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Abstract: Some characteristic features of band structures, like the band degeneracy at high
symmetry points or the existence of energy gaps, usually reflect the symmetry of the crystal
or, more precisely, the symmetry of the wave vector group at the relevant points of the
Brillouin zone. In this paper, we will illustrate this property by considering two-dimensional
(2D)-hexagonal lattices characterized by a possible two-fold degenerate band at theK points
with a linear dispersion (Dirac points). By combining scanning tunneling spectroscopy and
angle-resolved photoemission, we study the electronic properties of a similar system: the
Ag/Cu(111) interface reconstruction characterized by a hexagonal superlattice, and we show
that the gap opening at the K points of the Brillouin zone of the reconstructed cell is due to
the symmetry breaking of the wave vector group.
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1. Introduction

Symmetry is probably one of the most general and fundamental concepts in physics, and its central
role was only recognized in the 20th century. The most emblematic example is particle physics, for
which the space-time symmetry and the internal symmetries are essential to understand the interactions
among elementary particles. The fundamental equations of physics, like Maxwell or Dirac equations,
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can be considered as a direct consequence of the symmetry principles. Group theory is then a powerful
tool to exploit the symmetry concepts in all domains of physics. As an example, the representation theory
shows that the essential degeneracy of an energy level is given by the dimension of the corresponding
irreducible representation of the symmetry group.

Moreover, symmetry breaking emerged more recently and was shown to be a generic behavior in
matter. In his famous article “More is different”, Anderson, P.W. discussed the broken symmetry and
the nature of the hierarchical structure of science [1]. He showed that for large systems, the physical
states are usually less symmetrical than the laws. A trivial example is crystals, which clearly violate the
homogeneity and isotropy of space and physical laws. Such a behavior is an example of the spontaneous
symmetry breaking mechanism. More elaborate is the Higgs mechanism and the generation of mass
for bosons in particle physics [2]. Such a mechanism is also useful in condensed matter physics, in
particular, for phase transitions [3]. Another kind of symmetry breaking can be defined: intrinsic broken
symmetry corresponding to the modification of the symmetry of the Hamiltonian. As an example, an
external magnetic field yields the breaking of time reversal symmetry (Zeeman effect); it slightly affects
the energy spectra of atoms, but usually changes the degeneracy. In the following, we will discuss this
kind of symmetry breaking, yielding the modification of electronic properties at the surface of a crystal.

In this paper, we study the interplay between symmetry and the electronic properties of 2D systems
with hexagonal periodic arrangements. Such honeycomb lattices can exhibit, in the most symmetrical
case, singular electronic properties, which are associated with crossing bands at the K points of the
Brillouin zone (BZ) with linear dispersions. When this band crossing occurs at the Fermi energy, the
low energy excitations can be described by an effective 2D Dirac equation of massless fermions, like
in graphene [4]. This singular behavior is directly related to the symmetry of the wave vector group
at the K points and to the dimension of the corresponding irreducible representation [5]. A symmetry
breaking with a change of the wave vector group can lead to non-crossing bands and, then, to gap
opening and curvature of the band dispersion. This was observed, for example, by growing a graphene
layer on a crystal surface [6]. The broken symmetry is then reflected by a generation of mass, since the
Dirac equation governing the low energy excitations corresponds to finite mass associated with the gap
width. The system we studied in this paper, the reconstructed Ag/Cu(111) surface, exhibits this kind
of symmetry. Due to the misfit of lattice parameters of Ag and Cu, one monolayer of Ag epitaxially
grown on Cu(111) induces a reconstruction consisting of an hexagonal lattice of dislocation loops [7].
In the (111) surface of noble metals, the surface states exhibit a nearly free electron-like behavior
(Shockley states), and in Ag/Cu(111), its band structure is characterized by gaps at the boundary of
the reconstructed Brillouin zone. Band gap opening reflects the symmetry of wave vector groups, and
we show that the gap magnitudes can be used to obtain the surface potential or at least their first Fourier
components. After a general discussion of the symmetry on the hexagonal 2D lattices and, in particular,
the relation between the gap at the K point and the group of the wave vector, we present angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling microscopy and spectroscopy (STM/STS)
results obtained on Ag/Cu(111) and K/Ag/Cu(111). For these interfaces, minigaps appear at theK points
of the surface Brillouin zone. We discuss, in detail, this system, especially the relation between symmetry
and the surface potential.



Symmetry 2013, 5 346

2. Experimental Details and Method of Calculations

2.1. Experimental Details

The angle-resolved photoemission experiments were performed at 80 K with a Scienta 200
high-resolution hemispherical analyzer using photon energy of hν = 21.2 eV. The presented ARPES
maps correspond to second derivative signals in order to emphasize the energy gaps. Data points in
Figures 3 and 4 are obtained from standard line fits of individual energy distribution curves (EDCs),
using Lorentzian functions and Fermi edge functions. STM and STS experiments have been carried out
using Low Temperature-Omicron STM. The dI/dV spectra and maps were recorded at 5 K in the open
feedback loop mode using the lock-in technique with a bias modulation of 5 mV at 2300 Hz (stabilization
parameters: tunneling current 1 nA, bias voltage 1.0 V). Before transferring to the STM cryostat at 5 K,
the Ag monolayer is evaporated at 400 K on the clean Cu(111) crystal. This process leads to the sharp
∼(9.5 × 9.5) hexagonal lattice of triangular dislocations. Evaporation of K atoms on the Ag/Cu(111)
surface at room temperature was achieved by heating a standard K getter.

2.2. Calculation Method

Calculations of the electronic properties of the Shockley states are carried out by a direct
diagonalization of the Schrödinger equation with a potential defined by the first Fourier components
we experimentally deduced from the gap widths. As Shockley states exhibit nearly free electron-like
behavior, a plane wave basis is appropriate, and we limit to the first 36 waves around the Γ point.
Additional plane waves have negligible effects. Local Density of states (LDOS) maps and spectra are
obtained resolving the Hamiltonian for more than 1500 wave vectors in the first Brillouin zone (BZ) and
by taking into account a 15 meV Gaussian energy broadening.

3. Results and Discussion

3.1. Symmetry Analysis

Let us consider a 2D hexagonal lattice. The unit cell is diamond-shaped but, the Wigner–Seitz cell
is hexagonal. The Brillouin zone, which is only related to translational periodicity, is also hexagonal,
but rotated by π/6 with respect to the Wigner–Seitz cell, and the symmetry elements of direct and
reciprocal space are the same. We will consider the two high symmetry M and K points. We have three
inequivalent (not related by a reciprocal space vector) M points (M , M ′, M ′′) and two inequivalent K
points (K, K ′), as shown in Figure 1a. We would like to point out the peculiar property of the K point
with respect to time reversal symmetry. By contrast to the M point, time reversal symmetry couples the
two non-equivalentK andK ′ points. Let us choose the 2D highly symmetric group, C1

6v or P6mm. This
is the 2D-space group of graphene. Among the symmetry elements, one has two families of three-fold
mirrors, σv and σh, as illustrated in Figure 1b, one (σv) crossing all M points, the other one (σh) all K
points. For the electronic band structure, we have to consider the group of the wave vector at the high
symmetry points of the BZ. The wave vector group is the group of transformations conserving the wave
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vector in the first Brillouin zone (i.e., modulo a reciprocal space vector). At the Γ point, the symmetry
group of the wave vector isC6v; at theM point it isC2v, and at theK point it isC3v. These considerations
are important for the essential band degeneracy, since the band energy levels at a given wave vector of the
first Brillouin zone are associated with the irreducible representations of these groups. As an example,
the K point wave vector group is non-abelian with a two-dimensional irreducible representation, E,
corresponding to a two-fold degenerate band. This is the case of the pz-derived bands of graphene,
which exhibit the famous Dirac points characterized by the crossing of two linear dispersive bands at the
K points [4]:

E±(~q) = ±h̄vF~q (1)

where ~q = ~k − ~kK is the crystal momentum with respect to the K point and vF the Fermi velocity.

Figure 1. (a) The first Brillouin zone of a reciprocal space of 2D hexagonal lattices. The
different M and K points are indicated (equivalent points are connected by a reciprocal
space vector); (b) The unit cell with the symmetry mirrors for P6mm, P31m, P3m1 and
P3 space groups; (c) The reciprocal vectors in the first (~G(1)

n ) and second (~G(2)
n ) rings around

Γ, as well as the corresponding Fourier component of the potential (see text).

Let us consider the breakdown of this symmetry by removing one of the mirror families. The removal
of the σh family leads to the P3m1 (orC1

3v) space group. The consequence is a change of the wave vector
groups; at Γ, it is now C3v or 3m, at M , C1h or m, and at K, C3 or three. As the K-vector group is
now abelian, the essential degeneracy is left (the 2D-irreducible representation, E, of C3v is decomposed
in two 1D-representations of C3), and one expects the band gap opening with the disappearance of the
linear dispersion. Therefore, the Dirac points characterized by massless fermions for P6mm disappear,
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and the symmetry breaking leads to massive fermions and, then, to a gap. The dispersion relation close
to the K points can be written:

E±(~q) = ±
√

(h̄vF~q)2 + ∆2 (2)

where ∆ = m∗v2F is the mass term and 2∆ the gap width. This is what happens in the hexagonal boron
nitride layer or epitaxial graphene, for example, on Ir(111) [8]. We will discuss in the following the
triangular reconstruction of Ag/Cu(111), which exhibits this peculiar symmetry, and we will investigate
the consequences on the Shockley surface state properties.

If the other mirror family (σv) is removed, the situation is completely different. The space group
is then P31m (or C2

3v), and the wave vector groups are C3v at Γ and C1h at M , but remain C3v at
K. Therefore, no change is expected in the band degeneracy, and the band states corresponding to the
two-dimensional E irreducible representation remain massless (linear dispersion with no gap), like in
the high symmetry P6mm group. This behavior shows that the pertinent symmetry breaking is related
to the symmetry of the wave vector group. For the lowest symmetric P3 group, both mirror families are
removed, leading to the opening of a gap at K points.

3.2. The Ag/Cu(111) Reconstruction

As discussed above, the (111) surfaces of noble metals are known to exhibit surface states with a
nearly free electron-like behavior (Shockley surface states [9]). Due to their surface localization, these
Shockley bands are very sensitive to any surface modification. Deposition of atoms and formation of an
ultra-thin epitaxial layer yield a change of the surface state energy and/or effective mass. For example,
one monolayer of Ag epitaxially grown on Cu(111) leads to an energy shift of the surface state, but also
to a reconstruction, due to the different atomic radius of Cu and Ag. As a consequence, a super-periodic
cell ∼(9.5 × 9.5) is observed, characterized by an hexagonal array of triangular dislocations [7,10]. The
surface Brillouin zone of the reconstructed layer is small, and the parabolic dispersions of the Shockley
state exhibit deviations close to the zone boundaries with the gap opening [11–13]. These gaps result
from the Bragg mechanism at these high symmetry points and lines. For example, the M point of the
first Brillouin zone is situated between the Γ point and one reciprocal vector, ~G(1)

1 (Figure 1b). In the
nearly free electron framework, the band states at M are simply linear combinations of the incoming
state, |~kM〉, and the diffracted one, |~kM − ~G

(1)
1 〉 (in the first approximation). The energy difference

between these two band states (|~kM〉 ± |~kM − ~G
(1)
1 〉)/

√
2 is 2|V ~G

(1)
1
|, where V ~G

(1)
1

= V1 is the Fourier
component of the surface potential, like in a simple 1D nearly-free-electron gas, discussed in solid state
textbooks [14]. At the K point, the situation is more complicated. The K point is at the center of an
equilateral triangle defined by Γ, ~G(1)

1 and ~G
(1)
2 , and three states composed from |~kK〉, |~kK − ~G

(1)
1 〉 and

|~kK − ~G
(1)
2 〉 are involved.

The widths of the gaps in the surface band structure give partial information about the potential
associated with the reconstruction, but only occupied bands are accessible with ARPES, limiting the
number of observable gaps. However, it has been shown that, by depositing K atoms, it is possible to
shift the energy of the surface Shockley band towards higher binding energies [15,16]. We used this
property in order to tune the energy gaps below the Fermi energy. These experimental gap widths allow
one to determine several Fourier components and, then, to deduce the surface potential [17].
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3.3. Symmetry and Potential Properties

We would like to discuss the link between the symmetry of the surface and the properties of the
Fourier components of the potential, at least the first two ones. Firstly, we would like to consider the
highly symmetric case corresponding to the P6mm space group. The presence of the six-fold axis
induces that the Fourier components corresponding to the first six equivalent reciprocal vectors are all
identical. In particular, one has:

V ~G = V− ~G (3)

Moreover, it is possible to show that this component is purely real. Indeed, time reversal symmetry
(T ), which, for a spinless particle, is simply the complex conjugate operator, transforms the potential
according to:

T (V (~r)) = T

(∑
V ~G exp i ~G · ~r

)
=
∑

V ∗~G exp−i ~G · ~r =
∑

V ∗− ~G
exp i ~G · ~r = V (~r) (4)

since the potential is real. Then, one deduces that:

V ~G = V ∗− ~G
(5)

which proves with Equation (3) that the Fourier components, V ~G, are real. A typical band structure in the
nearly free electron model is reported in Figure 2a (center panel). We also show the mirror symmetries
in the Brillouin zone and the potential used to compute the band structure. This potential was obtained
from the Fourier components associated with the reciprocal vectors in the first two rings around Γ, as
illustrated in Figure 1b. The dispersions exhibit a first gap at M and linear dispersive crossing bands at
the K point. This illustrates the symmetry origin of this singular behavior, since it is encountered both
in graphene (tight binding bands) and in Ag/Cu(111) (nearly free electron bands).

When we remove one mirror family, either σh or σv, two kinds of reciprocal vectors appear in the
first ring around Γ: three equivalent ones associated with ~G

(1)
1 , the three equivalent other ones being

associated with ~G
(1)
2 (Figure 1b). For the P31m space group (Figure 2b), the remaining mirrors (σh) are

along the ΓK directions and contain the six first reciprocal vectors in the second ring (~G(2)
n , n = 1, . . . 6).

Therefore, this mirror symmetry does not couple the two kinds of reciprocal vectors of this ring, and
the corresponding Fourier components of the potential can be complex (V ~G

(2)
n

= V2, n = 1, 3, 5 and
V ~G

(2)
n

= V ∗2 , n = 2, 4, 6). On the other hand, the σh mirror couples the two sets of reciprocal vectors in

the first ring (~G(1)
n ). Then, the first components (associated with the six reciprocal vectors of the first ring)

are purely real: V ~G
(1)
n

= V1, ∀n. The contrary behavior occurs for the P3m1 space group (Figure 2c).
The remaining mirrors (σv) are along the ΓM directions and contain the six first reciprocal vectors in the
first ring and couple the two kinds of reciprocal vectors in the second ring. As a consequence, the Fourier
components of the second ring are purely real V ~G

(2)
n

= V2, ∀n, whereas the components belonging to the
first ring can be complex. The band structure of Figure 2b illustrates the consequence on the electronic
properties. As discussed above, the wave vector group at K remains C3v for P31m, and no gap opens;
whereas it is only C3 for P3m1, and a gap appears with curvature in the band dispersion. Finally, if the
two families of mirrors are removed (Figure 2d and the P3 space group), the first components (first ring)
and the second ones (second ring) are both complex, the K-wave vector is C3 and a gap is also exhibited
at the K points.
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Figure 2. Brillouin zone with the mirror symmetries (top panel), schematic band structures
in the nearly free electron model (center panel) and the corresponding direct space surface
potential (bottom panel) for the different space groups: (a) P6mm; (b) P31m; (c) P3m1;
and (d) P3. Comparison between these band structures shows that the σh mirrors are
necessary to have a gapless Dirac point at K.
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This symmetry analysis shows that the opening of a gap at the K point associated with massive
fermions is simply related to the wave vector group at this high symmetry point. In the nearly free
electron approach valid for Shockley surface states of a (111) noble metal surface, the symmetry
imposes some rules for the Fourier components, in particular, the value of the imaginary parts of
these components.

3.4. Electronic Properties of Ag/Cu(111)

Figure 3a shows an STM image of the Ag/Cu(111) surface. It exhibits the triangular lattice of
dislocation loops, evidencing that only the σv mirrors are symmetry elements, leading to a P3m1

space group for this 2D crystal. Figure 3b reports the ARPES dispersion (the second derivative of the
experimental signal) in the ΓM and ΓK directions for the Ag/Cu(111) surface and a K-doped surface.
By doping the surface with K, it is possible to tune the surface state energy and, then, to measure the
second energy gap at the M point, which is above the Fermi energy for the undoped surface. For the
bare Ag/Cu(111) surface, a 80 meV gap is evidenced just below EF , whereas the change in curvature
suggests that a gap could exist at EF at the K point. This is corroborated by the results on the K-doped
surface, which indicates the gap opening atK and a third band dispersing upward (close up of Figure 3b).
Moreover, inspection of the reciprocal space (Figure 1a) shows that the Γ, the K of the first Brillouin
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zone and the M point in the second zone are aligned. Therefore, the experimental dispersion along the
ΓK direction allows one to probe the first gap at K and the second gap at M . This is exactly what
is measured in the experimental spectra of the K-doped surface (Figure 3b). From the gap widths, it
is possible to estimate the Fourier components of the surface potential. Indeed, due to the nearly free
electron behavior of the Shockley states, only a few plane waves are involved in the high symmetry
points, mainly two for M points and three for K points. As a consequence, in a first approximation, the
gaps at M and K only depend on the first Fourier component, since it is straightforward to show that:

EM2 − EM1 = 2|V1| and EK2 − EK1 = 2
√

3Im|V1| (6)

leading to a determination of the real and imaginary parts of the V1 component. We find V1 = (47 +

i9.6) meV. The second component V2 = 15 meV (purely real; see above) can be deduced for the gap
appearing close to the Fermi energy for the doped surface at the M point. We would like to point out
that, as the gap width is proportional to the imaginary part of V1, a purely real Fourier component leads
to a zero gap at K, corroborating our discussion above based on symmetry arguments.

Figure 3. (a) Scanning tunneling microscopy (STM) image of the Ag/Cu(111) surface
with the unit cell and the three-fold σv mirror. Solid and dotted lines represent the unit
and Wigner–Seitz cells, respectively; (b) Second derivative angle-resolved photoemission
spectroscopy (ARPES) signal representing the band dispersions measured on Ag/Cu(111)
(left) and a K-doped surface (closeup illustrating the three bands close to the K point).
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The |V1| value is corroborated by the intensity of the folded band. Indeed, although the band
dispersions are periodic in the reciprocal space, the spectral weight is not periodic, and the folded band
intensity in the second Brillouin zone is a function of the Fourier component [18] and can be simply
calculated. Figure 4a shows the experimental intensity in the ΓM direction for the main band and its
replicate for the undoped surface. We also show the calculated ARPES intensity with |V1| experimentally
deduced from the gaps. A very good agreement between experimental and calculated spectral intensities
is obtained. With the V1 and V2 components we deduce from the gap widths at M and K, we can rebuild
the potential associated with the Ag/Cu(111) reconstructed surface, as shown in Figure 4b. By solving
numerically the Schrödinger equation with this potential, it is possible to compute the band structure
in the high symmetry directions. The results are reported in Figure 4c and compared with the ARPES
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data (for the occupied states) and the density of states (occupied and unoccupied states) measured by
scanning tunneling spectroscopy. A satisfactory agreement is found, demonstrating that this simple
approach captures the essential features of the electronic properties.

Figure 4. (a) Comparison between the experimental and calculated ARPES intensity for
Ag/Cu(111) showing that both the energy gap width and the intensity of the folded band are
reproduced. The spectra have been divided by the Fermi function in order to evidence the
spectral weight in the 3kT energy range above the Fermi energy; (b) The surface potential
built from the V1 and V2 components; (c) The surface band structure (lines) calculated from
the experimentally determined surface potential and experimental dispersions (symbols) up
to the Fermi energy; (d) Experimental scanning tunneling spectrum (symbols) and calculated
local density of states (lines) evidencing the energy gaps of the band structure.

4. Conclusions

In this paper, we show that the peculiar electronic properties usually encountered in hexagonal
2D lattices (i.e., the existence of a gapless Dirac point at K points of the Brillouin zone with linear
dispersion) result from the group of wave vectors at this specific high symmetry point. This behavior
appears for states belonging to the two dimensional irreducible representation of the corresponding wave
vector group. A symmetry breaking that modifies the wave vector group at the K point leads to the
opening of an energy gap associated with finite mass Dirac electrons. More precisely, it is related to the
breakdown of the mirror symmetry crossing the K point. This behavior is illustrated on the Shockley
state of the Ag/Cu(111) reconstructed surface. In this system, the surface electronic properties can be
described in the nearly fee electron model. From the measured gap widths, the first Fourier components
can be obtained, and the surface potential can be built.
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