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Abstract: In this paper, we formulate a supersymmetric extension of the Euler system of
equations. We compute a superalgebra of Lie symmetries of the supersymmetric system.
Next, we classify the one-dimensional subalgebras of this superalgebra into 49 equivalence
conjugation classes. For some of the subalgebras, the invariants have a non-standard
structure. For nine selected subalgebras, we use the symmetry reduction method to find
invariants, orbits and reduced systems. Through the solutions of these reduced systems, we
obtain solutions of the supersymmetric Euler system. The obtained solutions include bumps,
kinks, multiple wave solutions and solutions expressed in terms of arbitrary functions.
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1. Introduction

Supersymmetric generalizations of fluid dynamical equations have recently generated much interest
among mathematicians and physicists. Such extensions have been constructed recently for certain
hydrodynamic-type models (see, e.g., [1–4]). A study of polytropic supersymmetric models has also
been performed by Das and Popowicz [5] in the specific case when p = kρk. Euler-type systems have
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also been analyzed from the Grassmann variable point of view by Fatyga, Kostelecky and Truax [6].
Certain solutions were found in terms of infinite series. In addition, supersymmetric versions of the
Chaplygin gas in (1 + 1) and (2 + 1) dimensions, derived from the action for a superstring and a
Nambu-Goto supermembrane, respectively, were proposed by Jackiw et al. (see [7] and references
therein). It was suggested that non-Abelian fluid mechanics may describe a quark-gluon plasma [7]. In
this context, we propose to investigate the Euler equations for a one-dimensional compressible fluid flow.

The purpose of this paper is to formulate a supersymmetric version of the Euler system of equations
describing the nonstationary one-dimensional ideal (non-viscous) compressible fluid flow and construct
their invariant solutions. To our knowledge, a supersymmetric extension of the Euler system has not been
formulated before. The symmetry group transformations of the classical version of the Euler system
of equations:

ρut + ρuux + px = 0

ρt + uρx + ρux = 0

pt + upx + kpux = 0

(1)

has been investigated by Ovsiannikov [8], where u is the flow velocity, p and ρ are the pressure and
density of the fluid flow, respectively, and k is the polytropic exponent. Under the above assumptions,
the examined system of Equations (1) forms a quasilinear hyperbolic system. It was proven [8,9]
that the basic system (1) is invariant under the Galilean similitude group, sim(2) (when k 6= 3),
and under the Galilean-projective group, simPr(2) (i.e., the Galilean-similitude group extended by the
projective transformation when k = 3). The Lie algebra of infinitesimal symmetries of fluid dynamics
Equations (1) is spanned by:

P0 = ∂t, P1 = ∂x, B = t∂x + ∂u, D = t∂t + x∂x,

F = −t∂t + u∂u − 2ρ∂ρ, G = ρ∂ρ + p∂p,

C = t2∂t + tx∂x + (x− tu)∂u − tρ∂ρ − 3tp∂p, when k = 3

(2)

The infinitesimal operators, P0 and P1, are translation operators in the directions of t and x, respectively.
The operator, B, corresponds to the Galilean transformation, and operators D, F and G are dilation
operators. Operator C corresponds to the projective conformal transformation, when the specific value
of the polytropic exponent is k = 3. The Lie algebra, L, generated by (2) can be decomposed in the form:

L = {C,P0, F,D,G} +⊃ {P1, B} (3)

In the work of one of the authors of this paper [10], all subalgebras of the Lie algebra, L, were
classified, and the symmetry reduction method (SRM) was used to generate invariant solutions of the
Euler system (1), including, among other solutions, travelling waves, bumps, kinks, double-periodic
solutions, etc. Many of these solutions had previously been found by other methods, such as the method
of characteristics (see, for example, [8,9,11,12] and references therein).

The SRM, on the other hand, certainly has a broader range of application, since it leads to different
sets of solutions obtained from the Lie algebra of symmetries (2) and its subalgebras classified into
different conjugacy classes. This approach is of great utility in the investigation of the classical Euler
Equations (1). The results obtained for the classical system (1) were so promising that it seemed
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worthwhile to try to apply the method to the case of a supersymmetric extension of a hydrodynamic-type
system and construct invariant solutions through the use of a superspace and superfield formalism.

This paper is organized as follows. In Section 2, we construct a supersymmetric extension of the
Euler-Equations (1) through a superspace and superfield formalism involving two independent fermionic
variables. In Section 3, we discuss in detail a number of symmetries of the proposed supersymmetric
system. For this purpose, we use a generalization of the prolongation formalism of vector fields
extended in such a way as to encompass both even and odd Grassmann variables. In this case, we
adapt the symmetry criterion in order to determine a superalgebra associated with the supersymmetric
system. Next, we classify the one-dimensional subalgebras of the superalgebra into conjugation classes
under the action of the associated supergroup. The subalgebras are classified in such a way that each
representative subalgebra corresponding to a different conjugation class generates a different type of
solution [13–16]. This analysis allows us to perform the symmetry reductions systematically. Section 4
contains the reduced systems corresponding to those subalgebras with its standard invariant structures. A
new method is proposed for solving the reduced systems of the equations. Several new invariant solutions
of the supersymmetric Euler Equation are constructed, some of which contain the freedom of arbitrary
functions of one or two arguments involving expressions in terms of bosonic or fermionic variables.
In the case when the arbitrary functions are expressed only in the independent fermionic variables, we are
able to obtain the solution based on a truncated Taylor expansion. We give some physical interpretation
of the obtained results in the context of non-linear field models. Finally, Section 5 contains some final
remarks and future perspectives.

2. Supersymmetric Extension

In order to supersymmetrize the Euler Equation (1), we extend the space of independent variables,
{x, t}, to the superspace, {x, t, θ1, θ2}, where θ1 and θ2 are independent Grassmannian-odd variables.
The variables, x and t, represent the bosonic (even Grassmannian) coordinates on two-dimensional
Euclidean space. The quantities, θ1 and θ2, are anticommuting fermionic (odd Grassmann) variables.
We replace the real bosonic-valued fields of velocity, u(x, t), density, ρ(x, t), and pressure, p(x, t), by
the Grassmann-even superfields defined by:

U(x, t, θ1, θ2) = F (x, t) + θ1φ1(x, t) + θ2φ2(x, t) + θ1θ2u(x, t)

R(x, t, θ1, θ2) = G(x, t) + θ1ψ1(x, t) + θ2ψ2(x, t) + θ1θ2ρ(x, t)

P(x, t, θ1, θ2) = H(x, t) + θ1ω1(x, t) + θ2ω2(x, t) + θ1θ2p(x, t)

(4)

respectively. Here, the quantities, φi, ψi and ωi i = 1, 2, are fermionic fields, while F , G and H are
bosonic fields. The supersymmetric extension of the Euler Equations (1) is constructed in such a way
that it remains invariant under the supersymmetry transformations:

x→ x− η1θ1, θ1 → θ1 + η1 and t→ t− η2θ2, θ2 → θ2 + η2 (5)

where η1 and η2 are arbitrary constant odd parameters. In what follows, we use the convention that
underlined constants represent Grassmann-odd parameters. These transformations are generated by the
infinitesimal supersymmetry operators:

Q1 = −θ1∂x + ∂θ1 and Q2 = −θ2∂t + ∂θ2 (6)
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satisfying the anticommutation relations:

{Qi, Qi} = −2∂xi , i = 1, 2 (7)

where x1 and x2 stand for x and t, respectively. In order to make the extended model invariant under the
supersymmetry generators, Q1 and Q2, we introduce the covariant derivative operators:

D1 = θ1∂x + ∂θ1 and D2 = θ2∂t + ∂θ2 (8)

which possess the property that each of the derivatives, Di, i = 1, 2, anticommutes with both
supersymmetry operators, Qi, i = 1, 2:

[Di, Di] = 2∂xi , {D1, D2} = {Di, Qj} = 0 for i, j = 1, 2 (9)

Thus, if we write our supersymmetry equations in terms of the superfields, U , R and P , and
their covariant derivatives of various orders, then they will be invariant under the transformations
generated by Q1 and Q2. The most general supersymmetric extension of the Euler Equation (1) invariant
under the transformations generated by Q1 and Q2 is constructed by considering linear combinations
of the products of the various covariant derivatives of the superfields, U , R and P . These multiply
together to produce the given terms as coefficients, whose components reproduce each term of the
classical Equation (1). The result of this analysis provides the following form of the supersymmetric
Euler Equations:

− a1R(D1D2
3U) + a2(D1R)(D2

3U)− a3(D2R)(D1D2
2U)+

(a1 + a2 + a3 − 1)(D1D2R)(D2
2U) + a4R(D1D2U)(D1

3D2U)

− a5(D1R)(D2U)(D1
3D2U)− a6(D1R)(D1D2U)(D1

2D2U)

+ a7(D2R)(D1U)(D1
3D2U) + a8(D2R)(D1D2U)(D1

3U) + a9(D1D2R)U(D1
3D2U)

− a10(D1D2R)(D1U)(D1
2D2U) + a11(D1D2R)(D2U)(D1

3U)

+

(
1−

11∑
i=4

ai

)
(D1D2R)(D1D2U)(D1

2U) +D1
2P = 0

D2
2R− a12U(D1

3D2R) + a13(D1U)(D1
2D2R)− a14(D2U)(D1

3R)

+ (a12 + a13 + a14 − 1)(D1D2U)(D1
2R)− a15R(D1

3D2U) + a16(D1R)(D1
2D2U)

− a17(D2R)(D1
3U) + (a15 + a16 + a17 − 1)(D1D2R)(D1

2U) = 0

and

D2
2P − a18U(D1

3D2P) + a19(D1U)(D1
2D2P)− a20(D2U)(D1

3P)

+ (a18 + a19 + a20 − 1)(D1D2U)(D1
2P)− a21kP(D1

3D2U) + a22k(D1P)(D1
2D2U)

− a23k(D2P)(D1
3U) + (a21 + a22 + a23 − 1)k(D1D2P)(D1

2U) = 0

(10)
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where a1, a2, . . . , a23 are twenty-three arbitrary bosonic parameters. In this paper, we focus our analysis
on the simplest case, where all of the parameters, ai, i = 1, 2, . . . , 23, vanish:

(D1D2R)(D2
2U)− (D1D2R)(D1D2U)(D1

2U)−D1
2P = 0

D2
2R− (D1D2U)(D1

2R)− (D1D2R)(D1
2U) = 0

D2
2P − (D1D2U)(D1

2P)− k(D1D2P)(D1
2U) = 0

(11)

In what follows, we will refer to system (11) as the supersymmetric extension of the Euler Equations,
since it reduces to the classical Euler Equation (1) when θ1 and θ2 tend to zero.

In this paper, we use the convention that partial derivatives involving odd variables satisfy the
Leibniz rule:

∂θi(fg) = (∂θif)g + (−1)deg(f)f(∂θig) (12)

where:

deg(f) =

0 if f is even,

1 if f is odd,
(13)

and the notation:

fθ1θ2 =
∂

∂θ2

(
∂f

∂θ1

)
(14)

The partial derivatives with respect to odd coordinates satisfy ∂θiθj = δij . The operators, ∂θi , Q1, Q2,
D1 and D2, change the parity of the function acted on in the sense that it converts a bosonic function
to a fermionic function and vice versa. For example, ∂θ1U is an odd superfield, while ∂θ1θ2U is an even
superfield, and so on. For further details, see the book by Cornwell [17] and the reference by DeWitt [18].
The chain rule for a Grassmann-valued composite function, f(g(x)), is [18,19]

∂f

∂x
=
∂g

∂x
· ∂f
∂g

(15)

The interchangeability of mixed derivatives (with proper respect to the ordering of odd variables) is
assumed throughout.

The even supernumbers, variables, fields, etc., are assumed to be elements of the even part, Λeven,
of the underlying abstract real Grassmann ring, Λ. The odd supernumbers, variables, fields, etc., lie in
its odd part, Λodd. We shall assume throughout the paper that the functions, u(x, t), ρ(x, t) and p(x, t),
have values in the invertible subset of Λeven plus {0}, i.e., nonvanishing nilpotent values are ruled out.
This technical assumption allows us to perform the necessary simplifications in our calculations without
splitting off of singular subcases.

Re-writing Equation (11) in terms of the independent variables, x, t, θ1 and θ2, we obtain the form:

θ1θ2RxtUt + θ1Rxθ2Ut − θ2Rtθ1Ut −Rθ1θ2Ut + θ1θ2RxtUθ1θ2Ux − θ1θ2Rxθ2Utθ1Ux
+ θ1Rxθ2Uθ1θ2Ux + θ1θ2Rtθ1Uxθ2Ux − θ2Rtθ1Uθ1θ2Ux + θ1θ2Rθ1θ2UxtUx
+ θ1Rθ1θ2Uxθ2Ux − θ2Rθ1θ2Utθ1Ux −Rθ1θ2Uθ1θ2Ux − Px = 0

(16)

Rt − θ1θ2UxtRx − θ1Uxθ2Rx + θ2Utθ1Rx + Uθ1θ2Rx − θ1θ2RxtUx − θ1Rxθ2Ux
+ θ2Rtθ1Ux +Rθ1θ2Ux = 0

(17)
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Pt − θ1θ2UxtPx − θ1Uxθ2Px + θ2Utθ1Px + Uθ1θ2Px − kθ1θ2PxtUx − kθ1Pxθ2Ux
+ kθ2Ptθ1Ux + kPθ1θ2Ux = 0

(18)

The system (16)–(18) is a second-order nonlinear system of partial differential Equations, whose
coefficients depend on the fermionic variables.

3. Symmetries of the Supersymmetric Euler Equations

A symmetry supergroup, G, of a supersymmetric system is a (local) supergroup of transformations
acting on a Cartesian product of supermanifolds, X ×U , where X is the space of independent variables,
(x, t, θ1, θ2), and U is the space of dependent superfields, (U ,R,P). The action of the group, G, on the
function, U(x, t, θ1, θ2), R(x, t, θ1, θ2) and P(x, t, θ1, θ2), maps solutions of (11) to solutions of (11).
If we assume that G is a Lie supergroup, as described in [20,21], one can associate with it its Lie
superalgebra, G, whose elements are infinitesimal symmetries of (11).

The supersymmetric Euler Equation (11) are invariant under the Lie superalgebra, S, generated by
the following seven infinitesimal vector fields:

L1 = 2x∂x + θ1∂θ1 + 3U∂U + 4P∂P , L2 = 2t∂t + θ2∂θ2 − U∂U − 4P∂P ,
L3 = R∂R + P∂P , P1 = ∂x, P2 = ∂t, Q1 = −θ1∂x + ∂θ1

Q2 = θ2∂t + ∂θ2

(19)

The generators, P1 and P2, represent translations in space and time, respectively, while L1, L2 and
L3 generate dilations in both even and odd variables. In addition, we recover the supersymmetry
transformations, Q1 and Q2, which we identified previously in (6). In order to determine this
superalgebra of infinitesimal symmetries, we have made use of the theory described in the book by
Olver [22]. The commutation (anticommutation in the case of two odd operators) relations of the
superalgebra, S, of the supersymmetric Euler Equations are given in Table 1.

Table 1. Supercommutation table for the Lie superalgebra, S, spanned by the vector
fields (19).

L1 P1 Q1 L2 P2 Q2 L3

L1 0 −2P1 −Q1 0 0 0 0

P1 2P1 0 0 0 0 0 0

Q1 Q1 0 −2P1 0 0 0 0

L2 0 0 0 0 −2P2 −Q2 0

P2 0 0 0 2P2 0 0 0

Q2 0 0 0 Q2 0 −2P2 0

L3 0 0 0 0 0 0 0



Symmetry 2013, 5 259

It should be noted that the generators of the superalgebra, S, listed in (19), contain three dilations,
L1, L2 and L3. This is analogous to the Lie algebra, L, of the classical version, whose generators
(in Equation (2)) also contain three dilations, D, F and G. The decomposition of the superalgebra, S,
of the supersymmetric system is very different from the decomposition of the Lie algebra of the classical
system, L.

The Lie superalgebra, S, can be decomposed into the following combination of direct and
semi-direct sums:

S = ({L1} +⊃ {P1, Q1})⊕ ({L2} +⊃ {P2, Q2})⊕ {L3} (20)

The one-dimensional subalgebras of S can be classified into conjugacy classes under the action of
the group generated by S. We obtain the following list of subalgebras:

L1 = {P2}, L2 = {νQ2}, L3 = {P2 + νQ2}, L4 = {L2},
L5 = {P1}, L6 = {µQ1}, L7 = {P1 + µQ1}, L8 = {L1},
L9 = {P1 + εP2}, L10 = {P1 + νQ2}, L11 = {P1 + εP2 + νQ2},
L12 = {L2 + εP1}, L13 = {P2 + µQ1}, L14 = {µQ1 + νQ2},
L15 = {P2 + µQ1 + νQ2}, L16 = {L2 + µQ1}, L17 = {P1 + εP2 + µQ1},
L18 = {P1 + µQ1 + νQ2}, L19 = {P1 + εP2 + µQ1 + νQ2},
L20 = {L2 + εP1 + µQ1} L21 = {L1 + εP2}, L22 = {L1 + νQ2},
L23 = {L1 + εP2 + νQ2}, L24 = {L1 + kL2}, L25 = {L3},
L26 = {L3 + εP2}, L27 = {L3 + νQ2}, L28 = {L3 + εP2 + νQ2},
L29 = {L3 + kL2} L30 = {L3 + εP1}, L31 = {L3 + µQ1},
L32 = {L3 + εP1 + µQ1}, L33 = {L3 + kL1} L34 = {L3 + ε1P1 + ε2P2},
L35 = {L3 + εP1 + νQ2}, L36 = {L3 + ε1P1 + ε2P2 + νQ2},
L37 = {L3 + kL2 + εP1}, L38 = {L3 + εP2 + µQ1},
L39 = {L3 + µQ1 + νQ2}, L40 = {L3 + εP2 + µQ1 + νQ2},
L41 = {L3 + kL2 + µQ1}, L42 = {L3 + ε1P1 + ε2P2 + µQ1},
L43 = {L3 + εP1 + µQ1 + νQ2}, L44 = {L3 + ε1P1 + ε2P2 + µQ1 + νQ2},
L45 = {L3 + kL2 + εP1 + µQ1} L46 = {L3 + kL1 + εP2},
L47 = {L3 + kL1 + νQ2}, L48 = {L3 + kL1 + εP2 + νQ2},
L49 = {L3 + kL1 + `L2}

(21)

where ε, ε1 and ε2 are either one or −1, the parameters, k and `, are non-zero, and µ and ν are
fermionic constants. These representative subalgebras allow us to determine invariant solutions of
the supersymmetric Euler Equations (11) using the symmetry reduction method. It should be noted
that some of the subalgebras of the Lie symmetry superalgebra have non-standard invariant structures
in the sense that they do not lead to symmetry reductions in the usual sense. For instance, the
subalgebra, L2 = {νQ2}, has the nonstandard invariant, νf(x, t, θ1, θ2,U ,R,P), where f is an arbitrary
function of its arguments. Such non-standard invariants were found by the authors for several other
supersymmetric hydrodynamic-type systems, including the supersymmetric sinh-Gordon Equation [23],
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the supersymmetric Klein-Gordon polynomial Equation [23] and supersymmetric polytropic gas
dynamics [4].

4. Invariant Solutions of the Supersymmetric Euler Equations

We now proceed to use the symmetry reduction method to determine the invariants and orbits of nine
different subalgebras. Consequently, we obtain the reduced system specific to the given subalgebra.

(1) For subalgebra L1 = {P2}, the invariants are

σ = x, θ1, θ2, U , R, P .

Therefore, the superfields are of the form:

U(x, θ1, θ2), R(x, θ1, θ2), P(x, θ1, θ2),

and the reduced system is:

θ1Rxθ2Uθ1θ2Ux + θ1Rθ1θ2Uxθ2Ux −Rθ1θ2Uθ1θ2Ux − Px = 0,

− θ1Uxθ2Rx + Uθ1θ2Rx − θ1Rxθ2Ux +Rθ1θ2Ux = 0

− θ1Uxθ2Px + Uθ1θ2Px − kθ1Pxθ2Ux + kPθ1θ2Ux = 0

(22)

One solution of this system is:

U = k1 − k3µx+ θ1k3 + θ2k2

R = γ(x) + θ1ψ1(x) + θ2k4

P = k5 + θ1k6 + θ2k7

(23)

where k1 and k5 are arbitrary bosonic constants, k2, k3, k4, k6 and k7 are arbitrary fermionic constants,
γ is an arbitrary bosonic function of x and ψ1 is an arbitrary fermionic function of x. This solution is
stationary. The choice of arbitrary functions in the density superfield,R, does not influence the velocity
and pressure superfields (U and P , respectively), which are linear in x, θ1 and θ2.

(2) For subalgebra, L3 = {P2 + νQ2}, the invariants are:

σ = x, θ1, τ2 = θ − νt, U , R, P ,

Therefore, the superfields are of the form:

U(x, θ1, τ2), R(x, θ1, τ2), P(x, θ1, τ2),
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and the reduced system is:

θ1νRxτ2Uτ2 + νRθ1τ2Uτ2 − θ1τ2νRxτ2Uθ1τ2Ux + θ1τ2Rxτ2νUθ1τ2Ux + θ1Rxτ2Uθ1τ2Ux
− θ1τ2νRθ1τ2Uxτ2Ux + τ2νRθ1τ2Uθ1τ2Ux − θ1τ2νUθ1τ2Uxτ2Ux + θ1Rθ1τ2Uxτ2Ux
+ τ2νRθ1τ2Uθ1τ2Ux −Rθ1τ2Uθ1τ2Ux − Px = 0

− νRτ2 + θ1τ2νUxτ2Rx − θ1Uxτ2Rx − τ2νUθ1τ2Rx + Uθ1τ2Rx + θ1τ2νRxτ2Ux
− θ1Rxτ2Ux − τ2νRθ1τ2Ux +Rθ1τ2Ux = 0

− νPτ2 + θ1τ2νUxτ2Px − θ1Uxτ2Px − τ2νUθ1τ2Px + Uθ1τ2Px + kθ1τ2νPxτ2Ux
− kθ1Pxτ2Ux − kτ2νPθ1τ2Ux + kPθ1τ2Ux = 0

(24)

We have two solutions. The first solution is:

U = νh(x) + θ1φ1(x) + θ2ν`(x) + θ1θ2νf(x)

R = νj(x) + θ2νg(x)

P = C1 + θ2νC2

(25)

where C1 and C2 are arbitrary bosonic constants, `, and g are arbitrary bosonic functions of x and f and
h, j and φ1 are arbitrary fermionic functions of x. This solution represents a stationary flow. The choice
of arbitrary functions in U and R does not influence the pressure superfield, P , which is linear in θ2.
The arbitrary functions can be chosen completely arbitrarily. In particular, we can choose bumps, kinks
and multiple wave solutions. The postulated form of the arbitrary functions will change as the solution
evolves in time. For example, as an illustration, if we choose the arbitrary function:

g(x) = cn
[
1 + cosh (arctan (ax))−1 , κ

]
, a ∈ R (26)

and the modulus, κ, of the elliptic function is such that 0 ≤ κ2 ≤ 1, then the solution has one purely real
and one purely imaginary period. For a real argument of the elliptic function, we have the relation:

−1 ≤ cn
[
1 + cosh (arctan (ax))−1 , κ

]
≤ 1 (27)

and so, the solution represents a cnoidal wave bump. Asymptotically, this solution approaches a constant.
The second solution is:

U = h(µx+ C3θ1 + µνθ2)

R = γ(x) + θ1ψ1(x) + θ2(νx+ ν) + θ1θ2(hµ)− θ1νt(hµ)

P = C1 + θ1C4 + θ2C2 − νtC2 + θ1θ2νC5

(28)

where C1 and C3 are arbitrary bosonic constants, h, C2, C4 and C5 are arbitrary fermionic constants,
γ is an arbitrary bosonic function of x and ψ1 is an arbitrary fermionic function of x. This solution is
non-stationary, and the choice of γ(x) and ψ1(x) in the density superfield, R, does not influence U and
P . The time dependence in the pressure superfield, P , does not affect U andR.
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(3) For subalgebra, L4 = {L2}, the invariants are:

σ = x, θ1, τ2 = t−1/2θ2, A = t1/2U , R, C = t2P .

Therefore, we have the superfields:

U = t−1/2A(x, θ1, τ2), R(x, θ1, τ2), P = t−2C(x, θ1, τ2).

The corresponding system is given by:

− 1

2
θ1Rxτ2A+

1

2
θ1τ2Rxτ2Aτ2 +

1

2
Rθ1τ2A+

1

2
τ2Rθ1τ2Aτ2 +

1

2
θ1τ2Rxτ2Aθ1Ax

+ θ1Rxτ2Aθ1τ2Ax −
1

2
θ1τ2Rθ1τ2(Ax)2 +

1

2
τ2Rθ1τ2Aθ1Ax + θ1Rθ1τ2Axτ2Ax

−Rθ1τ2Aθ1τ2Ax − Cx = 0

(29)

1

2
θ1τ2AxRx −

1

2
τ2Aθ1Rx − θ1Axτ2Rx +Aθ1τ2Rx − θ1Rxτ2Ax +Rθ1τ2Ax −

1

2
τ2Rτ2 = 0 (30)

− 2C − 1

2
τ2Cτ2 +

1

2
θ1τ2AxCx −

1

2
τ2Aθ1Cx − θ1Axτ2Cx +Aθ1τ2Cx + 2kθ1τ2CxAx

− 2kτ2Cθ1Ax − kθ1Cxτ2Ax + kCθ1τ2Ax = 0
(31)

We obtain the solution:

U = t−1/2θ1µf(x)

R = θ1µg(x)

P = 0

(32)

where f and g are arbitrary bosonic functions of x. This solution is non-stationary. If the functions, f(x)

and g(x), are chosen to be bounded or periodic, then they remain bounded, and the velocity superfield,
U , is dampened with time, t.

(4) For subalgebra, L7 = {P1 + µQ1}, the invariants are:

σ = t, τ1 = θ1 − µx, θ2, U , R, P .

Therefore, we have the superfields:

U = U(t, τ1, θ2), R = R(t, τ1, θ2), P = P(t, τ1, θ2).

The corresponding system is given by:

− µτ1θ2Rtτ1Ut − µτ1Rτ1θ2Ut − θ2Rtτ1Ut −Rτ1θ2Ut + µθ2Rtτ1Uτ1θ2Uτ1
+ µθ2Rτ1θ2Utτ1Uτ1 + µRτ1θ2Uτ1θ2Uτ1 + µPτ1 = 0

Rt − µθ2Utτ1Rτ1 − µUτ1θ2Rτ1 − µθ2Rtτ1Uτ1 − µRτ1θ2Uτ1 = 0

Pt − µθ2Utτ1Pτ1 − µUτ1θ2Pτ1 − kµθ2Ptτ1Uτ1 − kµPτ1θ2Uτ1 = 0

(33)
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We have two solutions. The first solution is:

U = α(t) + (θ1 − µx)φ1(t) + θ2φ2(t) + (θ1 − µx)θ2β(t)

R = C4 + θ1µ`

P = C3 + θ1µC2

(34)

where C2, C3, C4 and ` are arbitrary bosonic constants, α and β are arbitrary bosonic functions of t and
φ1 and φ2 are arbitrary fermionic functions of t. This solution is non-stationary, and the velocity, U , does
not influence the other superfields,R and P .

It should be noted that both supersymmetries, Q1 and Q2, are broken by the solution (34). Indeed,
the supersymmetric transformation generated by Q1 is: x → x − η1θ1, θ1 → θ1 + η1, so that the
superfield, U(x, t, θ1, θ2), is transformed to U(x+ η1θ1, t, θ1 − η1, θ2). Therefore, if the superfield, U , is
to be preserved by the supersymmetry, Q1, we must have:

(−η1 − µη1θ1)φ1(t) = 0, and (−η1 − µη1θ1)θ2β(t) = 0

Similarly, if the superfields, R and P , are to be preserved, we must have η1µ` = 0 and η1µC2 = 0,

respectively. Therefore, the solution (34) is only preserved if η1 = 0, so the supersymmetry,Q1, is broken
by the solution (34). In a similar way, it can be shown that the supersymmetry, Q2, is also broken by
the solution (34).

The second solution of system (33) is:

U = (µtC1 + C5 + C7µt) + (θ1 − µx)(−µtC2 − C6 + C8µt) + θ2(−µtC3 − C7)

+ (θ1 − µx)θ2(µtC4 + C8)

R = (µC8C9t− µC6C10t+ C13) + (θ1 − µx)C9 + θ2(−2µC8C10t+ C14) + C10

P = (µC8C11t− kµC6C12t+ C15) + (θ1 − µx)C11 + θ2(−(k + 1)µC8C12t+ C16)

+ C12

(35)

where C2, C3, C5, C8, C10, C12, C13 and C15 are arbitrary bosonic constants and C1, C4, C6, C7, C9, C11,
C14 and C16 are arbitrary fermionic constants. The solution is non-stationary. All of the superfields are
linear in x and t. In this case, they influence each other, since the superfields have parameters in common.

(5) For subalgebra, L8 = {L1}, the invariants are:

σ = t, τ1 = x−1/2θ1, θ2, A = x−3/2U , R, C = x−2P .

Therefore, we have the superfields:

U = x3/2A(t, τ1, θ2), R(t, τ1, θ2), P = x2C(t, τ1, θ2).

The corresponding system is given by:

− θ2Rtτ1At −Rτ1θ2At +
9

4
τ1θ2Rtτ1Aθ2A−

3

2
θ2Rtτ1Aτ1θ2A+

1

2
θ2Rtτ1Aτ1θ2τ1Aτ1

+
9

4
τ1θ2Rτ1θ2AtA+

9

4
τ1Rτ1θ2Aθ2A−

3

2
θ2Rτ1θ2Atτ1A+

1

2
θ2Rτ1θ2Atτ1τ1Aτ1

− 3

2
Rτ1θ2Aτ1θ2A+

1

2
Rτ1θ2Aτ1θ2τ1Aτ1 − 2C +

1

2
τ1Cτ1 = 0

(36)
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θ2Atτ1τ1Rτ1 +Aτ1θ2τ1Rτ1 − 3θ2Rtτ1A+ θ2Rtτ1τ1Aτ1 − 3Rτ1θ2A+Rτ1θ2τ1Aτ1
− 2Rt = 0 (37)

Ct − 3τ1θ2AtC − 3τ1Aθ2C + 2θ2Atτ1C −
1

2
θ2Atτ1τ1Cτ1 + 2Aτ1θ2C −

1

2
Aτ1θ2τ1Cτ1

− 3kτ1θ2CtA− 3kτ1Cθ2A+
3

2
kCtτ1A−

1

2
kCtτ1τ1Aτ1 +

3

2
kCτ1θ2A

− 1

2
kCτ1θ2τ1Aτ1 = 0

(38)

We obtain the solution:

U = x3/2
(
µf(t) + x−1/2θ1νq(t) + θ2µh(t) + x−1/2θ1θ2µg(t)

)
,

R = C1 + θ2C2,

P = x2θ2µ

(39)

where C1 and C2 are arbitrary bosonic constants, h and q are arbitrary bosonic functions of t and f
and g are arbitrary fermionic functions of t. This solution is non-stationary. The velocity and pressure
superfields are subject to infinite growth in the variable, x. The arbitrary functions, f(t), q(t), h(t) and
g(t), do not influence the superfields,R and P .

(6) For subalgebra, L9 = {P1 + εP2}, the invariants are:

σ = x− εt, θ1, θ2, U , R, P .

Obtaining the superfields:

U(σ, θ1, θ2), R(σ, θ1, θ2), P(σ, θ1, θ2),

we are led to the reduced system:

θ1θ2RσσUσ − εθ1Rσθ2Uσ − θ2Rσθ1Uσ + εRθ1θ2Uσ − εθ1θ2RσσUθ1θ2Uσ
+ εθ1θ2Rσθ2Uσθ1Uσ + θ1Rσθ2Uθ1θ2Uσ − εθ1θ2Rσθ1Uσθ2Uσ + εθ2Rσθ1Uθ1θ2Uσ
− εθ1θ2Rθ1θ2UσσUσ + θ1Rθ1θ2Uσθ2Uσ + εθ2Rθ1θ2Uσθ1Uσ −Rθ1θ2Uθ1θ2Uσ − Pσ = 0

(40)

− εRσ + εθ1θ2UσσRσ − θ1Uσθ2Rσ − εθ2Uσθ1Rσ + Uθ1θ2Rσ + εθ1θ2RσσUσ
− θ1Rσθ2Uσ − εθ2Rσθ1Uσ +Rθ1θ2Uσ = 0

(41)

− εPσ + εθ1θ2UσσPσ − θ1Uσθ2Pσ − εθ2Uσθ1Pσ + Uθ1θ2Pσ + εkθ1θ2PσσUσ
− kθ1Pσθ2Uσ − εkθ2Pσθ1Uσ + kPθ1θ2Uσ = 0

(42)

We have two solutions. The first solution is:

U = C0 + θ1C1µ+ θ2C1ν + θ1θ2C2µν

R = C6 + θ1C7 + θ2C8 + θ1θ2C9

P = C10 + θ1C3 + θ2C4 + θ1θ2C5

(43)
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where C0, C1, C2, C5, C6, C9 and C10 are arbitrary bosonic constants and C3, C4, C7 and C8 are
arbitrary fermionic constants. This solution does not depend on the symmetry variable, σ. However, the
superfields are expressible in terms of the Grassmann variables, θ1 and θ2. The second solution is:

U = µν`(x− εt) + θ1µνq(x− εt) + θ2µνq(x− εt) + θ1θ2µj(x− εt)
R = C3 + θ1C4 + θ2C4

P = C0 + θ1C1µ+ θ2C1ν + θ1θ2C2µν

(44)

where C0, C1, C2 and C3 are arbitrary bosonic constants, C4 is an arbitrary fermionic constant,
` is an arbitrary bosonic function of its argument and q and j are arbitrary fermionic functions of their
arguments. This solution represents a travelling wave. The choice of the functions, `, q and j, in U does
not affect the superfields,R and P , which depend only on θ1 and θ2.

(7) For subalgebra, L10 = {P1 + νQ2}, the invariants are:

σ = t+ νθ2x, θ1, τ2 = θ2 − νx, U , R, P ,

and the superfields are:

U(σ, θ1, τ2), R(σ, θ1, τ2), P(σ, θ1, τ2),

which allows us to reduce to the system:

− νθ1θ2Rστ2Uσ + νθ1RσUσ − νθ1θ2Rστ2Uσ − θ2Rσθ1Uσ + νxRσθ1Uσ −Rθ1τ2Uσ
+ νθ2Rσθ1Uθ1τ2Uτ2 + νθ2Rθ1τ2Uσθ1Uτ2 − νθ2Rθ1τ2Uθ1τ2Uσ + νRθ1τ2Uθ1τ2Uτ2 − νθ2Pσ
+ νPτ2 = 0

(45)

Rσ − νθ2Uσθ1Rτ2 + νθ2Uθ1τ2Rσ − νUθ1τ2Rτ2 − νθ2Rσθ1Uτ2 + νθ2Rθ1τ2Uσ
− νRθ1τ2Uτ2 = 0

(46)

Pσ − νθ2Uσθ1Pτ2 + νθ2Uθ1τ2Pσ − νUθ1τ2Pτ2 − kνθ2Pσθ1Uτ2 + kνθ2Pθ1τ2Uσ
− kνPθ1τ2Uτ2 = 0

(47)

We obtain the solution:

U = α(t+ νθ2x) + θ1φ1(t+ νθ2x) + (θ2 − νx)φ2(t+ νθ2x) + θ1(θ2 − νx)β(t+ νθ2x)

R = C1ν + θ2C2ν

P = k1C1ν + θ2k1C2ν

(48)

where k1 and C2 are arbitrary bosonic constants, C1 is an arbitrary fermionic constant, α and β are
arbitrary bosonic function of their arguments and φ1 and φ2 are arbitrary fermionic functions of their
arguments. This solution is a travelling wave involving the Grassmann variable, θ2. The superfields, R
and P , depend linearly on θ2.
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(8) For subalgebra, L17 = {P1 + εP2µQ1}, the invariants:

σ = x− εt+ εµtθ1, τ1 = θ1 − εµt, θ2, U , R, P ,

give us superfields of the form:

U(σ, τ1, θ2), R(σ, τ1, θ2), P(σ, τ1, θ2),

which lead us to the following reduced system:

τ1θ2RσσUσ + τ1θ2µRσσUτ1 + τ1θ2µRστ1Uσ + εµtθ2RσσUσ − ετ1Rσθ2Uσ
− ετ1Rσθ2µUτ1 − µtRσθ2Uσ + εθ2µtRσσUσ − θ2µRσUσ + θ2µτ1Rστ1Uσ
+ θ2Rστ1µτ1Uσ − θ2Rστ1Uσ − θ2Rστ1µUτ1 + µtRσθ2Uσ − εµτ1Rτ1θ2Uσ + εRτ1θ2Uσ
+ εµRτ1θ2Uτ1 − τ1θ2RσσµtUσθ2Uσ − ετ1θ2RσσUτ1θ2Uσ − ετ1θ2µRστ1Uτ1θ2Uσ
− µtθ2RσσUτ1θ2Uσ − τ1θ2Rσθ2µtUσσUσ + ετ1θ2Rσθ2µ(Uσ)2 + ετ1θ2Rσθ2Uστ1Uσ
+ µtθ2Rσθ2Uστ1Uσ + ετ1Rσθ2µtUσθ2Uσ + τ1Rσθ2Uτ1θ2Uσ + εµtRσθ2Uτ1θ2Uσ
+ τ1θ2µtRσσUσθ2Uσ − ετ1θ2µRσUσθ2Uσ − ετ1θ2Rστ1Uσθ2Uσ − µtθ2Rστ1Uσθ2Uσ
− θ2µtRσσUτ1θ2Uσ + εθ2µRσUτ1θ2Uσ − εθ2µτ1Rστ1Uτ1θ2Uσ + θ2Rστ1µtUσθ2Uσ
+ εθ2Rστ1Uτ1θ2Uσ − τ1θ2µtRσθ2UσσUσ − ετ1θ2Rτ1θ2UσσUσ − ετ1θ2Rτ1θ2µUστ1Uσ
− µtθ2Rτ1θ2UσσUσ + ετ1µtRσθ2Uσθ2Uσ + τ1Rτ1θ2Uσθ2Uσ + εµtRτ1θ2Uσθ2Uσ
+ θ2µtRσθ2Uστ1Uσ − θ2Rτ1θ2µtUσσUσ + εθ2Rτ1θ2µ(Uσ)2 − εθ2Rτ1θ2µτ1Uστ1Uσ
+ εθ2Rτ1θ2Uστ1Uσ − εµtRσθ2Uτ1θ2Uσ − εµtRτ1θ2Uσθ2Uσ −Rτ1θ2Uτ1θ2Uσ − Pσ = 0

(49)

εµτ1Rσ − εRσ − εµRτ1 + ετ1θ2UσσRσ + ετ1θ2µUστ1Rσ + µtθ2UσσRσ − τ1Uσθ2Rσ

− εµtUσθ2Rσ + θ2µtUσσRσ − εθ2µUσRσ + εθ2µτ1Uστ1Rσ − εθ2Uστ1Rσ

+ εµtUσθ2Rσ + Uτ1θ2Rσ + ετ1θ2RσσUσ + ετ1θ2µRστ1Uσ + µtθ2RσσUσ − τ1Rσθ2Uσ
− εµtRσθ2Uσ + θ2µtRσσUσ − εθ2µRσUσ + εθ2µτ1Rστ1Uσ − εθ2Rστ1Uσ
+ εµtRσθ2Uσ +Rτ1θ2Uσ = 0

(50)

εµτ1Pσ − εPσ − εµPτ1 + ετ1θ2UσσPσ + ετ1θ2µUστ1Pσ + µtθ2UσσPσ − τ1Uσθ2Pσ
− εµtUσθ2Pσ + θ2µtUσσPσ − εθ2µUσPσ + εθ2µτ1Uστ1Pσ − εθ2Uστ1Pσ
+ εµtUσθ2Pσ + Uτ1θ2Pσ + εkτ1θ2PσσUσ + εkτ1θ2µPστ1Uσ + µktθ2PσσUσ
− kτ1Pσθ2Uσ − εµktPσθ2Uσ + kθ2µtPσσUσ − εkθ2µPσUσ + εkθ2µτ1Pστ1Uσ
− εkθ2Pστ1Uσ + εkµtPσθ2Uσ + kPτ1θ2Uσ = 0

(51)

We obtain the solution:

U = C0 + θ1µ+ θ2C1,

R = µC8 − µC7(x− εt) + (θ1 − εµt)C7 + θ2µC10 + θ2µC9(x− εt) + (θ1 − εµt)θ2C9,

P = C3 + θ1µ`+ θ2C5 + θ1θ2C2µ

(52)
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where C0, C3, C9, C10 and ` are arbitrary bosonic constants and C1, C2, C5, C7 and C8 are arbitrary
fermionic constants. This solution is non-stationary. The density, R, is a travelling wave. The
superfields, U and P , depend only on θ1 and θ2.

(9) For subalgebra, L30 = {L3 + εP1}, the invariants are:

t, θ1, θ2, U , B = e−εxR, Ce−εxP .

Therefore, we have the superfields:

U(t, θ1, θ2), R = eεxB(t, θ1, θ2), P = eεxC(t, θ1, θ2),

and the reduced system is:

θ1θ2εBtUt − θ2Btθ1Ut + θ1εBθ2Ut − Bθ1θ2Ut − εC = 0,

Bt + θ2Utθ1εB + Uθ1θ2εB = 0,

Ct + θ2Utθ1εC + Uθ1θ2εC = 0

(53)

We have two solutions. The first solution is:

U = C1 + θ1C2 + θ2C3 + θ1θ2C4,

R = eε(x−C4t)
[
k1 + θ1k3 + θ2k4 + θ1θ2k5

]
,

P = 0

(54)

where C1, C4, k1 and k5 are arbitrary bosonic constants and C2, C3, k3 and k4 are arbitrary fermionic
constants. This is a non-stationary solution. The density superfield, R, contains a factor of eε(x−C4t).
Depending on whether ε is −1 or one, at a fixed position, x, we have either damping or growth. The
velocity is not influenced, however. The second solution is:

U = At+B + θ1C6 + θ1θ2µC5,

R = eεx
[
θ1µ+ θ2µ+ θ1θ2µC5

]
,

P = Aeεx
[
−εµC5 + θ1µ

] (55)

where A and B are arbitrary bosonic constants and C5 and C6 are arbitrary fermionic constants. This is
a non-stationary solution. The density and pressure contain a damping (or growth) factor. The velocity
superfield is linear in time t. The velocity and pressure are linked through the constant, A. Depending
on the sign of A, the velocity, U , is either increasing or decreasing.

5. Final Remarks and Open Problems

In this paper, we discuss first the construction of a supersymmetric extension of the Euler system (1)
through a superspace and superfield formalism. This analysis includes a supersymmetric extension
of a one-dimensional ideal compressible non-viscous fluid flow. This allows us to determine a Lie
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superalgebra of infinitesimal symmetries, which generate the Lie point symmetries of the Euler system
of Equations. We observe that, in analogy with the classical Euler system, the Lie symmetry superalgebra
of the supersymmetric Euler system contains three independent dilations. Next, we discuss the
classification of its subalgebras. Through the use of a generalized version of the symmetry reduction
method, we have demonstrated how to find exact invariant solutions of the supersymmetric model.
A systematic use of the structure of the invariance supergroup of the Euler Equations allows us to
generate all symmetry variables. For certain subalgebras, the invariants have a nonstandard structure
and, therefore, do not lead to invariant solutions. This phenomenon of nonstandard invariants has also
been observed, among other places, in the analysis of the symmetries of the supersymmetric sine-Gordon
Equation [24] and of supersymmetric polytropic gas dynamics [4]. The SRM enables us to reduce,
after some transformations, the basic system of PDEs to many possible ODEs. In each case, the three
superfields can be decomposed in terms of its independent fermionic variables, θ1 and θ2. This allows
us to determine the invariant solutions of the supersymmetric Euler system component-wise. For nine
specific subalgebras involving different types of generators, a number of invariant solutions were found.
These included solutions involving several arbitrary functions of one variable. In particular, this includes
bumps, kinks and multiple wave solutions. If these arbitrary functions depend on x, the postulated form
will change as the solution evolves in time. Such a large number of arbitrary function degrees of freedom
were not found in the previous analyses by the authors of supersymmetric hydrodynamic systems (i.e.,
polytropic gas [4], integrable models (sine-Gordon, sinh-Gordon, polynomial Klein-Gordon [23,24]).
Some of the obtained solutions involved damping and growth. However, no blow-up phenomenon
(gradient catastrophe) was observed for any of our solutions.

In the future, it would be interesting to expand our analysis in several directions. One such
possibility would be to apply the above supersymmetric extension methods to the Euler system in higher
dimensions. Due to the complexity of the calculations involved, this would require the development of a
computer algebra Lie symmetry package capable of handling odd and even Grassmann variables. To the
best of our knowledge, such a package does not presently exist. Conservation laws are well-established
for the classical Euler Equations, but it has been observed that, for many hydrodynamic-type systems,
such conservation laws are broken in their corresponding supersymmetric extensions (see, e.g., [4] and
references therein). The question of which quantities are conserved by the supersymmetric model still
remains an open question for hydrodynamic-type Equations. These topics will be investigated in our
future work.
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subject of this paper. This was supported by research grants from NSERC of Canada.

Conflict of Interest

The authors declare no conflict of interest.



Symmetry 2013, 5 269

References

1. Mathieu, P. Supersymmetric extension of the Korteweg-de Vries Equation. J. Math. Phys. 1988,
29, 2499–2506.

2. Labelle, P.; Mathieu, P. A newN = 2 supersymmetric Korteweg-de Vries Equation. J. Math. Phys.
1991, 32, 923–927.

3. Manin, Y.I.; Radul, A.O. A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy.
Commun. Math. Phys. 1985, 98, 65–77.

4. Grundland, A.M.; Hariton, A.J. Supersymmetric formulation of polytropic gas dynamics and its
invariant solutions. J. Math. Phys. 2011, 52, 043501:1–043501:21.

5. Das, A.; Popowicz, Z. Supersymmetric polytropic gas dynamics. Phys. Lett. A 2002, 296, 15–26.
6. Fatyga, B.W.; Kostelecky, V.A.; Truax, D.R. Grassmann-valued fluid dynamics. J. Math. Phys.

1989, 30, 1464–1472.
7. Jackiw, R. A Particle Theorist’s Lectures on Supersymmetric Non-Abelian Fluid Mechanics and

d-branes; Springer-Verlag: New York, NY, USA, 2002.
8. Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY,

USA, 1982.
9. Rozdestvenskii, B.; Janenko, N.N. Group properties of differential equations. Systems of

Quasilinear Equations and Their Applications to Gas Dynamics; AMS, Transl. Math.
Monographs: Providence, RI, USA, 1983; Volume 55, pp. 103–116.

10. Grundland, A.M.; Lalague, L. Invariant and partially invariant solutions of the equations describing
nonstationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions.
J. Phys. A 1996, 29, 1723–1739.

11. Mises, R. Mathematical Theory of Compressible Fluid Flow; Academic Press: New York, NY,
USA, 1958.

12. Whitham, G.B. Linear and Nonlinear Waves; John Wiley and Sons: New York, NY, USA, 1974.
13. Winternitz P. Lie Groups and Solutions of Nonlinear Partial Differentia Equations. In Integrable

Systems, Quantum Groups and Quantum Field Theories; Ibort, L.A., Rodriguez, M.A., Eds.;
Kluwer: Dordrecht, The Netherlands, 1993; pp. 429–495.

14. Winternitz P. Group Theory and Exact Solutions of Partially Integrable Differential Systems.
In Partially Integrable Evolution Equations in Physics; Conte, R., Boccara, N., Eds.; Kluwer:
Amsterdam, The Netherlands, 1990; pp. 515–567.

15. Clarkson, P.A.; Winternitz, P. Symmetry Reduction and Exact Solutions of Nonlinear Partial
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