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1. Introduction

The role of group-theoretic arguments in biology has a long history, in which R.A. Fisher’s
classification of segregation genotypes in the theory of polysomic inheritance is a classical example [1].
In the theory of experimental designs, it was also Fisher who demonstrated the explicit usefulness of
cyclic groups in the theory of confounding in factorial experiments [2,3], now widely used in biology
and genetics studies. In recent decades, the theory and applications of algebraic methods in statistics and
probability became a well-established area of interest, e.g., [4,5].

In structural biology as well, applications of symmetry arguments have been used to formulate
working hypotheses and to suggest explanation and prediction, e.g., [6–10]. An explicit connection
between symmetry arguments and data analytic reasoning in structural biology can be exemplified
by the study [11] of the evolutionary importance of purine and pyrimidine content in the human
immunodeficiency virus type 1, based on the statistical assessment of the frequency diversity of cyclic
sets, defined as the ratio

xO =
maxO f

minO f
(1)
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of extreme (max/min) frequency counts (f) in the cyclic set O evaluated over a given region of the
genome. In the context of symmetry studies, the frequency diversity is just but one of the many possible
data summaries indexed by cyclic sets or orbits. In the present communication, the frequency diversity,
as well as cyclic summaries such as the raw sum

xO =
∑
O

f (2)

of frequency counts along the orbit, will be shown to share similar algebraic and data-analytic structures.
More specifically, the present communication is aimed at showing that there is a broader

group-theoretic and data-analytic framework within which the methodology described in [11] can
be identified and further utilized, thus leading to eventually richer biological interpretations and
explanatory narratives.

The framework of interest (Symmetry Studies) was described originally in [12] and is briefly reviewed
in [13]. We will also refer to [14] for notions of Fourier analysis over the finite groups relevant to the
present applications. See also [15–18] for related discussions, and [19,20] for applications in the field of
linear optics.

This paper is divided as follows. The basic definitions, assumptions and notations are introduced in
the next section. The cyclic reductions are discussed in Section 3. Numerical evaluations are presented
in Section 4. Additional background material is presented in Appendices A, B, and C.

2. Definitions, Assumptions and Notation

Any DNA sequence in length of ` base pairs (bp) can be represented as a point in the set AL of
all mappings

S : L = {1, . . . , `} 7→ A = {A,G,C,T}

where, typically, permutations τ in subgroups G of the full symmetric group S` act on the left
according to

Sτ−1. (3)

The inverse of the group element appearing in the group action τ · s = sτ−1 is necessary so its defining
property η · (τ · s) = (ητ) · s can be verified. Permutations σ in subgroups H of S4 act on the right
according to

σS, (4)

and subgroups G×H of the direct product group S` × S4 act bilaterally according to

σSτ−1. (5)

In what follows, we will indicate by

s = {Sγ−1; γ ∈ C`} (6)

the orbit generated by the left action of the cyclic group C` on a given sequence S ∈ AL. We will refer,
generically, to these sets as cyclic orbits or cyclic sets.
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Throughout this communication, sequences written in lower case will always indicate the cyclic orbit
generated by the corresponding sequence, to be written in upper case. For example,

act = {ACT,CTA,TAC}, agct = {AGCT,GCTA,CTAG,TAGC}.

It follows directly from (4) that two sequences S and F are complementary if

F = σS,

with
σ = (AT)(GC)

the permutation in S4, written in cycle notation, representing the standard DNA complementarity of base
pairs. For example, ACT and TGA are complementary sequences, and in that case we also say that their
corresponding orbits act and tga are also complementary. Specifically,

F = σS ⇒ f = {Fγ−1; γ ∈ C`} = {σSγ−1; γ ∈ C`} = σ{Sγ−1; γ ∈ C`} = σf.

2.1. Injective Sequences

The dihedral reductions to be considered in this communication are obtained for DNA sequences in
length of three (or codons) composed of distinct bases {A,G,C,T}. That is, for the injective mappings
intoA with domain L = {1, 2, 3}. These sequences account for the 24 distinct injective codons factored
into 8 distinct cyclic orbits of length three.

Although the group actions (3)–(5) are defined for all mappings in AL, the resulting data-analytic
applications may need to be adapted when non-injective sequences are included, due to the fact that the
resulting actions may no longer be transitive. In that case, the data analysis is carried piecewise within
the transitive parts [12]. In addition, because the actions on the injective sequences are faithful, any
experimental results indexed by the points in the orbit are in one-to-one correspondence with the group
elements, and can consequently be indexed by the group elements themselves. It is in the resulting group
algebra structure that Fourier transforms can naturally be defined.

2.2. Scalar Measurements

Throughout this paper it will be opportune to distinguish the following types of experimental data:

• Data indexed by sequences, x : AL 7→ R, indicated by xS;
• Data indexed by cyclic orbits, x : O 7→ R, indicated by xs;
• Data indexed by group elements, x : G 7→ R, indicated by xτ , xσ, . . ..

For example, the frequency diversity Equation (1) for act in terms of frequency counts xS over a given
region of the genome is given by

xact =
max{xACT, xCTA, xTAC}
min{xACT, xCTA, xTAC}

, (7)

whereas the raw sum Equation (2) for the same orbit is

xact = xACT + xCTA + xTAC. (8)
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2.3. Orbit Invariance

Every symmetry orbit has an intrinsic arbitrariness in the choice of its generating point, so that the
resulting orbit is the same regardless of its generator. For example, recalling Equation (6),

act = cta = tac.

Therefore, one would want the corresponding data summaries

xact, xcta, xtac

to be stable, or invariant, under different choices of orbit generators. Obviously Equations (7) and (8)
are both orbit invariants. This is a universal requirement that applies to all summaries obtained from data
indexed by symmetry orbits.

A class of data summaries with this (orbit) invariance property, as shown in [14], is given precisely
by the Fourier transforms

< x, ξ >=
∑
τ∈G

xτξτ ,

evaluated at the (irreducible) representations ξ of G. The invariance property says that, regardless of
the different orbit relabelings τx, their Fourier transforms < τx, ξ > stay bound to certain well-defined
(irreducible representation) subspaces of the original data module or vector space [14]. That is,

< τx, ξ >= ξτ < x, ξ >, (9)

so that the transforms reduce as the corresponding irreducible characters.
A class of (faithful) group actions on the cyclic orbits that allows us to identify xτ with xs and evaluate

the Fourier transforms (or orbit invariants) will be introduced in the next section.

2.4. Dihedral Orbits

The dihedral groups Dn, for n = 3, 4, . . ., can be realized as the group

Cn = {1, r, r2, . . . , rn−1}

of rotations of a regular n-side polygon, adjoined with the corresponding reversals

Cnh = {h, rh, r2h, . . . , rn−1h},

or h-mirrored rotations, giving Dn a (non-commutative) group structure of order 2n. In addition, when
n = 2,

D2 = {1, r, h, rh} ' C2 × C2,

also known as the Klein four-group, is often considered as one of the dihedral groups. This commutative
group, when realized as the symmetries of a regular rectangle, describes vertical and horizontal line
reflections and their two-fold 180◦ rotation composition. For completion, we also include D1 = {1, h},
where h2 = 1, and D0 = {1} into the dihedral class as well.
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The action (3) under G = D3 gives four distinct dihedral orbits

act ∪ tca, tga ∪ agt, gct ∪ tcg, cga ∪ agc,

where
act = {ACT,CTA,TAC}, tca = {TCA,CAT,ATC},

tga = {TGA,GAT,ATG}, agt = {AGT,GTA,TAG},

gct = {GCT,CTG,TGC}, tcg = {TCG,CGT,GTC},

and
cga = {CGA,GAC,ACG}, agc = {AGC,GCA,CAG}

are the cyclic orbit components, accounting for the 24 distinct injective codons.
Similarly, the action (3) under G = D4 gives three distinct dihedral orbits

actg ∪ gtca, agct ∪ tcga, atgc ∪ cgta,

where

actg = {ACTG,CTGA,TGAC,GACT}, gtca = {GTCA,TCAG,CAGT,AGTC},

agct = {AGCT,GCTA,CTAG,TAGC}, tcga = {TCGA,CGAT,GATC,ATCG},

and
atgc = {ATGC,TGCA,GCAT,CATG}, cgta = {CGTA,GTAC,TACG,ACGT}

are the cyclic orbit components, accounting for the 24 distinct injective sequences in length of four.

3. Invariant Reductions

In Diagrams (10) and (11), D3 rotations and reversals are shown sideways along the rows of the
diagrams and complementary orbits are shown along columns, so that each box is labeled by a cyclic
orbit. We shall refer to the orbits in each of the diagrams simply as conjugated orbits.

In addition, each orbit is labeled by the polarity (⊕,	) of the sequence’s strand and by the encoding
sense (→) or anti-sense (←) direction with which a gene or protein product reads off the sequence.
More specifically, following (10), if any point in the act orbit is labeled with a positive polarity and with
a reading sense direction then:
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• The corresponding point in the tca orbit has positive polarity and the reading is in the
anti-sense direction;
• The corresponding point in the tga orbit has negative polarity and the reading is in the sense

direction, and;
• The corresponding point in the agt orbit has negative polarity and the reading is in the anti-sense

direction.

act
⊕, →

tca
⊕, ←∥∥∥ ∥∥∥

tga
	, →

agt
	, ←

(10)

Diagram (11) shows the complementary orbits gct and agc, with the same polarity and direction
interpretation as in Diagram (10).

gct
⊕, →

tcg
⊕, ←∥∥∥ ∥∥∥

cga
	, →

agc
	, ←

(11)

Figure 1 shows a configuration space for the conjugated cyclic orbits of Diagrams (10) and (11),
relative to which Figure 2 shows, respectively on the left and right images, the common direction
and common polarity configuration subspaces. In this configuration space (obviously not unique),
same-direction subspaces span two intercepting tetrahedrons, whereas same-polarity subspaces span two
parallel faces of the configuration space.

Figure 1. A configuration space for the conjugated cyclic orbits.
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Figure 2. Common-direction (left) and common-polarity (right) configuration subspaces
for the conjugated cyclic orbits of Diagrams (10) and (11).

3.1. D2-Invariant Reductions

There is a transitive faithful action of C2 × C2 ' D2 on the cyclic orbits s of (10), given by

σSτ−1, S ∈ s,

with
σ ∈ {1, (AT)(GC)} ' C2, τ ∈ {1, (13)} ' C2.

Specifically,

τ σ act tca tga agt

1 1 act tca tga agt

1 (AT)(GC) tga agt act tca

(13) 1 tca act agt tga

(13) (AT)(GC) agt tga tca act

.

As a consequence, any experimental data xs indexed by the orbits (s) in the diagram can be reduced
by the tools of dihedral Fourier analysis over D2. We emphasize that the transitiveness and faithfulness
of the D2 action on the set of orbits is necessary to identify the orbits with the group elements and then
proceed to the determination of the (D2) orbit invariants using the Fourier transforms. Following [14],
these four one-dimensional transforms are simply

xact + xtca + xtga + xagt,

xact + xtca − xtga − xagt,

xact − xtca + xtga − xagt,

xact − xtca − xtga + xagt,

and constitute a set of one-dimensional orbit invariants for the data [14]. Similar reductions can then be
obtained for (11).
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3.2. Entropy Invariants

The orbit invariants determined above are functions of any scalars xs obtained over the orbit s, such
as its diversity (7), its raw sum (8), or its total molecular weight. When xs are positive integers, such as
the sum of frequency counts over the orbit s, then the entropy (Ent ) of the observed distributions (L) of
frequency counts given by,

Ent L1 = Ent (xact, xtca, xtga, xagt), (12)

Ent Lact+tca = Ent (xact + xtca, xtga + xagt), (13)

Ent Lact+tga = Ent (xact + xtga, xtca + xagt), (14)

and
Ent Lact+agt = Ent (xact + xagt, xtca + xtga) (15)

are also orbit invariants [17,21]. In Section 4 these orbit invariants are evaluated for Diagrams (10)
and (11) to describe a specific DNA sequence and query it for potential structural variations along
the genome.

3.3. D4-Invariant Reductions

There are three non-equivalent transitive right actions σs of D4 on the set

O3 = {act, tca, tga, agt, gct, tcg, cga, agc}

of all injective cyclic orbits in length of three, jointly reducing Diagrams (10) and (11), generated by:

• D4 '< (ATGC), (AG) >,
• D4 '< (AGCT), (AC) >,
• D4 '< (ACTG), (AT) >.

The action of D4 '< (ATGC), (AG) > is given by:

act tca tga agt gct tcg cga agc

σ 1 2 3 4 5 6 7 8

1 1 1 2 3 4 5 6 7 8

r (ATGC) 4 3 5 6 8 7 1 2

r2 (AG)(TC) 6 5 8 7 2 1 4 3

r3 (ACGT) 7 8 2 1 3 4 6 5

h (AG) 5 6 4 3 1 2 8 7

rh (AT)(GC) 3 4 1 2 7 8 5 6

r2h (TC) 2 1 7 8 6 5 3 4

r3h (AC)(TG) 8 7 6 5 4 3 2 1

(16)

thus showing that any experimental data xs indexed by O3 can be reduced by dihedral Fourier
transforms over D4 or the corresponding canonical projections decompositions. These two views,
both leading to the identification of the orbit invariants, are outlined next.
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3.4. Canonical Projections

The linear representation of D4 in R8 defined by (16) is given by the permutation matrices associated
with the rotations

{1, (1467)(2358), (16)(47)(25)(38), (1764)(2853)},

and with the reversals

{(15)(26)(34)(78), (12)(37)(48)(56), (13)(24)(57)(68), (18)(27)(36)(45)},

and hence generated by
< (1467)(2358), (15)(26)(34)(78) >' D4. (17)

Similarly, the action generated by D4 '< (AGCT), (AC) > yields a linear representation of

< (1485)(2376), (12)(35)(46)(78) >' D4, (18)

whereas the action generated by D4 '< (ACTG), (AT) > yields a linear representations of

< (1537)(2648), (12)(34)(58)(67) >' D4. (19)

The resulting canonical projections Pξ, indexed by the irreducible representations

ξ ∈ {1, α, γ+, γ−, β}

of D4, evaluated for the representation of (17), are shown in Appendix C, along with the components
x′Pξx of the resulting decomposition

||x||2 =
∑
ξ

x′Pξx (20)

of the sum of squares. More generally, ||x||2 =
∑

ξ x
′PξΦx, where x′Φx is an Euclidean fundamental

form [22]. These decompositions are often used for the statistical analysis of continuous data (analysis
of variance).

3.4.1. Interpretation of the Components x′Pξx

The particular representation (17) leads to the following interpretation of each of the non-trivial (orbit
invariant) components x′Pξx of ||x||2, in terms of the combinations of polarity (⊕,	) and direction
(→,←),

x′ = (
⊕
→
,
	
←
,
⊕
←
,
	
→︸ ︷︷ ︸

rotations

,
⊕
→
,
	
→
,
⊕
←
,
	
←︸ ︷︷ ︸

reversals

)

corresponding to the components of

x′ = (act, agt, tcg, cga︸ ︷︷ ︸
rotations

, gct, tga, tca, agc︸ ︷︷ ︸
reversals

)

where, here for simplicity of notation, we let s (the labels) indicate xs (the data indexed by that labels).
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The projection Pα identifies a one-dimensional invariant comparing the overall mean effects

(
⊕
→

+
	
←

+
⊕
←

+
	
→

) vs. (
⊕
→

+
	
→

+
⊕
←

+
	
←

)

between rotations and reversals. The projection Pγ+ identifies a one-dimensional invariant combining
the overall within-rotation sensitivity to polarity given overall direction variation as assessed by

(
⊕
→
− 	
←

+
⊕
←
− 	
→

)

with the corresponding within-reversal variation assessed by

(
⊕
→
− 	
→

+
⊕
←
− 	
←

).

The projection Pγ− identifies a one-dimensional invariant contrasting the same variation described
above. Lastly, the projection x′Pβx identifies a two-dimensional invariant assessing direction given
polarity effects in terms of

(
⊕
→
− ⊕
←

), and (
	
→
− 	
←

).

3.5. Dihedral Fourier Analysis

Reading from the column under the act orbit in (16), the points in the group algebra CD4 are given by

x = act 1 + agt r + tcg r2 + cga r3 + gct h+ tga rh+ tca r2h+ agc r3h, (21)

from which we obtain the corresponding Fourier transforms

< x, 1 > = act+ agt+ tcg + cga+ gct+ tga+ tca+ agc,

< x, α > = act+ agt+ tcg + cga − (gct+ tga+ tca+ agc),

< x, γ+ > = (act− agt+ tcg − cga) + (gct− tga+ tca− agc),
< x, γ− > = (act− agt+ tcg − cga) − (gct− tga+ tca− agc),

< x, β > =

(
act+ gct− tca− tcg −agc− agt+ cga+ tga

−agc+ agt− cga+ tga act− gct+ tca− tcg

)
.

Parseval’s equality
||x||2 =

∑
ξ∈D̂n

nξ
2n
|| < x, ξ > ||2

establishes the correspondence with the decomposition Equation (20) obtained in terms of the
canonical projections.

It is opportune to remark here that in the definition of Equation (21) we arbitrarily assigned the identity
inD4 to xact. Any of the other potential assignments would be precisely a relabeling of the orbit’s starting
point. The Fourier transforms, however, would remain orbit invariant, in the sense of Equation (9).

4. Numerical Evaluations

In this section we apply the cyclic reductions described in Section 3 to specific complete genomes of
the human immunodeficiency virus type 1 and the hepatitis C virus.
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4.1. Relative Entropy Study of the HIV1 BRUCG Isolate

Following Section 3.2, the data indexed by the cyclic orbits are simply the sums xs of the frequency
counts xS with which the sequence S occurs in a given region of the genome, that is,

xs =
∑
S∈s

xS.

The frequency counts were evaluated by scanning the genome one base at a time in the 5′−3′ direction.
The sequence in FASTA format was downloaded from the NCBI website (http://www.ncbi.nlm.nih.gov).
Computations were evaluated using the Symmetry Computing Toolbox (Symmetry Computing Toolbox,
c©M.Viana). This particular HIV1 isolate, used here for numerical illustration only, also appears in the

study of the HIV1’s evolutionary properties [11].
The frequency counts were obtained for the complete genome of human immunodeficiency virus

type 1, isolate BRU (LAV-1), sequence ID gi:326417, accession number K02013.1, HIVBRUCG.
See [23]. The full 9229 bp-long sequence was partitioned into six equal-length adjacent regions
numbered 1–6, where the cyclic summaries xs were evaluated. The frequency counts for the conjugated
cyclic orbits of act corresponding to Diagram (10) are shown in (22) and (23), whereas in (24) and (25)
show the frequency counts for the conjugated cyclic orbits of gct corresponding to Diagram (11).

s S 1 2 3 4 5 6

act ACT 17 26 16 23 20 22

CTA 24 16 18 27 14 20

TAC 12 25 23 16 23 22

tca TCA 23 25 25 24 22 18

CAT 25 23 25 35 20 16

ATC 19 20 21 20 18 17

(22)

s S 1 2 3 4 5 6

tga TGA 19 22 17 20 20 23

GAT 25 30 21 27 18 26

ATG 27 27 28 39 29 18

agt AGT 27 30 45 30 32 25

GTA 20 29 33 26 37 19

TAG 33 34 42 48 30 31

(23)

s S 1 2 3 4 5 6

gct GCT 21 10 8 15 20 38

CTG 17 21 15 17 28 36

TGC 18 9 10 17 23 22

tcg TCG 5 1 2 1 0 6

CGT 2 1 1 1 3 3

GTC 7 6 8 9 9 5

(24)

http://www.ncbi.nlm.nih.gov
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s S 1 2 3 4 5 6

cga CGA 10 2 1 4 2 12

GAC 29 26 19 26 15 26

ACG 4 1 3 2 6 7

agc AGC 44 24 34 35 28 40

GCA 38 21 40 34 35 23

CAG 51 58 53 39 39 36

(25)

Figure 3 shows the resulting relative entropy invariants, as defined in Section 3.2, both for the act and
for the gct conjugated cyclic orbits.

Figure 3. The top profiles show (respectively to the legends shown top to bottom) the
relative entropy for the joint distributions of (act, tca, tga, agt); (act + tca, tga + agt);
(act + tga, tca + agt), and (act + agt, tca + tga). The bottom profiles display the
corresponding results for the conjugated orbits of gct.

For example, reading from Region 3, in Equations (24) and (25), we have

xgct = 8 + 15 + 10 = 33, xagc = 34 + 40 + 53 = 127,

xtcg = 2 + 1 + 8 = 11, xcga = 1 + 19 + 3 = 23,
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so that the resulting relative entropy invariants, from Equations (12)–(15), are given by

Ent (33, 127, 11, 23)/max Ent = 0.717,

Ent (33 + 11, 127 + 23)/max Ent = 0.772,

Ent (33 + 127, 11 + 23)/max Ent = 0.669,

Ent (33 + 23, 127 + 11)/max Ent = 0.866,

as displayed in the profiles shown in the bottom part of Figure 3. The top part of Figure 3 shows the
corresponding profiles for the GCT conjugate cyclic orbits.

Interpretations:

Reading again from Diagrams (10) and (11), it follows that the invariant

Ent Lact+tca = Ent (act+ tca, tga+ agt)

introduced in Equation (13) is a measure of polarity uncertainty; the invariant

Ent Lact+tga = Ent (act+ tga, tca+ agt)

in Equation (14) is a measure of direction uncertainty, whereas the invariant

Ent Lact+agt = Ent (act+ agt, tca+ tga)

introduced in Equation (15) is a measure of the interaction between direction and polarity. In summary:

• Polarity uncertainty: Ent Lact+tca = Ent (act+ tca, tga+ agt);
• Direction uncertainly: Ent Lact+tga = Ent (act+ tga, tca+ agt);
• Interaction: Ent Lact+agt = Ent (act+ agt, tca+ tga).

4.2. Statistical Assessment

The statistical assessment of the entropy can be obtained by numerically evaluating its sampling
distribution based on 10,000 randomly generated observations from the posterior (Beta) distribution
conjugated to binomial likelihood for the data, relative to the uniform prior probability distribution.
Based on the resulting sampling distribution, a numerical evaluation of a posterior 95% credibility
interval (CI) for the relative entropy can be obtained.

For example, reading from Region 5, in (24) and (25), we have,

xgct = 71, xtcg = 12, xcga = 23, xagc = 102,

so that, from Equations (12)–(15), the polarity relative entropy is

Ent (83, 125)/max Ent = 0.97, 95% CI = (0.921518, 0.996971)
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the direction relative entropy is,

Ent (94, 114)/max Ent = 0.99, 95% CI = (0.962473, 0.999979),

and
Ent (173, 35)/max Ent = 0.65, 95% CI = (0.540566, 0.769399)

is the relative entropy for the polarity-direction interaction or residual term. The credibility intervals
thus suggest that the drop in polarity uncertainty in Region 5 is statistically distinct from the other two
uncertainties and from the relative entropy of a uniform distribution of the same total binomial size,
namely (104, 104), which is (0.983009, 0.999997). Figure 4 shows the posterior 95% credibility bands
for the relative entropy of binomial distributions of total sample size

n = xgct + xtcg + xcga + xagc = 208,

from which the above credibility intervals can be identified. The range of the monogram is half the total
binomial sample because of the entropy (orbit) invariance property.

Figure 4. Posterior 95% credibility intervals for the relative entropy of binomial distributions
of total sample size n = 208.

4.3. Orbit Diversity Decomposition for the HIV1 Samples

In this section we apply the canonical decomposition introduced in Section 3.4 and evaluated in
Appendix C to reduce the diversity data shown in Equation (1) indexed by the joint set of conjugated
orbits (the conjugated orbits of act adjoined to the conjugated orbits of gct), using the D4 action defined
in Section 3.3. The orbit diversity for the joint set of conjugated orbits is shown in (26) for each sequence
in the sample of 10 Brazilian sequences referenced in Appendix B.1.
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s act tca tga agt gct tcg cga agc

1 1.1261 1.4286 1.5167 1.4295 1.0408 8.0000 9.9231 1.4536

2 1.0721 1.4000 1.4783 1.4714 1.3295 6.8571 6.6190 1.4719

3 1.1417 1.3009 1.4286 1.4114 1.2824 6.7143 8.4444 1.3915

4 1.0500 1.3796 1.5841 1.2727 1.1212 6.1250 9.2000 1.5480

5 1.1250 1.3398 1.4016 1.2911 1.4235 3.7500 6.3810 1.4787

6 1.0769 1.3495 1.4914 1.2500 1.2442 8.8000 6.0870 1.4595

7 1.0420 1.3431 1.5000 1.2638 1.2292 4.6364 6.3333 1.4530

8 1.0087 1.3960 1.4696 1.2485 1.3210 6.0000 7.5789 1.5435

9 1.0168 1.3267 1.5877 1.2911 1.2651 4.5000 7.2105 1.5359

10 1.0609 1.1557 1.4237 1.3270 1.3103 7.8000 5.7917 1.3590

(26)

The inclusion of the error (due to sampling variability) term in the canonical decomposition for the
sample is obtained by tensoring the decomposition induced by the representation of interest, shown in
Appendix C, with the standard canonical decomposition [12] (Chapter 4)

In = A+Q,

where A is the n× n projection matrix with all entries equal to 1/n, In is the n× n identity matrix and
Q = I −A. The canonical decomposition for the sample is then

Ign = Ig ⊗ In = (P1 + Pα + Pγ+ + Pγ− + Pβ)⊗ (A+Q)

from which we obtain the (multivariate) analysis of variance shown in 27, where x′(Pξ ⊗ A)x are the
sample mean effects, x′(Pξ ⊗ Q)x the sampling error terms, and x′(Ig ⊗ Q)x the total sampling error
and g is the group order. More specifically, it is assumed that

x = (xτ )τ∈G ∈ Rgn, xτ ∼ N(µτ ⊗ e, In), x ∼ N(µ⊗ e,Σ⊗ In),

where e′ = (1, . . . , 1) with n components, µ is the vector of dihedral means, and Σ is the dihedral
covariance structure. It then follows, for all Pξ, that

(P ⊗A)x ∼ N((P ⊗A)(µ⊗ e), (P ⊗A)(Σ⊗ In)(P ′ ⊗A′)).

Because A′ = A, A2 = A and Ae = e, we have

(P ⊗A)x ∼ N((Pµ)⊗ e, (PΣP ′)⊗A)).

Similarly,
(P ⊗Q)x ∼ N((Pµ)⊗ e, (PΣP ′)⊗Q)).

The degrees of freedom in each case are obtained by the traces of the corresponding projections,
which are also equal to the dimension of the projecting (invariant) subspaces. Under suitable parametric
assumptions the magnitude of the ratios

(x′(Pξ ⊗A)x)/tr ((Pξ ⊗A))

(x′(I8 ⊗Q)x)/tr (I8 ⊗Q)
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can be assessed by (typically non-central) F-distributions with n2
ξ and g(n− 1) degrees of freedom. The

corresponding underlying parametric hypotheses µ′Pξµ = 0 are those introduced earlier in Section 3.4.

M
P1 ⊗A
Pα ⊗A
Pγ+ ⊗A
Pγ− ⊗A
Pβ ⊗A
P1 ⊗Q
Pα ⊗Q
Pγ+ ⊗Q
Pγ− ⊗Q
Pβ ⊗Q
I8 ⊗Q
||x||2

x′Mx trM x′Mx/trM
584.8 1 584.8

138.25 1 138.25

3.41 1 3.41

1.09 1 1.09

319.5 4 79.88

6.0 9 0.67

6.6 9 0.74

4.8 9 0.53

4.4 9 0.49

20.8 36 0.579

42.7 72 0.592

1097.7 80 −−

(27)

Under large-sample parametric assumptions and independent dihedral covariance structure it follows
that, with the exception of the contrast associated with γ−, all F-ratios are significantly high (statistically
distinct from zero).

4.4. Orbit Diversity Decomposition for the HCV Samples

This section replicates the methods described in Section 4.3 for a sample of 10 Brazilian hepatitis C
sequences. The orbit diversity for the joint set of conjugated orbits for each sequence in the sample is
shown in (28). Their accession numbers are referenced in Appendix B.1.

s act tca tga agt gct tcg cga agc

1 1.3519 1.3770 1.2581 1.3175 1.1888 1.3739 1.5962 1.1007

2 1.4787 1.3629 1.6196 1.3175 1.0699 1.2456 1.5133 1.2992

3 1.3889 1.3359 1.6170 1.2535 1.0960 1.2521 1.5043 1.2889

4 1.3796 1.3206 1.6170 1.2899 1.0909 1.2521 1.5043 1.2889

5 1.3925 1.3130 1.6000 1.2857 1.0909 1.2500 1.5043 1.2985

6 1.4510 1.3178 1.5914 1.2571 1.0821 1.2521 1.5259 1.2985

7 1.3211 1.4052 1.3409 1.2787 1.2240 1.6082 1.6667 1.0922

8 1.3333 1.4123 1.2809 1.3492 1.2204 1.5631 1.6979 1.1064

9 1.3578 1.4425 1.2697 1.3710 1.2363 1.5534 1.6875 1.1268

10 1.2895 1.4298 1.2967 1.4098 1.1959 1.5094 1.6939 1.1241

(28)
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The corresponding analysis of variance decomposition is shown in (29).

M
P1 ⊗A
Pα ⊗A
Pγ+ ⊗A
Pγ− ⊗A
Pβ ⊗A
P1 ⊗Q
Pα ⊗Q
Pγ+ ⊗Q
Pγ− ⊗Q
Pβ ⊗Q
I8 ⊗Q
||x||2

x′Mx trM x′Mx/trM
146.76 1 146.76

0.30 1 0.30

0.09 1 0.09

0.0001 1 0.0001

0.93 4 0.233

0.02 9 0.003

0.16 9 0.018

0.15 9 0.017

0.18 9 0.020

0.23 36 0.0065

0.7 72 0.0104

148.84 80 −−

(29)

It should be evident, by comparing the magnitude of the F-ratios,

virus Pα Pγ+ Pγ− Pβ
HIV1 238.342 5.889 1.882 137.962

HCV 28.846 8.653 0.009 22.115

identified by the decompositions in (27) and (29), that the two viruses have significantly distinct joint
cyclic diversity profiles. Additional numerical studies are referenced in Appendix B.

5. Summary

In this communication we constructed dihedral D2 reduction of conjugate injective cyclic orbits in
length of three, a dihedral D4 reduction of their combined set, and a dihedral D3 reduction of the set of
conjugate injective cyclic orbits in length of four. In each case, the experimental scalar data can be any
summary obtained over the cyclic orbits, such as the sum or an extreme value of the frequency counts
over the cyclic orbit, the entropy of a frequency distribution over the orbit, its amino acid content, or, as
in [11], the orbit’s frequency diversity. In the case of matrix data, the data-analytic methods of group
rings, instead of group algebras would then be the appropriate methodology [14].
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Appendix

A. HIV1 and HCV Sequences

The following are the accession numbers for the HIV1 and HCV sequences considered in the
present study:

HIV1 seq id i

EF637046 1

EF637047 2

EF637048 3

EF637049 4

EF637050 5

EF637051 6

EF637053 7

EF637054 8

EF637056 9

EF637057 10

,

HCV seq id i

EF032890 1

EF032891 2

EF032892 3

EF032893 4

EF032894 5

EF032895 6

EF032896 7

EF032898 8

EF032899 9

EF032900 10

B. Additional Studies

B.1. Relative Entropy Study of 10 Brazilian HIV1 Sequences

The relative entropy evaluations illustrated above in Section 4.1 were replicated for a sample of 10
Brazilian HIV1 sequences, referenced in Appendix A. The raw frequency counts and the corresponding
relative entropy profiles for each of 10 sequences are linked in [24].

B.2. Relative Entropy Study of 10 Brazilian HCV Sequences

Similarly to the study for the HIV1, a sample of 10 Brazilian hepatitis C sequences was evaluated
for their relative entropy. The sequences are referenced in Appendix A. The raw frequency counts and
the corresponding relative entropy profiles along each genome are linked in [25]. The relative entropy
invariant profiles clearly highlight the structural differences between the two types of viruses.

B.3. Relative Entropy Study of Random Reference Sequences

It is statistically useful to compare the cyclic reductions obtained for HIV1’s isolate described above
with those from random DNA sequences of comparable lengths. The results, based on 20 random
sequences, shown in [26], clearly indicate that the observed variations in relative entropy (invariants)
for the conjugated gct orbits, both for HIV1 and HCV sequences, are well below what one would expect
to observe for random sequences of comparable lengths.

http://www.ncbi.nlm.nih.gov/nuccore/EF637046
http://www.ncbi.nlm.nih.gov/nuccore/EF637047
http://www.ncbi.nlm.nih.gov/nuccore/EF637048
http://www.ncbi.nlm.nih.gov/nuccore/EF637049
http://www.ncbi.nlm.nih.gov/nuccore/EF637050
http://www.ncbi.nlm.nih.gov/nuccore/EF637051
http://www.ncbi.nlm.nih.gov/nuccore/EF637053
http://www.ncbi.nlm.nih.gov/nuccore/EF637054
http://www.ncbi.nlm.nih.gov/nuccore/EF637056
http://www.ncbi.nlm.nih.gov/nuccore/EF637057
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6051
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6050
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6049
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6048
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6047
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6046
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6045
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6043
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6042
http://hcv.lanl.gov/components/sequence/HCV/asearch/query_one.comp?se_id=6041
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C. Canonical Projections

The following are the canonical projections

Pξ =
nξ
g

∑
τ

χξτ−1ρτ ,

evaluated for the permutation representation ρ described in Section 3.4, along with the
corresponding components x′Pξx of ||x||2, with the entries of x indexed in correspondence with
(act, tca, tga, agt, gct, tcg, cga, agc). Here:

P1 =
1

8



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


gives an overall mean,

µ′P1µ =
1

8
(µact + µagc + µagt + µcga + µgct + µtca + µtcg + µtga)

2,

Pα =
1

8



1 −1 −1 1 −1 1 1 −1

−1 1 1 −1 1 −1 −1 1

−1 1 1 −1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

−1 1 1 −1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

1 −1 −1 1 −1 1 1 −1

−1 1 1 −1 1 −1 −1 1


gives the (handedness) contrast

µ′Pαµ =
1

8
(µact − µagc + µagt + µcga − µgct − µtca + µtcg − µtga) 2

between the cyclic summaries
{act, agt, tcg, cga},

indexed by the rotations and the summaries

{gct, tga, tca, agc}
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indexed by reversals as a sum of within-rotation and within-reversal variability;

Pγ+ =
1

8



1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 −1 −1 1 1

−1 −1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 −1 −1 1 1

−1 −1 1 1 −1 −1 1 1


gives the sum

µ′Pγ+µ =
1

8
(µact − µagc − µagt − µcga + µgct + µtca + µtcg − µtga) 2

of within-rotation and within-reversal variability, whereas

Pγ− =
1

8



1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1
−1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1

−1 1 −1 1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1


gives the linear contrast

µ′Pγ−µ =
1

8
(µact + µagc − µagt − µcga − µgct − µtca + µtcg + µtga)

2

between within-rotation and within-reversal variability. Lastly,

Pβ =
1

2



1 0 0 0 0 −1 0 0

0 1 0 0 −1 0 0 0

0 0 1 0 0 0 0 −1

0 0 0 1 0 0 −1 0

0 −1 0 0 1 0 0 0

−1 0 0 0 0 1 0 0

0 0 0 −1 0 0 1 0

0 0 −1 0 0 0 0 1


gives the sum

µ′Pβµ =
1

2
(µact − µtcg)2 + (µagc − µtga)2 + (µagt − µcga)2 + (µgct − µtca)2

of two contrasts in dimension of 2.
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