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Abstract: A large class of dynamic sensors have nonlinear input-output characteristics,
often corresponding to a bistable potential energy function that controls the evolution of
the sensor dynamics. These sensors include magnetic field sensors, e.g., the simple fluxgate
magnetometer and the superconducting quantum interference device (SQUID), ferroelectric
sensors and mechanical sensors, e.g., acoustic transducers, made with piezoelectric
materials. Recently, the possibilities offered by new technologies and materials in realizing
miniaturized devices with improved performance have led to renewed interest in a new
generation of inexpensive, compact and low-power fluxgate magnetometers and electric-field
sensors. In this article, we review the analysis of an alternative approach: a symmetry-based
design for highly-sensitive sensor systems. The design incorporates a network architecture
that produces collective oscillations induced by the coupling topology, i.e., which sensors
are coupled to each other. Under certain symmetry groups, the oscillations in the network
emerge via an infinite-period bifurcation, so that at birth, they exhibit a very large
period of oscillation. This characteristic renders the oscillatory wave highly sensitive to
symmetry-breaking effects, thus leading to a new detection mechanism. Model equations
and bifurcation analysis are discussed in great detail. Results from experimental works on
networks of fluxgate magnetometers are also included.
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1. Introduction

Symmetry in nonlinear dynamical systems can force certain regions of their phase-space to be
invariant under the governing equations. That is, any solution trajectory that starts in one of those regions
remains there forever. Furthermore, it is well-known that the presence of invariant regions in continuous
dynamical systems can lead to cyclic trajectories that connect, through these invariant subspaces,
steady states, periodic oscillations and even chaotic sets [1,2]. These cycles, which are also known
as heteroclinic cycles, are robust under perturbations that preserve the symmetry of the system. Over
the past twelve years, we have developed an innovative concept for developing highly-sensitive sensor
technologies based on a network architecture of oscillators and the robustness of heteroclinic cycles.
The fundamental principle is to exploit the architecture of the network to generate coupling-induced
stable periodic oscillations, thus minimizing power requirements to operate the sensors. The oscillations
emerge through a global branch of heteroclinic connections between steady states, so that near the
onset of the cycle, the accompanying oscillations exhibit long periods, which in turn renders their
waveform highly sensitive to symmetry-breaking effects caused by very small external signals. This
critical observation has led to the fabrication of highly-sensitive sensors, magnetic- and electric-field
ones, whose operation relies mainly on the coupling signal that travels from one bistable system to the
next one [3–6]. That is, in the absence of coupling, each bistable unit cannot oscillate. In practice, the
bistable units are not exactly identical. Experimental measurements show that system parameters vary
within a range of±5%, so the network system is not perfectly symmetric. However, computational works
show that remnants of the cycle persist under ±10% variations in system parameters. There are many
engineering designs of sensor systems that seek to advance sensitivity levels through smart materials,
whose properties can be significantly altered in a controlled fashion by external stimuli, such as stress,
temperature or moisture. However, the symmetry-based design described in this review is the only sensor
system that incorporates in a systematic way advanced ideas and concepts from nonlinear dynamics, such
as heteroclinic connections, global bifurcations, computational group theory and network topologies.

In this review article, we provide a self-contained description of the basic ideas and results of the
modeling and analysis of this new paradigm. The description is aimed mainly at networks of fluxgate
magnetometers coupled via magnetic flux. The network architecture is a ring with a preferred orientation,
i.e., unidirectionally coupling, which leads to a ring array with ZN -symmetry, where ZN is the group of
cyclic permutations of N objects. In addition, we also review another prototypical network system made
up of coupled overdamped Duffing elements, which describe the dynamics of the polarization inside a
ferroelectric material. This latter network system is the basis of an electric field sensor, currently under
development. In both cases, magnetic and electric field sensors, our analysis shows that if N is odd,
then unidirectionally-coupled elements with cyclic boundary conditions would oscillate when a control
parameter, i.e., coupling strength, exceeds a critical value. However, the oscillatory behavior can also
be seen for large even values of N , because as N increases, the basins of attraction for equilibrium and
oscillations become rather small, and numerical errors can easily induce the system to switch from one
basin to another, similar to a real physical system influenced by noise. Typically, the oscillations emerge
with an infinite-period through a heteroclinic-cycle bifurcation. In the particular case of overdamped
bistable systems, the cycle includes mainly saddle-sink equilibria. As a control parameter (usually the
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coupling strength) approaches a critical value from above, the frequency of the oscillations decreases,
approaching zero at the critical point. Past the critical value, the oscillations disappear, and the system
dynamics settles into an equilibrium. The basin of attraction of the oscillations spans a fairly large
volume of phase space. One exception is the set of symmetrical initial conditions; in which case, the
coupled system settles asymptotically to its stable fixed points. The emergent oscillations, in either the
ferromagnetic or ferroelectric systems mentioned above, have been used to detect very weak “target”
(DC and AC) signals via the symmetry-breaking effects caused by external signals.

The review article is organized as follows. In Section 2, we present a brief overview of the basic
definition of heteroclinic cycles, followed by a few representative examples from ordinary and partial
differential equations. In Section 3, we present a review of the bifurcation analysis for the model
equations that govern the behavior of the networks of magnetic- and electric-field sensors. Similarities
and differences between the bifurcations and response of these two systems are presented in great detail,
followed by a discussion of the sensitivity response. In Section 4, the results of experimental works
are presented. For brevity, only the magnetic field sensor array is described. The delay introduced by
electronic equipment has positive effects, since it tends to increase the basin of attraction of the global
oscillations. Details can be found in the references. Finally, some concluding remarks are included in
Section 5.

2. Topology of Heteroclinic Cycles

Loosely speaking, a heteroclinic cycle is a robust collection of solution trajectories that connects
sequences of equilibria, periodic solutions or chaotic invariant sets via saddle-sink connections. For a
more precise description of heteroclinic cycles and their stability, see Melbourne et al. [7], Krupa and
Melbourne [8], the monograph by Field [9] and the survey articles by Krupa [10,11]. Such behavior
is unusual in a general dynamical system. It is, however, a generic feature of dynamical systems that
possess symmetry. Indeed, the presence of symmetry can lead to invariant subspaces under which a
sequence of saddle-sink connections can be established, resulting in cycling behavior. As time evolves,
a typical trajectory would stay for an increasingly longer period of time near each solution (which could
be either an equilibrium, a periodic orbit or a chaotic invariant set) before it makes a rapid excursion to
the next solution. Since saddle-sink connections are robust, these cycles, called heteroclinic cycles, are
robust under perturbations that preserve the symmetry of the system.

Melbourne et al. [7] provide a method for finding cycles that involve steady states, as well as periodic
solutions. Let Γ ⊂ O(N) be a Lie subgroup (where O(N) denotes the orthogonal group of order N ),
and let g : RN → RN be Γ-equivariant, that is,

g(γX) = γg(X),

for all γ ∈ Γ. Consider the system:
dX

dt
= g(X).

Note that N = kn in an n-cell system with k state variables in each cell. Equivariance of g implies
that whenever X(t) is a solution, so is γX(t). Using fixed-point subspaces, Melbourne et al. [7] suggest
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a method for constructing heteroclinic cycles connecting equilibria. Suppose that Σ ⊂ Γ is a subgroup.
Then, the fixed-point subspace:

Fix(Σ) = {X ∈ RN : σX = X ∀σ ∈ Σ}

is a flow-invariant subspace. The idea is to find a sequence of maximal subgroups Σj ⊂ Γ, such that
dim Fix(Σj) = 1, and submaximal subgroups Tj ⊂ Σj ∩ Σj+1, such that dim Fix(Tj) = 2, as is shown
schematically in Figure 1. In addition, the equilibrium in Fix(Σj) must be a saddle in Fix(Tj), whereas
the equilibrium in Fix(Σj+1) must be a sink in Fix(Tj).

Figure 1. Pattern inside a lattice of subgroups that suggests the existence of heteroclinic cycles.

Such configurations of subgroups have the possibility of leading to heteroclinic cycles if saddle-sink
connections between equilibria in Fix(Σj) and Fix(Σj+1) exist in Fix(Tj). It should be emphasized that
more complicated heteroclinic cycles can exist. Generally, all that is needed to be known is that the
equilibria in Fix(Σj) is a saddle and the equilibria in Fix(Σj+1) is a sink in the fixed-point subspace
Fix(Tj) (see Krupa and Melbourne [8]); although the connections cannot, in general, be proven. Since
the saddle-sink connections are robust in a plane, these heteroclinic cycles are stable to perturbations of
g, so long as Γ-equivariance is preserved by the perturbation. For a detailed discussion of asymptotic
stability and nearly asymptotic stability of heteroclinic cycles, which are also very important topics, see
Krupa and Melbourne [8].

Near the points of the Hopf bifurcation, this method for constructing heteroclinic connections
can be generalized to include time periodic solutions, as well as equilibria. Melbourne, Chossat
and Golubitsky [7] do this by augmenting the symmetry group of the differential equations with S1,
the symmetry group of Poincare–Birkhoff normal form at points of Hopf bifurcation, and using the
phase-amplitude equations in the analysis. In these cases, the heteroclinic cycle exists only in the normal
form equations, since some of the invariant fixed-point subspaces disappear when symmetry is broken.
However, when that cycle is asymptotically stable, then the cycling-like behavior remains, even when
the equations are not in the normal form. In later work, Buono, Golubitsky and Palacios [12] proved
the existence of heteroclinic cycles involving steady-state and time periodic solutions in differential
equations with Dn symmetry.

2.1. The Guckenheimer–Holmes Cycle

Figure 2 illustrates a cycle involving three steady states of a system of ODEs proposed by
Guckenheimer and Holmes [2]. On the left is the phase space. Solid curves depict a solution trajectory
right on the invariant manifolds (stable and unstable) of each equilibrium. On the yz-plane, the
equilibrium on the z-axis, i.e., (0, 0, z∗), is a saddle, while the one on the y-axis, i.e., (0, y∗, 0) is a sink.
In the absence of any other type of solution on this plane, the Poincare–Bendixson theorem guarantees
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the existence of a saddle-sink connection. A similar type of saddle-sink connection repeats on each
plane, thus leading to a complete cycle. The right side of Figure 2 showcases a time-series evolution
of a solution trajectory with initial conditions near the cycle. Observe that as time evolves, the solution
trajectory stays longer around each equilibrium.
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Figure 2. Heteroclinic cycle found between three equilibrium points of the Guckenheimer
and Holmes system. (a) Saddle-sink connections in phase-space; (b) time series evolution
of a typical nearby trajectory. The parameters are: µ = 1.0, a = 1.0, b = 0.55, c = 1.5.

The group Γ ' Z3
2 o Z3 in this example has 24 elements and is generated by the

following symmetries:
(x, y, z) 7→ (±x,±y,±z)

(x, y, z) 7→ (y, z, x).

Note that, in fact, this is a homoclinic cycle, since the three equilibria are on the group orbit given by
the cyclic generator of order three. The actual system of ODEs can be written in the following form:

ẋ1 = µx1 − (ax21 + bx22 + cx23)x1

ẋ2 = µx2 − (ax22 + bx23 + cx21)x2

ẋ3 = µx3 − (ax23 + bx21 + cx22)x3.

In the related work that describes cycling chaos, Dellnitz et al. [13] point out that the
Guckenheimer–Holmes system can be interpreted as a coupled cell system (with three cells) in which
the internal dynamics of each cell is governed by a pitchfork bifurcation of the form:

ẋi = µxi − ax3i ,

where i = 1, 2, 3 is the cell number. As µ varies from negative to positive through zero, a bifurcation
from the trivial equilibrium xi = 0 to nontrivial equilibria xi = ±√µ occurs.

Guckenheimer and Holmes [2] show that when the strength of the remaining terms in the system of
ODEs (which can be interpreted as coupling terms) is large, an asymptotically-stable heteroclinic cycle
connecting these bifurcated equilibria exists. The connection between the equilibria in Cell 1 to the
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equilibria in Cell 2 occurs through a saddle-sink connection in the x1x2-plane (which is forced by the
internal symmetry of the cells to be an invariant plane for the dynamics). As Dellnitz et al. [13] further
indicate, the global permutation symmetry of the three-cell system guarantees connections in both the
x2x3-plane and the x3x1-plane, leading to a heteroclinic connection between three equilibrium solutions.

3. Cycles in Magnetic and Electric Field Sensor Systems

Overdamped bistable dynamics, of the generic form:

ẋ = −∇U(x), (1)

underpin the behavior of numerous systems in the physical world. In this section, we consider two
sensor systems whose dynamics is governed by Equation (1). A fluxgate magnetometer with a potential
energy function U(x, t) = x2(t)/2 − c−1 ln(cosh(c(x(t) + h(t)))), and an electric field sensor based
on overdamped Duffing systems, with a bistable potential, U(x) = −ax2 + bx4. Absent an external
forcing term, the state-point x(t) in both systems will rapidly relax to one of two stable attractors.
Which attractor is observed depends on the particular choice of initial conditions. To follow, a complete
description of the system response to an input DC field is presented. The sensitivity of each sensor
system is also described in great detail. In particular, it is shown that sensitivity increases significantly
near the onset of the heteroclinic connections.

3.1. Magnetic Sensors

In its most basic form, a fluxgate magnetometer consists of two detection coils wound around a
ferromagnetic core (usually a single core) in opposite directions from one another [14,15], as is shown
in Figure 3. Fluxgates show bistable dynamics with a hysteresis loop in which the cores can be induced
by a bias signal to oscillate between two magnetization states (±1). The dynamics of the magnetizations
states is governed by a potential energy function U(x) of the same form as (1). Without an external
forcing term, the state point x(t) will rapidly relax to one of two stable attractors, which are the minima
of the potential energy function U(x). This behavior leads to the standard, spectral-based [14,16,17]
detection mechanism of small target signals (DC or low frequency), wherein a known periodic bias signal
is applied to induce the sensor to oscillate between its two stable attractors. In the absence of a target
signal, the power spectral density contains only the odd harmonics of the bias frequency. In the presence
of a weak target signal, however, the potential energy function is skewed, resulting in the appearance
of even harmonics; the response at the second harmonic is then used to detect and quantify the target
signal. The drawbacks of this readout mechanism are: (1) it requires a great amount of onboard power
to provide a high-amplitude, high-frequency bias signal; (2) the feedback electronics can introduce their
own noise floor into the measurement process; and (3) high-amplitude, high-frequency bias signals often
increase the noise floor of the system. Fluxgates were originally developed about 1928 for use as a
submarine detection device for low-flying aircraft. Today, individual highly-specialized fluxgate devices
can measure magnetic fields in the range of 1–10 pT/

√
Hz [18,19], and they are used in applications,

such as: geophysical exploration, surveillance in land and sea and underwater exploration [20–23].
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One must, however, take these performance quantifiers with the caveat that, when operated unshielded
in a practical application, the detection of target signals above the noise floor is limited by the ambient
magnetic field (which, in the case of the terrestrial magnetic field, can have non-stationary, as well
as random components). Hence, various techniques often involving a reference magnetometer for the
purposes of subtraction of the noise floor from the output of the target-sensing device must be employed
if one wishes to take advantage of the low noise floor. Among recent advances in fluxgate sensor
technology, the so-called “fluxset” devices [24] (see also [15,17,25] for good overviews), which differ
from a conventional fluxgate in the way they convert the magnetic field into an output electrical signal,
are noteworthy. The fluxset magnetometer is based on the influence of the external magnetic field on
the time necessary to produce the reversal magnetization of the ferromagnetic core under a periodic
magnetic excitation. Given an optimal core design and excitation field, the time shift depends only on
the value of the external (target) magnetic field. Hence, the measurement of the magnetic field amplitude
via a voltage measurement in the fluxgate is replaced by a high accuracy time measurement that can be
rendered more impervious to clutter signals and noise via an understanding of the device response in
the presence of a noise floor. Such a (deterministic) “time-domain” description was first introduced by
Strycker and Wulkan [26].

Figure 3. Typical hardware design of a fluxgate magnetometer.

3.2. Modeling

A simple way to model the ferromagnetic core dynamics in a fluxgate is through an Ising-type
model. We will assume the core to be composed of a set of atomic “spins” arranged on a regular
lattice representing the crystal structure of the core [27]. When the temperature T exceeds a critical
temperature Tc, called the Curie temperature, the system exhibits a phase transition [28,29] from a
paramagnet state with little magnetization properties to a ferromagnetic state, where magnetization is
uniform; see Figure 4.

A further simplification is to consider spin 1/2 magnetic materials, so that only two distinct
orientations at each lattice point i are possible: “up” (Si = +1) or “down” (Si = −1). Then the average
magnetic field hi at spin Si is determined by adding the average contributions from all neighboring spins
Sj and from any external applied field hext through Glauber dynamics [30],

〈hi〉 =
∑
j→i

wij〈Sj〉+ hext, P rob(Si = ±1) =
1

1 + exp(∓2βhi)
,
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where wij is the coupling strength of the influence of spin Sj on Si and β is related to the temperature
T through β = 1/(kBT ), where kB is Boltzmann’s constant. Direct calculations show that the average
magnetization is given by 〈Si〉 = tanh(β〈hi〉) = tanh(β

∑
wij〈Sj〉 + βhext). Our interest is in the

ferromagnetic state, in which 〈Si〉 = 〈S〉. Assuming identical coupling strengthswij = 1/N , whereN is
the number of spins, we find a single equation for the average magnetization: 〈S〉 = tanh(β〈S〉+βhext).
An extension of this equation with continuous updating of the average magnetization state leads to a
simple continuous model of the fluxgate core dynamics:

τ
dx

dt
= −x+ tanh

(
x+ h

T

)
≡ −∂U(x)

∂x
, (2)

where τ is a relaxation parameter, x = 〈S〉, kB = 1, so that β = 1/T is a pseudo-temperature parameter,
h = hext, and U(x) is the energy function U(x) = x2/2− T ln(cosh((x+ h)/T )).

The model Equation (2) for a conventional fluxgate magnetometer can be rewritten, after rescaling
time, as a nonlinear dynamical system of the form:

ẋ = −x+ tanh(c(x+ A sinωt+ ε)), (3)

where x represents the magnetization state of the core, c is a temperature-related parameter, A is the
amplitude of the biasing signal with frequency ω and ε is the external magnetic field to be detected.
In the absence of a biasing signal, i.e., A = 0, and without an external signal, i.e., ε = 0, the system
dynamics will quickly settle into one of two equilibrium points of (3). For a sufficiently large biasing
signal, however, the system may be induced to oscillate.

Figure 4. Atomic spins in two states: (left) a paramagnet state and (right) a ferromagnetic state.

3.3. Network Architecture

A coupled-core fluxgate magnetometer (CCFM) is then constructed by uni-directionally coupling N
(odd) wound ferromagnetic cores with cyclic boundary conditions [6], thereby leading to the dynamics,

ẋi = −xi + tanh(c(xi + λxi+1 + ε)), i = 1, . . . , N mod N, (4)

where xi(t) represents the (suitably normalized) magnetic flux at the output (i.e., in the secondary coil)
of unit i and ε� U0 is an external DC “target” magnetic flux, U0 being the energy barrier height (absent
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the coupling) for each of the elements (assumed identical for theoretical purposes); the parameter λ
represents the strength of coupling between xi and xi+1. Effectively, the unidirectional coupling leads to
a network with ZN -symmetry, where ZN is the cyclic group of permutations of N objects. This network
symmetry is critical in the creation of a heteroclinic cycle and, more importantly, in the accompanying
infinite-period bifurcations of limit cycle oscillations.

Indeed, a bifurcation analysis [3,6] reveals that the system (4) displays oscillatory behavior with the
following features:

(1) The oscillations commence when the coupling coefficient exceeds a threshold value:

λc = −ε− xinf + c−1 tanh−1 xinf , (5)

with xinf =
√

(c− 1)/c. Note that in our convention, λ < 0 (negative feedback), so that oscillations
occur for |λ| > |λc|. The oscillations are non-sinusoidal, with a frequency that increases as the coupling
strength decreases away from λc. For λ > λc, however, the system quickly settles into one of its steady
states, regardless of the initial conditions. The same result ensues if N is even or if the coupling is
bidirectional. For values of λ slightly less than λc, there is a small interval λHB ≤ λ ≤ λc where global
oscillations and synchronous equilibria of the form (x1, . . . , xN) = (x̄, . . . , x̄) can coexist; see the two
paragraphs below for a more in-depth description.

The bifurcation diagram for the N = 3 case is shown in Figure 5. It was generated with the aid of
the continuation package AUTO [31]. Filled-in circles represent stable oscillations; they emerge via an
infinite-period global bifurcation that coincides with the creation of a heteroclinic cycle that connects
multiple saddle-point equilibria.
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Figure 5. (Left) Bifurcation diagram for a system of three identical bistable elements
coupled unidirectionally and without delay. Solid (dotted) lines indicate stable (unstable)
equilibrium points. Filled-in (empty) circles represent stable (unstable) periodic oscillations.
(Insert) Close-up view of the region of bistability between large-amplitude oscillations and
synchronous equilibria. (Right) Family of limit cycles oscillations in phase space. The bold
curve corresponds to oscillations very close to the onset of the heteroclinic connection.

At the birth of the oscillations, the amplitudes are fully grown due to the global nature of the
bifurcation. As λ approaches λc (from the left), so that the strength of the negative feedback is
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reduced, the oscillation period lengthens and finally becomes infinite at λ = λc, when the heteroclinic
cycle appears. Empty circles describe unstable oscillations; they all appear via local Hopf bifurcations
(labeled HB), so their amplitude increases as a square-root law of the distance from the bifurcation
point. Solid (dotted) lines depict stable (unstable) equilibrium points. In particular, the equilibrium
points that appear at the pitchfork bifurcation point, labeled B, are all synchronous, i.e., of the form
(x1, x2, x3) = (x̄, x̄, x̄). A close-up view of the interval of the bistability of large amplitude oscillations
and stable synchronous equilibria is also included. The four branches of unstable equilibria that appear
via saddle-node bifurcations (labeled LP) correspond to non-synchronous equilibria. Collectively, there
are fifteen equilibrium points: three synchronous equilibria, including the trivial solution, and twelve
non-synchronous equilibrium points.

(2) The individual oscillations (in each elemental response) are separated in phase by 2π/N and
have period:

Ti =
Nπ
√
cxinf

(
1√

λc − λ
+

1√
λc − λ+ 2ε

)
, (6)

which shows a characteristic dependence on the inverse square root of the bifurcation “distance” λc− λ,
as well as the target signal ε. These oscillations can be experimentally produced at frequencies ranging
from a few Hz to high kHz.

(3) The summed output oscillates at period T+ = Ti/N , and its amplitude (as well as that of each
elemental oscillation) is always a suprathreshold, i.e., the emergent oscillations are strong enough to
drive the core between its saturation states, eliminating the need to apply an additional bias signal for this
purpose, as is done in single-core magnetometers. Increasing N changes the frequency of the individual
elemental oscillations, but the frequency of the summed response is seen to be independent of N .

3.4. Magnetic-Field Sensitivity

To measure an external signal, we rely on a readout mechanism: the residence times detection (RTD),
which is based on a threshold crossing strategy of measuring the symmetry-breaking effect of an external
signal. More specifically, RTD consists of measuring the “residence times” of the oscillations of the
sensor device about the two stable states of the potential energy function U(x). In the absence of noise
and of external signals, the potential energy function is symmetric; hence, the two residence times are
identical, i.e., T+ = T−. In the presence of a target signal, however, the hysteresis loop is skewed, and the
crossing times are no longer equal. Then, either the difference |T+−T−| or the ratio T+/T− of residence
times can be used to quantify the signal. In the presence of noise, the residence times must be replaced by
their ensemble averages. The advantages of this procedure are: it can be implemented on-chip without
the computationally-demanding power spectra of the system output; large-period oscillations yield large
differences/ratios of residence times, i.e., better sensitivity; and it can be optimized to require very low
onboard power. This mechanism is much more sensitive than standard techniques based on the power
spectra decomposition, because the long period of oscillations that are characteristic of limit cycles near
the onset of a heteroclinic connection renders their wave form highly sensitive to symmetry breaking
effects. Direct computations [4] show that RTD can be calculated as:

∆t ≈
π
(
1/
√
λc − λ− 1/

√
λc − λ+ 2ε

)
√
cxinf

, (7)
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which vanishes (as expected) for ε = 0, and can be used as a quantifier of the target signal, analogous to
the time-domain operation of the single fluxgate.

The system responsivity, defined via the derivative ∂∆t/∂ε, is found to increase dramatically as one
approaches the critical point in the oscillatory regime; see Figure 6. This suggests that careful tuning of
the coupling parameter so that the oscillations have very low frequency could offer significant benefits
for the detection of very small target signals.

Figure 6. Sensitivity response of an array of fluxgate magnetometers as a function of the
number of cores N and coupling strength λ. Maximum sensitivity is achieved near the onset
λc of self-induced oscillations.

For small target signals, one may do a small-ε expansion to yield:

∆t ≈ π
√
cxinf

[
1√

λc3 − λ
− 1√

λc3 − λ+ 2ε

]
,

where λc3 now represents the critical coupling obtained using the signal from x3 as a reference point.
Further details can be found in [4]. For a fixed ε, one observes, immediately, that the responsivity
∂∆t/∂ε increases as one approaches the critical point (through adjusting the coupling parameter λ). The
instrument thus yields its optimal performance in the very low frequency regime, close to the oscillation
threshold; it is worth noting that the experimental system can be made to oscillate at very low frequencies
(around 65 Hz), far lower than the bias frequency for conventional fluxgates. The coupled system can be
“tuned” to this regime by adjusting the coupling coefficient λ.

3.5. Alternating Configuration

Laboratory experiments seem to indicate that the sensitivity of a CCFM-based system of fluxgates
increases by simply alternating the orientation of each individual fluxgate [4]. We call this new
arrangement a CCFM system with alternating orientation (AO). We should clarify that the coupling
scheme remains the same, i.e., unidirectional coupling via induction. The only feature that changes
is the direction at which the individual fluxgates are aimed for signal detection purposes. Thus, the
sign in front of the target signal ε alternates between + and −, so that the governing equations (for the
deterministic system) become,

ẋi = −xi + tanh(c(xi + λxi + (−1)i+1ε)), i = 1, . . . , N mod N. (8)
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In the absence of noise and of a target signal, i.e., ε = 0, Equation (8) reduces to that of the
standard CCFM system (4). Hence, the one-parameter bifurcation of xi vs. λ remains the same:
the coupling-induced oscillations exist only when N is odd and for λ < λAOc , where λAOc is a
critical threshold value of coupling strength and the superscript denotes the type of configuration.
The two-parameter bifurcation of xi vs. (λ, ε) might be, however, different, since the signs in front
of the input signal are now different. Thus, we seek to determine λAOc as a function of ε. Direct
calculations yield:

λAOc = −ε+
1

c
ln(
√
c+
√
c− 1)− tanh(ln(

√
c+
√
c− 1)), (9)

which is exactly the same value obtained in Equation (12) for the standard configuration. Interestingly,
the AO configuration does not change the two-parameter region where stable coupling-induced
oscillations exist. More interesting, however, is the fact that the sensitivity response of the AO
configuration does change. Actually, it improves significantly:

∆AOt ≈ Nπ
√
cxinf

[
1√

λc3 − λ
− 1√

λc3 − λ+ 2ε

]
.

It follows that:
∂∆AOt

∂ε
= N

∂∆t

∂ε
.

In other words, the sensitivity of the AO configuration improves, linearly, by a factor of N when it
is compared to the best sensitivity that can be achieved by the summed output signal of the standard
configuration, given the same external signal and core parameters. The dependence of the RTD, and
consequently of the sensitivity, on the size of the ring in the AO configuration is in direct contrast
to the sensitivity response of the standard configuration, in which increasing N beyond N = 3 does
not lead to additional benefits. We should emphasize that the standard configuration, nevertheless, still
outperforms the sensitivity of a magnetometer based on a single uncoupled core. The above observations
are confirmed in Figure 7, in which we calculate, numerically, the RTD ∆1t for a CCFM system with
the standard, as well as with the AO configuration.

Figure 7. Residence times detection (RTD) response of a coupled-core fluxgate magnetometer
(CCFM) as a function of ring size N and of coupling strength λ. (Left) standard configuration and
(right) alternating orientation (AO) configuration. Near the onset of coupled-induced oscillations, in
particular, the RTD response of the standard configuration remains constant (as expected), while that
of the AO configuration increases linearly as a function of N . c = 3, ε = 0.
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3.6. Robustness

We expect noise in a coupled-core fluxgate magnetometer network to arise from three sources: a
magnetic noise floor (due to the core material and, in particular, magnetic domain motion), contamination
of the target signal and noise from the electronics in the coupling circuitry. In recent work, we studied,
numerically, the effects of an additive magnetic noise floor [32] and of a target signal contaminated by
noise. In both cases, we assumed Gaussian band-limited noise having zero mean, correlation time τc
and variance σ2. This type of noise is a good approximation (except for a small 1/f component at very
low frequencies) to what is actually observed in the experimental setup. From a modeling point of view,
colored noise η(t) that contaminates the signal should appears now as an term inside the tanh function
of Equation (4), while additive noise is simply added to the tanh function, i.e.,

dxi
dt

= −xi + tanh(c(xi + λxi+1 + ε+ ηi(t))) + ξi(t)

dηi
dt

= −ηi
τc

+

√
2D

τc
ξ(t)

dνi
dt

= −νi
τc

+

√
2D

τc
ζ(t).

(10)

In general, we would expect somewhat different noise in each equation, since, realistically, the reading
of the external signal ε is slightly different in each core. This is due to non-identical circuit elements and
cores, mainly. In this work, we will consider, therefore, the situation wherein the the different noise terms
ηi(t) and νi are uncorrelated; however, for simplicity, we will assume them to have the same intensity D.
Each (colored) noise ηi(t) is characterized by 〈ηi(t)〉 = 0 and 〈ηi(t)ηi(s)〉 = (D/τc)×exp [−|t− s|/τc],
where D = σ2τ 2c /2 is the noise intensity, and the “white” limit is obtained for vanishing τc. Similar
expressions apply to νi(t). In practice, however, the noise is always band-limited. In this formulation,
we assume the signal to be contaminated purely by external noise; in future work, however, we will also
consider other sources of contamination, such as internal noise introduced by each individual core, as
well as the coupling and readout circuits.

We now present first the results from the numerical simulations of the coupled system (10) in the
presence of additive, Gaussian, band-limited white noise. For convenience, the nonlinearity parameter
c is also taken to be the same throughout. Further, we consider only the case of zero target signal (i.e.,
ε = 0), so that the system is a priori symmetric. The power spectral density (PSD) of any of the
solutions xi(t) shows interesting features. Specifically, it appears to share much in common with what
is observed in renewal processes [33]. Given the near-instantaneous transition between the upper and
lower thresholds, preceded by a relatively slow transition to the threshold (this is readily observable in the
deterministic time series) and coupled with the (not unreasonable) assumption of independent crossing
events, the renewal description seems to be a good one. The features of the PSD are better explained with
reference to Figure 8, which shows the modal switching frequency (the location, fM , of the fundamental
peak in the corresponding PSD) of a single element in theN = 3 ring, as a function of the noise intensity
for two values of the coupling coefficient bracketing its critical value. In this figure, we also plot (for
comparison purposes) the characteristic (Kramers) noise-induced hopping rate, which is numerically
computed for a single uncoupled element in the spectral amplitude occurring at zero frequency for large
noise. For the suprathreshold case, we have, already, a deterministic oscillation frequency, and the effect
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of the noise is to replace this spike with a broad (and shifted) peak and its odd (because the system
is symmetric) harmonics. For very small noise intensities, the modal oscillation frequency (i.e., the
inverse mean of the period distribution function) does not deviate appreciably from the deterministic
oscillation frequency; this is also evident in the top curve of Figure 8, wherein one observes a finite
oscillation frequency even for zero noise, as expected. With increasing noise intensity, however, the
mean oscillation frequency becomes a function of the noise and separates itself from the deterministic
frequency. Simultaneously (with increasing noise), the peak amplitude (in the PSD) decreases until, past
the Kramers rate fK , the PSD has its maximum amplitude at zero frequency (for any value of λ), as
would be expected. The occurrence of hopping events in the subcritical regime, where the deterministic
system is quiescent, is, clearly, a case of purely noise-induced switching.

Figure 8. Simulated modal oscillation (or switching) frequency fM of a single fluxgate in the
N = 3 configuration as a function of noise intensity σ2 (normalized potential barrier height
V of a single uncoupled fluxgate, on the top scale). fM denotes the location of the peak
in the corresponding power spectral density (PSD). The dashed curve is the (numerically
computed) Kramers rate fK for a single uncoupled element. The grey area corresponds to
the subcritical (non-oscillating, in the absence of noise) regime.

Finally, we address the issue of increasing the number of elements in the coupled array. Changing N
leads to a proportionate scaling of the individual frequencies of the component elements; however, the
summed output oscillates at a frequency independent of N . Increasing N also leads to an enhancement
in the spectral response of individual elements in the array, but not for the summed output.

We now consider the effects of signal contamination by noise. We assume the temperature-related
parameter c to be constant throughout the simulations. We assume the target signal to be ε = 0.07,
well below the energy threshold of a single (uncoupled) core. Of course, the results are expected to
be similar to those found at other values of the target signal within the energy barrier height. Figure 9
shows the relation between the mean oscillation frequency of (a single core element of) the CCFM with
N = 3 cores and the system parameters (coupling strength λ and noise intensity D). The mnemonic
“SO” in the figure stands for standard orientation, in which all of the individual cores have the same
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spatial orientation (i.e., the sign of the target signal term is the same in each equation of the system
Equation (10)) for signal detection purposes. A sample of one thousand time-series simulations was
then used to compute the frequency output at each point in the parameter space (λ, D). Each simulation
was carried out with correlation time set to τc = 150, since typically τF � τc, where τF = 1 is the
time constant of the core dynamics given by Equation (4). Observe that the critical-coupling bifurcation
point λc of the deterministic system, i.e., D = 0, remains, approximately, unchanged for small values
of noise intensity. There is, however, a subtle shift in the bifurcation point for increasing noise (beyond
D = 0.25). The noise appears to have the effect of delaying the onset of oscillatory behavior. We find
(not shown) that the delay is less pronounced in the more idealized scenario in which the noise ηi(t) is
taken to be the same in each core.

Figure 9. Frequency (Hz) response of simulations of a CCFM system, subject to parametric
noise, as a function of coupling strength λ and noise intensityD. The parameters are: N = 3

cores, c = 3, τc = 150 and ε = 0.07. SO denotes the standard orientation in which all
individual fluxgates are similarly oriented for signal detection purposes. Observe that the
onset of coupling-induced oscillations shifts slightly (to the left of λc) for larger values of
noise intensity, as is shown by the small dent in the surface plot near D = 0.5.

Next, we study the response of the CCFM through the signal-to-noise ratio (SNR). Figure 10 shows
the SNR (of the output of a single core element) in the same parameter space (λ, D). The SNR increases
rapidly near the critical coupling, as we would expect. The negative effects of highly-contaminated
signals (large noise intensity) appear to be well mitigated by the sensitivity response of the system. To
the right of the onset of oscillatory behavior, where the global dynamics of the deterministic system
typically settle into a steady-state equilibrium, we now observe small fluctuations in the SNR caused
mainly by noise. These fluctuations get smaller as the number of simulation samples increases.

It is worth mentioning that these small fluctuations are also present in the more ideal case, wherein we
take identical noise functions in each element of the dynamics. We now investigate the AO configuration,
which, as suggested by the results of the preceding section, as well as our laboratory experiments, holds
the promise of further performance enhancements.

Finally, we study the effects of noise on the CCFM with the AO configuration. We use the output of
the “favored” element that gives the best deterministic RTD response (see the preceding section) in this
configuration. Calculations of the SNR output of this “favored” element (not shown for brevity) show, at
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first glance, similar results to those of the standard-orientation configuration. A point-wise comparison
between the SNR output of the two cases indicates, however, that the SNR output of (the favored element
of) the AO configuration can be larger than that of the standard (CCFM) system (Figure 11). Near the
critical coupling strength, in particular, the SNR response of the AO system appears to be significantly
better than that of the standard configuration. Large coupling strengths, on the contrary, reduce the
SNR response of the AO configuration to values that are comparable to those of the standard case. The
improvement in SNR output of the AO configuration over the standard (SO) case is also present in the
ideal case of identical noises in the cores; however, in this case, the improvement occurs for smaller
values of noise intensity. In both cases, non-identical and identical noise terms, the difference between
the SNR outputs suggests that careful tuning of the coupling strength can mitigate the negative effects
of signal contamination, so that full advantage can be taken of the sensitivity enhancements of a CCFM
system with the AO configuration.

Figure 10. Signal-to-noise ratio output of (a single element) of a CCFM system in the
presence of parametric noise. The parameters are: N = 3 cores, c = 3, τc = 150.0 and
ε = 0.07.

Figure 11. Difference in SNR response between AO and SO configurations. Observe that
near the onset of coupling-induced oscillations, the SNR response of the AO configuration
is significantly better. The parameters are: N = 3 cores, c = 3, τc = 150.0 and ε = 0.07.
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3.7. Basins of Attraction

Modeling and analysis of high-dimensional dynamical systems is usually focused on finding
conditions for the existence and stability of typical invariant sets, i.e., steady states, periodic solutions
and chaotic sets. High dimensionality leads to complex patterns of collective behavior. Which behavior
is exhibited by a network depends greatly on the initial conditions. Thus, it is also important to study
the geometric structure and evolution of the basins of attraction of such patterns. In this section,
we provide a qualitative description of the equilibrium points of the unidirectionally-coupled ring of
fluxgate magnetometers with governing Equation (4). In particular, we emphasize the role of the network
symmetry, defined by the group ZN , in the multiplicity of the various equilibrium points. For illustration
purposes, we focus the description on the particular case of N = 3. The derivatives are set equal
to zero, and the nonlinear system of equations is solved to find the equilibria. It is apparent that the
origin (0,0,0) is one equilibrium point independent of λ. However, all other equilibria are found using
numerical methods. In addition, we need the eigenvalues and eigenvectors from the linearization about
the equilibria, which uses the Jacobian of the RHS of System (4):

J(x1, x2, x3;λ) =

−1 + c sech2((c(x1 + λx2)) cλ sech2((c(x1 + λx2)) 0

0 −1 + c sech2((c(x2 + λx3)) cλ sech2((c(x2 + λx3))

cλ sech2((c(x3 + λx1)) 0 −1 + c sech2((c(x3 + λx1))

 .

There are a number of methods for finding the many equilibria for System (4). Perhaps the most
efficient way is with the aid of the software packages AUTO [31] and XPPAUT [34]. From the known
equilibrium at the origin, AUTO can track equilibria and periodic orbits, as it finds bifurcation points by
varying λ, which give rise to new equilibria. For System (4), the easiest way to find and track equilibria
is to start with the case λ = 0, the uncoupled system. Then, equilibria are found by solving:

−xi + tanh(cxi) = 0,

which, for c = 3, gives xie = 0 being unstable and xie = ±0.9949 being stable in the xi direction. For
System (4) at λ = 0, there are 27 equilibria from all possible combinations of the three equilibria for
each of the three components. Furthermore, the information on the stability of each component transfers
to the entire system. It follows that there are eight stable nodes from all combinations of:

(x1e, x2e, x3e) = (±0.9949,±0.9949,±0.9949).

The origin is clearly an unstable node. The equilibria with one component, xie = 0, and the other
two components having xje = ±0.9949, j 6= i, produce twelve unstable saddle nodes with 2D stable
manifolds. These 2D stable manifolds align with the coordinate planes in each of the octants. Finally,
there are six unstable saddle nodes with two components satisfying xie = 0 and the remaining one having
xje = ±0.9949. These equilibria have 1D stable manifolds along the coordinate axes.

With these equilibria established for System (4) with λ = 0, the fsolve routine in MATLAB is
used in a program to find the equilibria for other λ. The fsolve routine uses a Levenberg–Marquardt
method to solve the vector system:

F(x, λ) = 0,
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for x. One of the equilibria above is used as initial conditions, then λ is varied slowly in the positive
and negative directions over the desired domain or until a saddle node bifurcation is encountered.
At each step of the procedure for computing new equilibria, the new value of λ is entered with the
previously-computed equilibrium value used as an initial guess. MATLAB’s fsolve routine can readily
find a new equilibrium, unless we are very close to a saddle node bifurcation. If we are close to a
saddle node bifurcation, then the stepsize of λ is reduced to obtain the new equilibrium value. If the
initial equilibrium, (x1e, x2e, x3e), is an asynchronous equilibrium point, then symmetry automatically
produces five more equilibria: (x2e, x3e, x1e), (x3e, x1e, x2e), (−x1e,−x2e,−x3e), (−x2e,−x3e,−x1e)
and (−x3e,−x1e,−x2e). Furthermore, all six of these equilibria maintain the properties, like the unstable
saddle node with a 2D stable manifold, which agree with the properties of the initial equilibrium at λ = 0.
These properties are easily checked at any equilibrium by finding the eigenvalues of the Jacobian matrix,
J(x1e, x2e, x3e;λ), at the equilibrium.

Even though there are 27 equilibria, there are only six qualitatively different ones. The eight stable
equilibria divide into two categories with the two symmetric equilibria and the six asymmetric equilibria.
There are twelve asymmetric equilibria with 2D stable manifolds, which also divide into two categories.
The first six are the ones that, when λ = 0, border on the faces of Octant I or its negative, Octant VII,
generating the lavender separatrices, and the other six come from the remaining equilibria on the faces
of the other octants when λ = 0, generating the green separatrices. Finally, the six equilibria on
the coordinate axes when λ = 0 generate the equilibria with 1D stable manifolds. Figure 12 shows
the evolution of these different types of equilibria as λ varies. The origin remains a fixed, unstable
equilibrium with some of its eigenvalues changing sign only at the point of the pitchfork bifurcation
(λ = −0.6667) and the subcritical Hopf (λ = 1.3333). Consider first the two symmetric equilibria, and
recall the 24-element group Γ ' Z3

2 o Z3 of symmetries of the coupled bistable system. Reflections send
one of the symmetric equilibria (x, x, x) to the other (−x,−x,−x), and vice versa, while cyclic rotations
leave them unchanged. In other words, the pair of symmetric equilibria are in the group orbit generated
from the symmetry group Γ ' Z3

2 o Z3. Thus, from a symmetry standpoint, these two equilibria are one
and the same. Upon changing λ, the group orbit evolves while it tracks the line x1 = x2 = x3, starting at
λ = −0.6667, and both equilibria on the orbit become stable (as expected, because they are in the same
group orbit) after the subcritical Hopf bifurcation at λ = −0.5018. The resulting equilibria are visible as
the straight-line segment shades from gray to black in the middle of Figure 12.

Figure 12 also shows that the asymmetric stable equilibria track six small curves remaining near
the points:

〈1, 1,−1〉 → 〈−1, 1,−1〉 → 〈−1, 1, 1〉 → 〈−1,−1, 1〉 → 〈1,−1, 1〉 → 〈1,−1,−1〉.

Similarly, these equilibria are symmetrically related and share stability properties, since they are
in the same (second) group orbit generated by Γ. The small curves track from gray to black as λ ∈
(−0.4346, 0.4346) varies. The gray end of the curve connects to one set of six equilibria with 2D
stable manifolds, which are shown in Figure 12, starting with the lighter blue and becoming darker
as λ ∈ (−0.4346, 0.4349) varies. This particular set generates the green 2D stable manifolds in our
previous figures, and when λ = 0, these curves pass through a point (x1e, x2e, x3e), where the xie,
i = 1, 2, 3 is a permutation of the values −0.9949, 0 and 0.9949. The permutation is equivalent to
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applying the 24-elements of the symmetry group Γ, which yields a total of 12 asymmetric unstable
nodes connected in a third group orbit. The dark end of these six blue curves matches the dark end of
the six red curves at the saddle node bifurcation when λ = 0.4349. The six red curves sweep a long arc
passing through one of the coordinate axes near xie = ±0.9949 for some i = 1, 2, 3, where six additional
unstable saddle nodes are located. These six saddle node points form the fourth group orbit of equilibria.
As the red becomes lighter, these curves reach another saddle node bifurcation at λ = −0.4475, where
they match with the light end of the other set of six blue curves. This set of six blue curves of equilibria
have 2D stable manifolds, which are lavender in the previous figures, separating the symmetric equilibria
from the asymmetric equilibria. When λ = 0, these equilibria are on one of the coordinate planes with
two values of xie being either±0.9949 and the other being xje = 0. These six curves become darker as λ
increases to 0.4346, where the lavender stable manifolds vanish at a saddle node bifurcation. This saddle
node bifurcation has the dark blue curve match the black of another asymmetric stable equilibrium at
a different adjacent corner. The evolution of the stable and unstable manifolds is shown in Figure 13
through a montage of the geometric structure of the basins of attraction. More details can also be found
in [35].

2

Figure 12. There are 27 equilibria shown in this diagram at various values of λ. Three are the
origin and the two symmetric equilibria. There are 24 asymmetric equilibria, which over the range of
λ connect in a long chain. The gray-black equilibria are stable. The blue equilibria have 2D stable
manifolds, and the red equilibria have 1D stable manifolds. The darker the shade of blue or red, the
higher the value of λ. Changes in color occur at saddle node bifurcations. All 27 equilibria can be
arranged into one of four group orbits generated by the symmetry group Γ ' Z3

2 o Z3. Then, this
plot can be interpreted as a color-coded evolution of four distinct group orbits as a function of λ. The
gray-black straight line is for the graph of the group orbit of two symmetric equilibria, including the
origin and three additional curves, red, blue and gray, for the 24 asymmetric equilibria.
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Figure 13. Montage of the geometric structure of the basins of attraction of a ring of bistable units
connected unidirectionally.

In summary, the 24 asymmetric equilibrium points can be arranged into one of three distinct group
orbits. Thus, Figure 12 can be interpreted as a color-coded evolution of four distinct group orbits as
a function of λ, which yields: a straight-line in the middle connecting the two symmetric equilibria
(±x,±x,±x) and the origin; six gray-to-black corner segments connecting six asymmetric stable nodes
of the form (±x,±x,∓x); twelve blue curves for the group orbit of twelve asymmetric unstable nodes
with representative (0,±x,±x); six red curves, which connect the remaining six asymmetric unstable
saddle nodes of the type (0, 0,±x). All other equilibria can be readily obtained by applying directly the
24 elements of the group Γ to the representative elements listed above. We observe in Figure 12 that
if one begins at any one of the asymmetric equilibria and increases and decreases λ between the saddle
node bifurcation values, then one can continuously reach all of the remaining 23 asymmetric equilibria.
This property deserves further investigation. The codes used to generate these equilibria are available
at [36].
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3.8. Electric Field Sensor

We consider a system of N (unidirectionally) coupled bistable overdamped Duffing elements, in the
presence of a weak (compared to the energy barrier height of a single uncoupled element) DC external
target signal ε0:

τ ẋi = axi − bx3i + λ(xi − xi+1) + ε0, (11)

where i = 1, . . . , N mod N , xi(t) is a generic state variable, with the parameters (a, b) characterizing
each element, λ being an inter-element coupling coefficient (note the absence of bidirectional coupling)
and c a coupling constant (or amplification parameter, depending on the mechanism) to the external
target signal. τ is a time constant, usually depending in a complex way on geometrical and physical
(material) parameters; it defines (via its inverse) the individual element bandwidth. One realizes,
immediately, that the dynamics of the system (11) are likely to be quite different from the magnetic
sensors discussed in Section 3.1 because of the differences in the (inter-element, as well as external
signal) coupling mechanisms.

A bifurcation analysis [5] reveals that the system (11) exhibits oscillatory behavior with the
following features:

(1) The oscillations commence when the coupling coefficient exceeds a threshold value:

λc = λc0 +
3

2

ε0

1 +

√
2a

b

, (12)

to leading order in ε0. This expression for the critical coupling is found to agree quite well with the
results of numerical simulations on the coupled system (11), for small ε0 (compared to the energy barrier
height U0). As was the case of the coupled magnetic sensors, the oscillations are again non-sinusoidal,
with a frequency that increases as the coupling strength increases away from λc. For λ < λc, however,
the system quickly settles into one of its steady states, regardless of the initial conditions. The same
result ensues if N is even or if the coupling is bidirectional. The bifurcation diagram for the N = 3 case
is shown in Figure 14. Again, it was generated with the aid of the continuation package AUTO [31].
Filled-in circles represent stable oscillations; they emerge via an infinite-period global bifurcation that
coincides with the creation of a heteroclinic cycle that connects multiple saddle-point equilibria. Empty
circles represent unstable oscillations. Observe that they appear via local Hopf bifurcations, marked with
an H . Solid (dotted) lines represent branches of stable (unstable) equilibrium points. For values of λ
slightly larger than λc, there is a small interval where global oscillations and synchronous equilibria of
the form (x1, . . . , xN) = (x̄, . . . , x̄) can coexist.
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Figure 14. (Left) Bifurcation diagram for a system of three identical bistable elements
coupled unidirectionally and without delay. Solid (dotted) lines indicate stable (unstable)
equilibrium points. Filled-in (empty) circles represent stable (unstable) periodic oscillations.

(2) The individual oscillations (in each elemental response) are separated in phase by 2π/N and
have period:

T =
3
√

2π√
|f(x10)f ′′(x10)|

+
3
√

2π√
|f(x30)f ′′(x30)|

, (13)

where f(x) = (a+ λ)x1 − bx31 − λx2m + ε0, x10 =
√

a+λ
3b

, x30 = −x10.
(3) Increasing N leads to a concomitant increase in the individual oscillation periods, but the period

of the summed response is independent of N .

3.9. Electric-Field Sensitivity

The residence time difference in the two states is easily evaluated, via the summed response, as:

∆t =

√
2π√

|f(x10)f ′′(x10)|
−

√
2π√

|f(x30)f ′′(x30)|
,

note that the quantity ∆t would incorporate a factor of N if we evaluated it for each individual element.
We also point out that, unlike in our previous work [6], it does not appear possible to (analytically) obtain
a clear-cut scaling behavior of the period T with the “separation” ∆λ ≡ λ − λc from the expressions
above; in fact, the necessity to recourse to Taylor expansions for the steady-state quantities xi0, as
well as the critical coupling λc attests to the calculational difficulties associated with this (seemingly
straightforward, especially in comparison to the more complicated mean-field potential energy functions
of [6]) coupled system (11), even near the critical point.

4. Experiments

Figure 15 shows an actual realization of a CCFM with three fluxgate magnetometers coupled
unidirectionally. The PCB (printed circuit board) version is made of cobalt-based Metglas 2714A
material, and each is sandwiched between two sheets of PCB material. The sides of the PCB sheets
that face away from the core material are printed with copper wiring to form the windings for the driving
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and sensing coils. Solder is used to fuse the two sheets together to complete the circuit for the windings.
The cores are then coupled through electronic circuits where the (voltage) readout of one fluxgate signal
(i.e., the derivative signal of the flux detected by the sensing coil) is amplified by a voltage amplifier with
a very high impedance, which also trims out any DC signal in the output; see Figure 16. Following this,
the signal is passed through a “leaky” integrator to convert the derivative signal seen by the sensing coil
back to the “flux” form, so that the experimental system closely conforms to the model (4).

Figure 15. Prototype design of a coupled core fluxgate magnetometer with three fluxgates.
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Figure 16. Flow diagram for the coupled fluxgate experiment. Each fluxgate consists of
two coils, the sensing coil and the driving coil. Starting with Fluxgate 1, the signal from the
sensing coil, first, goes through the current-to-voltage converter. Then, it passes through the
“leaky” integrator, followed by a Sallen second-order filter before going through the main
gain stage. Thereafter, the signal goes through the voltage-to-current converter, and then, it
connects to the drive coil of the adjacent fluxgate (Fluxgate 2). The other two fluxgates are
connected in the same manner.
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Typically, the integrator output contains a DC component that must be removed before the signal is
passed to the other fluxgates. This is accomplished by employing a Sallen–Key second-order high pass
filter immediately after the integrator. The signal then passes through an amplifier to achieve adequate
gain to drive the adjacent fluxgate. After this, the signal passes through a voltage-to-current converter
(V-I converter) in its final step to drive the primary coil of the adjacent fluxgate. The setup repeats for
the remaining two fluxgates, and all values of the coupling circuit parameters are closely matched from
one set to the other.

The oscillations observed from this setup are quite striking; see Figure 17. The system readily
oscillates in a traveling pattern. Like the model, the system favors this pattern no matter how many times
it is restarted. The frequency of oscillations is about 33.5 Hz. Each wave is phase shifted by exactly 2π

3
,

as predicted by the model. Comparison of the oscillations from the experiment to the numerical results
shows good agreement. In addition, since we do not know the value of c and the time constant τ in the
actual device (we set τ = 1 in the model), we cannot correctly compare the time scales in the model and
the experimental observations. The amplitudes of the oscillations in the experiment are also arbitrary
compared to the model, because the recorded voltages depend on the gains set in the coupling circuit.
On the other hand, the magnetic flux in the model saturates between ±1, but in the fluxgate devices, this
quantity cannot be measured directly.
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Figure 17. Top: The numerical data for c = 4, λ = −1.55 and ε = 0. Bottom: The
experimental data from three coupled PCB fluxgate magnetometers. There is very good
qualitative agreement between the model and the experimental systems, as indicated by the
similarity of the waveforms between the top and bottom panels. The experimental system
lacks a couple of parameters (the device time constant τ and the c value) that are necessary
for determining the exact frequency to match with the numerical result. The amplitudes of
the experimental time-series are also on a different scale, because the voltages recorded at
the output of the experiment are determined by the overall gains in the circuits used to couple
the magnetometers.
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5. Conclusions

Over the past twelve years, we have conducted various analytical, computational and experimental
works to investigate the fundamental idea that coupling-induced oscillations that emerge through
heteroclinic connections can be exploited to develop a new generation of highly-sensitive, low-powered,
dynamic sensors. In this review article, we use the fluxgate magnetometer, which is essentially a coil
sensor with a ferromagnetic core, and a network of electric field sensors made up of overdamped Duffing
oscillators as case studies to illustrate the basic ideas and methods to enhance sensor performance. Both
sensor systems are coupled in a ring configuration with no preferred orientation, i.e., uni-directionally.
This type of coupling configuration favors the existence of structurally-stable heteroclinic cycles that
involve saddle-sink connections between multiple equilibrium points. More importantly, the cycles are
accompanied by a branch of globally-stable limit cycle oscillations. At birth, these oscillations are
fully grown with a large amplitude, which distinguishes them from the slowly-growing oscillations that
emerge via Hopf bifurcations. This is a critical feature to enhance performance, because the large period,
large amplitude oscillations that typically occur near the onset of a heteroclinic connection render the
collective oscillations highly sensitive to symmetry-breaking effects caused by external signals. An
experimental prototype of a network of fluxgate magnetometers yields voltage oscillations that are
in very good agreement with computer simulations of the model equations. More importantly, the
sensitivity of the device is significantly stronger than that of a single unit, as expected.

In more recent years, we have expanded the ideas and methods to model, analyze and develop
highly sensitive sensor systems beyond magnetic- and electric-field sensors. In particular, we have
extensively studied networks of vibratory gyroscopes for navigation systems. Current prototype MEMS
(micro-electro-mechanical systems) gyroscopes are compact and inexpensive to produce, but their
performance characteristics, in particular drift rate, fail to meet the requirements for an inertial grade
guidance system. As an alternative approach, a coupled inertial navigation sensor, made up of N
vibratory gyroscopes coupled in some fashion, has been proposed [37–41]. The fundamental idea is to
synchronize the motion of each gyroscope to the Coriolis driving force, so that the collective signal from
all gyroscopes can be summed and then demodulated to yield an optimal response in terms of minimizing
phase drift and robustness to noise and material imperfections. An analysis (based on perturbation
methods) with N = 3 gyroscopes shows promising results, as the coupled system appears to minimize
phase drift. The governing equations for larger array sizes are, however, not amenable to similar analysis
based on perturbation techniques. This lack of tractability prevent us from exploring further performance
enhancements in phase drift by larger arrays. To circumvent this problem, in recent projects, we have
reformulated the governing equations in a Hamiltonian structure, and the corresponding normal forms
are then derived [42]. Through a normal form analysis, we can investigate the effects of various coupling
schemes and unravel the nature of the bifurcations that lead a ring of gyroscopes of any size into and
out of synchronization. The Hamiltonian approach can, in principle, be readily extended to other
symmetry-related systems. Future work includes translational research work aimed at the design and
fabrication of a prototype system at both the mesoscale and microscale.

In yet another project at the interface between symmetric dynamical systems and engineering, we
have also shown a proof of concept that an array of vibratory energy harvesters, coupled mechanically
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and inductively, can produce, under certain conditions that depend mainly on the coupling strength,
collective patterns of oscillations [43]. Among the many different patterns, synchronization behavior
is of particular importance, because, in principle, it can be used to form a coherent power output
to a usable level to drive some devices. A perturbation analysis shows that it is possible to find
approximate analytical expressions for the critical coupling strength that leads to the stable synchronized
solutions. The analysis is, however, complicated for it to be extended to arrays of arbitrary size,
specially large arrays. An alternative approach, based on casting the model equations in Hamiltonian
form, with zero forcing and zero damping, leads to an approximate analytical solution for the onset of
synchronization. The expression is a reasonable approximation, even under weak forcing, and it can be
very useful towards the design and operation of an array of energy harvesters for higher combined energy
production. In the analysis, we chose the model equations representing the energy harvester constructed
with magnetostrictive material, as a case study. However, we wish to emphasize that the fundamental
principles of symmetry-driven spatio-temporal patterns of oscillations are model independent, so that
similar ideas of arrays of harvesters can be readily extended to other arrays with different materials, for
instance piezoelectric transduction. Finally, we note that power production has not been discussed at
this point, because the entire experimental system is not fully optimized yet to give a realistic projection
of the total power production from the coupled system. The optimization will be carried out mainly in
the power converter part where the impedance matching, component sizes and load matching are very
important to efficiently convert power to do useful work. We plan to discuss this part of the system in a
future work.
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