
Symmetry 2015, 7, 269-283; doi:10.3390/sym7010269

symmetry
ISSN 2073-8994

www.mdpi.com/journal/symmetry

Technical Note

Study on User Authority Management for Safe Data Protection

in Cloud Computing Environments

Su-Hyun Kim and Im-Yeong Lee *

Department of Computer Software Engineering, Soonchunhyang University, 646, Eupnae-ri,

Sinchang-myeon, Asan-si, Chungcheongnam-do 336-745, Korea; E-Mail: kimsh@sch.ac.kr

* Author to whom correspondence should be addressed; E-Mail: imylee@sch.ac.kr;

Tel.: +82-41-530-1323.

Academic Editors: Young-Sik Jeong, Laurence T. Yang and Stefanos Gritzalis

Received: 15 January 2015 / Accepted: 10 March 2015 / Published: 19 March 2015

Abstract: In cloud computing environments, user data are encrypted using numerous

distributed servers before storing such data. Global Internet service companies, such as

Google and Yahoo, recognized the importance of Internet service platforms and conducted

self-research and development to create and utilize large cluster-based cloud computing

platform technology based on low-priced commercial nodes. As diverse data services

become possible in distributed computing environments, high-capacity distributed

management is emerging as a major issue. Meanwhile, because of the diverse forms of using

high-capacity data, security vulnerability and privacy invasion by malicious attackers or

internal users can occur. As such, when various sensitive data are stored in cloud servers and

used from there, the problem of data spill might occur because of external attackers or the

poor management of internal users. Data can be managed through encryption to prevent such

problems. However, existing simple encryption methods involve problems associated with

the management of access to data stored in cloud environments. Therefore, in the present

paper, a technique for data access management by user authority, based on Attribute-Based

Encryption (ABE) and secret distribution techniques, is proposed.

Keywords: cloud computing; attribute-based encryption; user authority

OPEN ACCESS

Symmetry 2015, 7 270

1. Introduction

Recently, as interest in data has increased at home and abroad, many related studies have been

conducted. Based on the growth of IT technologies, many firms are interested in data that can expand to

diverse areas and allow efficient use of computing power. Recently, numerous Internet service

companies have recognized the importance of Internet service platforms, and have conducted in-house

research and development to create and utilize large cluster-based cloud computing technologies based

on low-priced commercial nodes [1]. In such cloud computing environments, user data are stored and

maintained using numerous distributed servers. In such distributed computing environments, distributed

management that can manage user high-capacity data is emerging as a major issue. However, because

of the diverse forms of using high-capacity data, such as storage and saving, there are no appropriate

countermeasures against security invasion and data loss by malicious attackers or internal users. Among

users or firms, systems to maintain important data in external places that cannot be controlled by such

users or firms are spreading because of issues, such as management costs. In this case, the diverse

insecurity factors of cloud services, such as information exposure, information manipulation, and

information loss, occur because of cloud service providers.

As the most basic method of solving such problems, stored data can be managed through encryption.

However, existing simple encryption methods involve problems associated with the management of

access to data stored in cloud environments. That is, users want multiple user access to data stored in

cloud servers, or require diverse functions such as access control by user class. However, existing public-key

cryptography or symmetric-key algorithm techniques cannot solve problems in key management or

satisfy requirements such as access control.

To solve problems in existing encryption techniques, encryption methods suitable for distributed

storage servers have recently been studied actively. Characteristically, Sahai et al. proposed the concept

of Attribute-Based Encryption (ABE) as an expanded form of the concept of ID-based encryption (IBE) [2].

The IBE method that has become the basis of ABE is a method for solving certificate problems in

public-key cryptography, which was first proposed by Shamir in 1984 [3]. ABE makes public-keys that

use user attributes instead of their IDs. The user attributes can be composed of multiple attributes. For

instance, data for a particular user can be decrypted only when the attributes of such user are the

department of computers and professor as the user’s department and title.

In this paper, the existing ABE technique is used together with the secret distribution technique to

propose a new data access management technique. Although the existing ABE technique provides a

method for multiple users to access data using diverse attributes, the ABE technique alone cannot control

data access in diverse cloud environments. The property-based technique alone cannot control the

detailed data access management in the diverse cloud computing environments that require the

classification of the users who have the same properties. Therefore, in this paper, a technique is proposed

to allow only those users with authorization not lower than a given threshold among all users that satisfy

attributes, to finally access data through the secret distribution technique.

This paper is composed as follows. In Section 2, existing studies are introduced to help understand

the technique proposed in this paper; in Section 3, basic security requirements with which cloud

computing environments should be equipped are examined; and in Section 4, the proposed method is

Symmetry 2015, 7 271

explained. In Section 5, the safety of the proposed method is analyzed, and finally, in Section 6, this

paper is finished with conclusions and future study directions.

2. Related Studies

In this chapter, related technologies and previously proposed methods are introduced to help

understand the technique proposed in this paper.

2.1. Google File System (GFS)

Google File System (GFS) used by Google was developed to be suitable for high-capacity data, and

has been optimized for core data storage and search engines [4]. GFS uses numerous low cost storage

servers to distribute high capacity to servers for storage. GFS is composed of a master server and chunk

servers, and data are distributed to multiple chunk servers in units of 64 MB. The master server assigns

unique 64-bit labels when individual chunk servers are created, and maintains connections with the

chunk servers using logical mapping. However, GFS has a limitation in that it requires measures to

respond to disorders that could occur frequently because multiple chunk servers are used.

2.2. Apache Hadoop Distributed File System (HDFS)

Apache Hadoop Distributed File System (HDFS) is a file system made to be executable in existing

hardware, and it is quite similar to existing distributed file systems. However, HDFS also shows many

differences from existing distributed file systems, such as its good fault recovery functions, and it is

designed to be applicable to low-priced hardware. HDFS is most commonly used with the cloud computing

platforms of diverse IT companies, such as Amazon’s Elastic Compute Cloud (EC2) and Yahoo [5].

The design and structure for implementation of HDFS are almost the same as those for GFS, although

the fact that it has excellent portability to diverse platforms because it uses Java is a significant difference

from GFS. The use of Java language with high portability provides HDFS with the advantage that it can

be driven in diverse servers that support Java [6].

An HDFS client divides user data into 128 MB blocks, and requests NameNode for storage.

NameNode finds the addresses of DataNodes where the data blocks will be stored, and sends the

addresses to the client. On receipt of the three DataNode addresses, the client directly transmits data to

the first DataNode, and the first DataNode transmits a copy of the data to the next DataNode on receipt

of the data. As such, each block is backed up and stored in a total of three DataNodes to be prepared for

DataNode failure or errors.

Existing Hadoop systems do not apply access control to data blocks stored in data nodes. In this case,

unauthenticated clients can access data blocks to read or write. To prevent this, Hadoop version 1.0.0

was added with a concept-termed block access token to confirm the authority of users (authorities) that

access data blocks.

The name node and data nodes share one secret key. The secret key is renewed periodically by the

name node, and it is shared through the heartbeats frequently exchanged with data nodes. This secret

key is used to encrypt block access tokens requested by clients. If the secret key transmitted between the

Symmetry 2015, 7 272

name node and data node is exposed to an attacker, data blocks stored in the data nodes could be exposed

to the attacker as well.

The structure of these block access tokens is shown in Figure 1. Each block access token is composed

of a tokenID and a TokenAuthenticator, and the detailed structure is as follows:

 expirationDate: expiration date

 keyID: identification of the secret key used to make the token authenticator

 ownerID: identification of the token owner

 blockID: identification of blocks permitted by the token

 accessModes: consists of a combination of block authorities; authorities to read, write, and copy

Figure 1. Structure of a block access token.

2.3. Attribute-Based Encryption (ABE)

Attribute-Based Encryption (ABE) is a technology to provide control mechanisms for access to

encrypted data based on decrypting keys and attributes assigned to encrypted data or access policies.

ABE types include Ciphertext-Policy ABE (CP-ABE) that determines the access structures when

documents are encrypted, and Key-Police ABE (KP-ABE) that determines access structures when user keys

are created.

2.3.1. CP-ABE

CP-ABE determines the access structures when documents are encrypted. Each ciphertext is

associated with an access structure, and each decryption key is associated with attributes. Each user has

attributes, and receives the key that corresponds to the attributes.

2.3.2. KP-ABE

KP-ABE determines the access structures when user keys are created. Each ciphertext is associated

with attributes, and each decryption key is associated with an access structure. Encrypting parties cannot

determine those that can decrypt data.

2.4. Bilinear Mapping

When Cyclic Groups G1 and G2 have the same fraction q, computable bilinear mapping e:

G1 × G2 = GT satisfies the following conditions [7]:

Symmetry 2015, 7 273

(1) Computability: efficient algorithms that calculate e(P,Q) for all 1, GQP  exist.

(2) Bilinearity:
abQPebQaPe),(),( is valid for all 1, GQP  and *, pZba  .

(3) Non-degeneracy: 1),(QPe is valid for all pairs P and Q of G.

The following arithmetic operation is valid because of the above bilinearity.

),(),(),(

),(),(),(

),(),(

),(),(),(),(

RQeRPeRQPe

RPeQPeRQPe

abQPeQabPe

QPeQaPebQPebQaPe abba









Many encryption protocols that use bilinear mapping as a cryptological tool are based on the

difficulties of the following problem.

Definition 1. Bilinear Diffie-Hellman Problem (BDHP): refers to the problem of calculating
abcPPe),(when G1 elements P, aP, bP, and cP have been given.

2.5. Analysis of Existing Scheme

2.5.1. Yu et al. [8]

Yu et al. forecasted that existing business environments would shift to cloud computing

environments, and proposed a system model that can guarantee data confidentiality in those

environments. They utilized the concept of KP-ABE to encrypt data as sets of attributes, and to allow those

with the secret key related to the access structure that satisfies the set of encryption attributes to access

the data. Data owners define system attribute sets and create and set keys related to the system. Data

owners encrypt secret keys made by encrypting data using ABE, and transmit the results to the cloud service

provider. Encrypted keys and ciphertexts are managed solely by the cloud service provider, and data

confidentiality can be invaded through collusion between withdrawn users and the cloud service provider.

2.5.2. Zhu et al. [9]

Zhu et al. proposed a new attribute-based file sharing technique. They provided a systematic

definition of attribute computing in cloud computing environments, and proposed a safe and practical

ABE technique that does not require pairing.

2.5.3. Jin et al. [10]

In 2013, Jin et al. analyzed data security issues on the Hadoop platform and proposed a design of

reliable file system for Hadoop. This method was designed by using fully homomorphic and authentication

agent technology. Homorphic cryptography uses encrypted data to protect data security and efficiency

of application programs. Authentication agent technology provides various access control rules based

on combination of access control mechanism. These two technologies are used for providing privilege

separation and security inspection mechanism to ensure safe storage of data in the Hadoop file system.

Symmetry 2015, 7 274

2.5.4. Zhang et al. [11]

In 2011, Zhang et al. proposed flexible extension technique for data storage by using Linux clustering,

distributed file system, and cloud computing framework based on Hadoop. While the conventional

HDFS file system structure has high throughput to build a large-capacity file storage system, it is not

suitable for processing and storing small size files. To improve this problem, the study proposed an

extension technique that is flexible for data storage, by managing the files based on HBase on the entity

metadata storage level and using entity metadata generation query.

3. Security Requirements

One of core mechanisms of data is the efficient management of high-capacity data. Given that security

vulnerability and privacy invasion by malicious attackers or internal users can occur because of the

diverse forms of using high-capacity data, the following security items become necessary [12].

 Confidentiality: data communicated between data storage servers and client terminals should be

readable only by legitimate entities. That is, unauthorized users should not be capable of

obtaining such data.

 Authentication: data storage servers should be capable of verifying whether users are legitimate

entities, and allow only legitimate users to access data.

 Availability: to guarantee that, when high-capacity data are transmitted, authentication and

confidentiality occur.

 Calculation efficiency: in order to reduce the overhead of client terminals and cloud servers

during frequent data transmissions, only minimum calculations should be ensured.

 Collusion resistance: even if many users collude, they should be able to obtain only the data

permitted to each individual user.

 Forward secrecy: users for whom certain attributes have been withdrawn should not be capable

of obtaining the data required by the relevant attributes.

 Backward secrecy: users that have obtained new attributes should not be capable of obtaining,

with the current authority, data that could be obtained previously.

4. Proposed Method

4.1. System Model and Assumption

In general, cloud-computing environments were designed based on the HDFS of Apache. The basic

concept of our proposed method is CP-ABE. A user that satisfies certain attributes in a group obtains the

authority to obtain the decryption key. In this case, the user obtains such authority to decrypt data based

on his/her authority class under the agreement of the manager group. Therefore, the proposed method

can perfectly guarantee resistance to collusion, which is a problem of the existing ABE, in addition to

data confidentiality through class management by subdivided authority (Figure 2).

Symmetry 2015, 7 275

Figure 2. Attribute-Based Encryption (ABE) and secret sharing.

n number of participants

P set of participants)1(niPi  in a secret distribution

q fraction

k secret information qZ

K set of secret information k

iPs pieces of secret qZ

iPS set of secret pieces
iPs possessed by individual participants iP

i attribute value

L attribute set
**^ ,, Piii Zaaa  correspond to attribute i

],....,,[21 nWWWW  access structure

M plain text
*

pZr random value

4.2. User Authority Management Scheme

4.2.1. Setup

Enter security parameter k to output the public key PK and master key MK that correspond to the

value of the parameter.

Symmetry 2015, 7 276

(1) [, , , ,]TG p G G g G e  .

Create random values
*

PZw .

(2) Select random values **^ ,, Piii Zaaa  that correspond to attribute)1(, nii  .

(3) Calculate
wggeY),( and

*^
*^ ,, iii a

i

a

i

a

i gAgAgA  .

(4) PK is
^ *

1, , , , , , (, ,)T i i i i nY p G G g r A A A    and MK is
^ ^

1, (, ,)i i i i nw a a a    .

4.2.2. KeyGen

This is an algorithm to enter master key MK and attribute set L in order to output secret key LSK that

corresponds to the access structure.

(1) Enter attribute set 1 2, ,..., nL L L L    to create a secret key.

(2) Select
*

Pi Zs  randomly and calculate sw
n

i

i gDss 



 0

1

, .

(3) If 1iL  , calculate
^ *

*[,] [,]

i i

i i

s s

a a

i iD D g g .

(4) The secret key is .

4.2.3. Secret Sharing

The created secret key LSK is distributed to individual members of the manager group using the

secret distribution technique. Shamir et al.’s secret distribution method was applied to the proposed

method [13]. In this scenario, the number of members of the manager group is assumed to be three.

),(

),(

),(

)1()(

)(mod...)(

egree-)1(,Key ecretS

)11,(...,,,chosen

)1(

3

2

1

33

22

11

1

1

2

210

0

121

PMG

PMG

PMG

jP

t

t

qit

sxK

sxK

sxK

njxfs

qxaxaxaaxf

polynomialdtak

tiZaaaa

nqq

j
















4.2.4. Encrypt

This is an algorithm to enter public key PK, access structure W, and plain text M in order to output

ciphertext CT that corresponds to the plain text.

(1) Encrypt access structure],....,,[21 nWWWW  and plain text M.

(2) Calculate random values
*

pZr and
rr gCMYC  0

~

, .

(3) Calculate r

iii

r
iii

r

iiii ACWACWACWC
*

^

*,,,0,,1:  that satisfies the following.

(4) The ciphertext is   niiCCCCT 10

~

)(,, .

  niiiL DDDSK 1

*

0),(,

Symmetry 2015, 7 277

4.2.5. (k,n) Threshold

This is the stage in which a user with access authority requests the manager group for the secret key.

If the requester has a legitimate access class to the data, he/she can receive n secret pieces from the

manager group to restore the secret key.












niiiL

t

ijj AiAj

Ai
t

i

P

DDDSK

q
xx

x
sf

Ai

1

*

0

,11

),(,

)(mod
)(

)0('

(1)

4.2.6. Decrypt

This is an algorithm to enter the restored secret key LSK and ciphertext CT in order to output the

plain text that corresponds to the ciphertext (Figure 3).

Figure 3. Data decryption.

Decrypt ciphertext   niiCCCCT 10

~

)(,, using secret key   niiiL DDDSK 1

*

0),(, .

M
gge

ggeM

ggegge

ggeM

ggegge

ggeM

DCeDCe

C

WifD

WifD
D

niFor

rw

wr

rsswr

wr

n

i

a

s

raswr

rw

n

i

ii

ii

ii

i

i

i

i
































),(

)),((

),(),(

)),((

),)((),(

)),((

)',(),(

*

*
'

1

11

00

~

*

Symmetry 2015, 7 278

4.3. Data Block Management Scheme

4.3.1. Distribution Process of the Block Access Token

When clients ask NameNode for data storage, NameNode secures DataNode for data storage, and

then a block access token is created for user authentication. The block access token is divided into three

pieces based on the shamir (2, 3) secret sharing to be stored by the clients, NameNode, and DataNode

(Figure 4).

Figure 4. Secret distribution of block access token.

4.3.2. User Authentication Process

When data are recovered, clients receive information necessary for the block access token from

NameNode (Figure 5). The details are as follows:

Step 1. When clients ask NameNode for data, NameNode sends the DataNode address where the data

are stored, the data block ID, and its own single share to the clients.

Step 2. Upon receiving NameNode’s single share, the clients create a block access token using their

own single share.

Step 3. The clients send the created access token and NameNode’s single share to the DataNode

address received from NameNode.

Step 4. Using its own single share and NameNode’s single share received from the clients, DataNode

creates a block access token and compares it with the block access token received from the clients to

verify if the clients are normal users.

Step 5. In the created block access token structure, Datablock Checksum is added when

TokenAuthenticator is created, and accordingly, it is used for verifying the integrity of the stored data

block (Figure 6).

Symmetry 2015, 7 279

Figure 5. User authentication using block access token.

Figure 6. Improved structure of block access token.

5. Analysis of Proposed Method

5.1. User Authority Management Scheme

5.1.1. Resistance to Collusion

The existing ABE has a limitation in that two or more users can collude using their attributes to

arbitrarily access data for which they have not been authorized. For instance, users A and B can use user

A attributes (A,B) and user B attributes (B,C) to access the ciphertext that consists of access structure

(A,C). However, the proposed method can fundamentally block illegal data access through collusion

because the manager group directly manages user classes with secret distribution. That is, the user classes

can be adjusted to (1,3) threshold, (2,3) threshold, or other, according to system policy by distributing

the secret key to secret pieces, such as KMG1(x1, sP1),KMG2(x2, sP2),KMG3(x3, sP3).

5.1.2. Data Availability

The availability of data stored in distributed servers is provided by all methods. HDFS reproduces

and stores at least three of each data block to respond to single point errors first. In addition, this system

maximally increases data availability by frequently inspecting the errors or loss of data blocks stored in

data nodes.

5.1.3. Forward Secrecy

Forward secrecy is a feature that ensures that when certain user attributes have been withdrawn, the

relevant users cannot obtain the data required by the relevant attributes. The proposed method provides

Symmetry 2015, 7 280

forward secrecy because individual pieces x in the expression
1 1,

'(0) (mod)
()Ai

tt
Ai

P

i j j i Aj Ai

x
f s q

x x  




 

calculated with secret pieces gathered based on secret distribution are created considering the access

structures of attributes. That is, when the attributes of encrypted data change, illegal data access can be

prevented, unless user attributes also change.

5.1.4. Reliability by Secret Distribution Technique

The method proposed in this study was based on the conventional CP-ABE and used secret distribution

technique. By using the secret distribution technique, it was possible to overcome the shortcoming that,

when the size of the attribute set 1 2, ,..., nL L L L    increases, the computational burden increases.

However, in the process of encrypting data, each time, the secret key is segmented and shared. The

distribution process is based on a polynomial such as
2 1

0 1 2 1() ... (mod)t

tf x a a x a x a x q

     and it

is much more efficient than the computational burden generated by increase of attributes.

5.2. Data Block Management Scheme

5.2.1. Exposure of the Block Access Token Information

In the typical Hadoop structure, the secret key is frequently renewed between the NameNode and

DataNode, and upon request from the users, the block access token is encrypted and transferred using

an appropriate secret key. The technique using a hash chain is the concept of adding a disposable token

to the block access token. Data are exposed without the separate encryption process, so blockID, userID,

and keyID may be used by attackers. In other typical methods, the typical Hadoop environment is still

used, and accordingly, the problems of Hadoop remain.

In this proposal, the block access tokens created during the communication process of single shares

are transferred using the hash function. Only the rightful users or DataNode can create a block access

token to take the hash function, and verify themselves as rightful users.

5.2.2. Man-in-the-Middle (MITM) Attack

In the typical methods, when a secret key between NameNode and DataNode is renewed, attackers

can intercept the key to temporarily create a block access token. The hash chain technique and this

proposal are suggested to prevent these Man-in-the-Middle (MITM) threats. As other typical methods

use the typical Hadoop environment, the Hadoop problems remain.

5.2.3. Operation Amount

In the typical Hadoop system, the secret key is frequently renewed, and when a block access token is

created, an operation based on a symmetric-key algorithm is conducted. Various symmetric-key

algorithms, such as Advanced Encrypted Standard (AES) and Data Encryption Standard (DES), can be

used. In the hash chain technique, each data block uses random numbers for n times of hash operation.

In this proposal, however, the block access token is transferred together with the single share only once

Symmetry 2015, 7 281

after taking the hash function, and after the initial single share is created and distributed. Therefore, this

method is efficient.

5.2.4. Prevention of False Attacks

In the typical methods [10], user access control is conducted using Access Control List (ACL), but

the Access Control Module is not enough for preventing false user data access. In this proposal, the

block access token needed for data access is created only by the rightful constructors, and as such, false

attacks can be prevented.

5.2.5. Data Integrity Test

In the typical Hadoop system and the method in [14], the data block integrity and the data storage

server’s errors are frequently tested through the Heartbeat message. The Heartbeat message is frequently

transferred by DataNode to NameNode. In the method of [10], the data block integrity is also frequently

confirmed through checksum, but the operation amount increases accordingly. In the method in [11], the

effectiveness is confirmed using the index information created in the object metatable. In this proposal,

verification can be conducted through single share, which is necessary for the creation of the block access

token, and no frequent confirmation through the Heartbeat message is necessary. Therefore, this method

is efficient.

5.2.6. Data Availability

All the methods have the availability of the data stored in the distributed server. In the Hadoop

distributed storage system, three or more data blocks are copied and stored to cope with the single-site

errors. In addition, error and loss tests on the data block stored in DataNode are frequently conducted to

enhance data availability.

Table 1. Analysis of proposed scheme.

6. Conclusions

In this paper, to solve the problem where various sensitive data stored in cloud servers could be leaked

because of external attackers or internal user poor management, a technique was proposed that is related

to data access management by user authority based on ABE and the secret distribution technique. To

solve the problem where user data access authorities cannot be managed using existing simple encryption

methods, the ABE method that encrypts data based on diverse user attributes was applied, and to control

Security Requirements [15] [16] [8] [17] [9] Proposed Scheme

Data confidentiality ○ ○ ○ ○ ○ ○

Collusion resistance × × △ ○ × ○

Forward secrecy × × △ × × ○

Backward secrecy × × △ × × ×

Data sharing ○ ○ ○ ○ ○ ○

Calculation to restore secrets – – – – – Polynomial

Number of times of distribution of secret pieces – – – – – n

Symmetry 2015, 7 282

access by user class among users with legitimate attributes, access control by class through secret

distribution was proposed. The problem of managing the secret key shared by DataNode and NameNode,

and of NameNode management and MITM risks, were solved. This method is more efficient than the

typical methods, which can reduce the operation overhead concentrated to NameNode.

Sensitive information stored in cloud servers can be managed safely by allowing minor user access

control in cloud environments. The proposed protocol is of a structure that can safely and efficiently

control access to diverse high-capacity data, including personal user information of highly confidential

data, and it is expected to be used efficiently in cloud computing environments. However, our proposed

method has a limitation where more calculations in polynomial expressions are added compared with

the existing ABE method because it provides more functions. In the future, more efficient and safer

methods should be studied based on the proposed method.

Acknowledgments

This research was supported by Ministry of Science, ICT & Future Planning (MSIP), Korea, under

the Information Technology Research Center (ITRC) support program (NIPA-2014-H0301-14-1010)

supervised by National IT Industry Promotion Agency (NIPA).

This work was supported by the Soonchunhyang University Research Fund.

Author Contributions

Su-Hyun Kim and Im-Yeong Lee both designed research and wrote the paper. Both authors have read

and approved the final manuscript.

Conflicts of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. O’Malley, O.; Zhang, K.; Radia, S.; Marti, R.; Harrell, C. Hadoop Security Design; Yahoo Inc.:

Santa Clara, CA, USA, 2009.

2. Sahai A.; Waters, B. Fuzzy Identity-based Encryption. In Advances in Cryptology—EUROCRYPT

2005; Springer Berlin Heidelberg: Heidelberg, Germany, 2005; pp. 457–473.

3. Shamir, A. Identity-based Cryptosystems and Signature Schemes. In Advances in Cryptology;

Springer Berlin Heidelberg: Heidelberg, Germany, 1985; pp. 47–53.

4. Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google File System. In Proceedings of the Nineteenth

ACM symposium on Operating Systems Principles, Bolton Landing, NY, USA, 19–22 October

2003; pp. 29–43.

5. Hadoop Wiki. Available online: http://wiki.apache.org/hadoop/PoweredBy (accessed on

10 March 2015).

6. Apache Hadoop. Available online: http://hadoop.apache.org/ (accessed on 10 March 2015).

http://link.springer.com/book/10.1007/b136415
http://link.springer.com/book/10.1007/b136415
http://wiki.apache.org/hadoop/PoweredBy

Symmetry 2015, 7 283

7. Kar, J.; Majhi, B. A Novel Deniable Authentication Protocol based on Diffie-Hellman Algorithm

Using Pairing Technique. In Proceedings of the 2011 International Conference on Communication,

Odisha, India, 12–14 February 2011; pp. 493–498.

8. Yu, S.; Wang, C.; Ren, K.; Lou, W. Achieving Secure, Scalable, and Fine-Grained Data Access

Control in Cloud Computing. In Proceedings of 2010 IEEE INFOCOM, San Diego, CA, USA,

14–19 March 2010; pp. 1–9.

9. Zhu, S.; Yang, X.; Wu, X. Secure Cloud File System with Attribute Based Encryption. In

Proceedings of 2013 5th International Conference on Intelligent Networking and Collaborative

Systems (INCoS), Xi’an, China, 9–11 September 2013; pp. 99–102.

10. Jin, S.; Yang, S.; Zhu, X.; Yin, H. Design of a Trusted File System Based on Hadoop. In

Trustworthy Computing and Services; Springer Berlin Heidelberg: Heidelberg, Germany, 2013;

pp. 673–680.

11. Zhang, D.-W.; Sun, F.-Q.; Cheng, X.; Liu, C. Research on Hadoop-based Enterprise File Cloud

Storage System. In Proceedings of 2011 3rd International Conference on Awareness Science and

Technology (iCAST), Dalian, China, 27–30 September 2011; pp. 434–437.

12. Hubbard, D.; Sutton, M. Top Threats to Cloud Computing V1.0. Available online:

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf (accessed on 19 March 2015).

13. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613.

14. Park, S.-J.; Kim, H. Improving Hadoop Security Through Hash-chain. J. Korean Inst. Inf. Technol.

2012, 6, 56–73.

15. Cheung, L.; Newport, C. Provably Secure Ciphertext Policy ABE. In Proceedings of 14th ACM

Conference on Computer and Communications Security, Alexandria, VA, USA,

29 October–2 November 2007; pp. 456–465.

16. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based Encryption for Fine-Grained Access

Control of Encrypted Data. In Proceedings of the 13th ACM Conference on Computer and

Communications Security, Alexandria, VA, USA, 30 October–3 November 2006; pp. 89–98.

17. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-based Encryption. In Proceedings

of IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6630246
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6630246
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6630246
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6156580
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6156580
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6156580
javascript:%20vdepth(2,%20'',%20958);
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4223200

