the Levi–Civita

connection of gθ and ∇ is the Tanaka–Webster connection. Then, we have, for Equation (80),

δbα = −
2n∑
j=1

{
Xj 〈dϕ(Xj), τb(ϕ)〉 − 〈dϕ(∇XjXj), τb(ϕ)〉

}
= −

2n∑
j=1

{ 〈∇Xj(dϕ(Xj)), τb(ϕ)〉+ 〈 dϕ(Xj),∇Xjτb(ϕ)〉
− 〈 dϕ(∇XjXj), τb(ϕ)〉

}

= −

〈
2n∑
j=1

{
∇Xj(dϕ(Xj))− dϕ(∇XjXj)

}
, τb(ϕ)

〉
= −|τb(ϕ)|2 (82)

We used Equation (77) to derive the last second equality of Equation (82). Then, due to Equation (82),
we have for Eb,2(ϕ),

Eb,2(ϕ) =
1

2

∫
M

|τb(ϕ)|2 θ ∧ (dθ)n = −1

2

∫
M

δbα θ ∧ (dθ)n

=
1

2

∫
M

div(α) θ ∧ (dθ)n = 0 (83)

In the last equality, we used Gaffney’s theorem (cf., Theorem 6, [23], p. 271, or [53]).
Therefore, we obtain τb(ϕ) ≡ 0, i.e., ϕ is pseudo-harmonic.
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7. Biharmonic Hypersurfaces of Compact Symmetric Spaces

7.1. Characterization of Biharmonic Maps

In the first part of this section, we show a characterization theorem for an isometric immersion ϕ of
an m-dimensional Riemannian manifold (M, g) into a Riemannian manifold (N, h) whose tension field
τ(ϕ) satisfies that ∇⊥Xτ(ϕ) = 0 (X ∈ X(M)) is biharmonic. Let us recall the following theorem due
to [2]:

Theorem 21. Let ϕ : (Mm, g)→ (Nn, h) be an isometric immersion. Assume that∇⊥Xτ(ϕ) = 0 for all
X ∈ X(M). Then, ϕ is biharmonic if and only if the following holds:

−
m∑

j,k=1

h
(
τ(ϕ), Rh(dϕ(ej), dϕ(ek))dϕ(ek)

)
dϕ(ej)

+
m∑

j,k=1

h(τ(ϕ), Bϕ(ej, ek))Bϕ(ej, ek)−
m∑
j=1

Rh(τ(ϕ), dϕ(ej)) dϕ(ej) = 0 (84)

where Rh is the curvature tensor field of (N, h) given by Rh(U, V )W = ∇h
U(∇h

VW ) − ∇h
V (∇h

UW ) −
∇h

[U,V ]W , (U, V,W ∈ X(N)), Bϕ(X, Y ) (X, Y ∈ X(M)) is the second fundamental form of the
immersion ϕ given byBϕ(X, Y ) = ∇h

dϕ(X)dϕ(Y )−dϕ(∇g
XY ) and {ej} is a locally-defined orthonormal

frame field on (M, g).

We obtain:

Theorem 22. Let ϕ : (Mm, g)→ (Nn, h) be an isometric immersion. Assume that∇⊥Xτ(ϕ) = 0 for all
X ∈ X(M). Then, ϕ is biharmonic if and only if the following equations hold:

(1) The tangential part: ( m∑
k=1

Rh(τ(ϕ), dϕ(ek))dϕ(ek)

)>
= 0 (85)

(2) The normal part:( m∑
k=1

Rh(τ(ϕ), dϕ(ek)) dϕ(ek)

)⊥
=

m∑
j,k=1

h(τ(ϕ), Bϕ(ej, ek))Bϕ(ej, ek) (86)

As a corollary of Theorem 2, we obtain:

Corollary 23. Assume that the sectional curvature of the target space (Nn, h) is non-positive.
Let ϕ : (Mm, g)→ (Nn, h) be an isometric immersion whose tension field satisfies ∇⊥Xτ(ϕ) = 0 for
all X ∈ X(M). Then, if ϕ is biharmonic, then it is harmonic.

Remark 2. Corollary 24 gives partial evidence to the generalized B.-Y. Chen’s conjecture: every
biharmonic isometric immersion into a non-positive curvature manifold must be harmonic. On the other
hand, notice that the generalized B.-Y. Chen’s conjecture was given by a counter example due to Y. Ou
and L. Tang [27].



Symmetry 2015, 7 670

7.2. Biharmonic Submanifolds in Einstein Manifolds

In the second part of this section, we apply Theorem 23 to an isometric immersion into an Einstein
manifold (Nn, h) whose Ricci transform is denoted by ρh, by definition, ρh(u) :=

∑n
i=1R

h(u, e′i)e
′
i (u ∈

TyN, y ∈ N), where {e′i}ni=1 is a locally-defined orthonormal frame field on (Nn, h). Then, we obtain:

Theorem 24. Assume that ϕ : (Mm, g)→ (Nn, h) is an isometric immersion whose tension field τ(ϕ)

that satisfies that∇⊥Xτ(ϕ) = 0, and the target space (N, h) is an Einstein, i.e., the Ricci transform ρh of
(N, h) satisfies ρh = c Id for some constant c. Then, ϕ is biharmonic if and only if the following holds:

c τ(ϕ)−
p∑
i=1

Rh(τ(ϕ), ξi)ξi =
m∑

j,k=1

h(τ(ϕ), Bϕ(ej, ek))Bϕ(ej, ek) (87)

where {ξi}pi=1 is a local orthonormal frame field of the normal bundle corresponding to the immersion
ϕ : M → N .

In the following, we treat with a hypersurface ϕ : (Mm, g) → (Nn, h), i.e., p = 1, and
m = dimM = dimN − 1 = n− 1. In this case, we obtain the following theorem:

Theorem 25. Assume that ϕ : (Mm, g) → (Nn, h) is an isometric immersion whose tension field
∇⊥Xτ(ϕ) = 0 (∀ X ∈ X(M)) and ϕ is a hypersurface, i.e., m = n− 1.

(1) If ϕ is not harmonic, then ϕ is biharmonic if and only if:

ρh(ξ) = ‖Bϕ‖2 ξ, (88)

where ρh is the Ricci transform of (N, h) and ξ is a unit normal vector field along ϕ.
(2) In particular, if (N, h) is an Einstein manifold, i.e., ρh = c Id and ϕ is not harmonic, then ϕ is

biharmonic if and only if ‖Bϕ‖2 = c.

Furthermore, we have:

Theorem 26. Assume that ϕ : (M, g)→ (N, h) is an isometric immersion into a Riemannian manifold
(N, h) whose Ricci curvature is non-positive, dimM = dimN − 1, and∇⊥Xτ(ϕ) = 0 for all C∞ vector
field X on M . Then, if ϕ is biharmonic, it is harmonic.

Finally in this section, we give a criterion for which the condition ∇⊥Xτ(ϕ) = 0 (∀ X ∈
X(M)) holds:

Proposition 27. Assume that ϕ : (Mm, g) → (Nn, h) is an isometric immersion with m = dimM =

dimN − 1 = n − 1. Then, the following equivalence holds: The condition that ∇⊥Xτ(ϕ) = 0 (∀ X ∈
X(M) holds if and only if the mean curvature H = 1

m

∑m
i=1Hii is constant on M . Here, Bϕ(ei, ej) =

Hij ξ, and ξ is a unit normal vector field along ϕ.

Summarizing Theorems 26 and 27 and Proposition 28, we obtain:
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Corollary 28. Let ϕ : (Mm, g) → (Nn, h) be an isometric immersion. Assume that m = dimM =

dimN − 1 = n − 1 and the mean curvature of ϕ, H = 1
m

∑m
i=1Hii = 1

m
τ(ϕ), is constant. Then, the

following hold:
(1) Assume that H 6= 0, i.e., ϕ is not harmonic. Then, it holds that ϕ is biharmonic if and only if

ρh(ξ) = ‖Bϕ‖2 ξ, where ρh is the Ricci transform of (N, h), ξ is a unit normal vector field along ϕ and
Bϕ is the second fundamental form of ϕ.

(2) Assume that H 6= 0 and (N, h) is Einstein, i.e., ρh = c Id for some constant c. Then, ϕ is
biharmonic if and only if ‖Bϕ‖2 = c.

(3) Assume that H 6= 0 and the Ricci curvature of (N, h) is non-positive. Then, if ϕ biharmonic, it
is harmonic.

Due to the above, we have a classification of homogeneous hypersurfaces in compact symmetric
spaces. Refer to our recent paper [32]. Finally, we raise a problem related to this topic (cf., [32]):

Problem 29. Let (Nn, h) be an Einstein manifold with the Ricci transform ρh = c Id for some constant
c > 0 and admitting a low cohomogeneity action of some compact Lie group H . Determine all of the
H-orbits, which are harmonic or biharmonic.

8. Conclusions

We have given a survey on recent progresses on Chen’s conjecture and the generalized Chen’s
conjecture, the outlines of the proofs on the L2 rigidity theorems of biharmonic maps due to N. Nakauchi
and myself, and also its CR analogue. Then, we have given a survey on constructions and classification
of harmonic maps and biharmonic maps into compact Lie groups or compact symmetric spaces. Finally,
we have explained how to construct biharmonic hypersurfaces of compact symmetric spaces. We hope
for young geometers to read this survey, and to give new results by extending our results, and to attack
and obtain answers of the above problem 29.
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