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Abstract: Recent vigorous investigations of topological order have not only discovered
new topological states of matter, but also shed new light on “already known” topological
states. One established example with topological order is the valence bond solid (VBS)
states in quantum antiferromagnets. The VBS states are disordered spin liquids with no
spontaneous symmetry breaking, but most typically manifest a topological order known
as a hidden string order on the 1D chain. Interestingly, the VBS models are based on
mathematics analogous to fuzzy geometry. We review applications of the mathematics of
fuzzy supergeometry in the construction of supersymmetric versions of VBS (SVBS) states
and give a pedagogical introduction of SVBS models and their properties. As concrete
examples, we present detailed analysis of supersymmetric versions of SU(2) and SO(5)

VBS states, i.e., UOSp(N |2) and UOSp(N |4) SVBS states, whose mathematics are closely
related to fuzzy two- and four-superspheres. The SVBS states are physically interpreted as
hole-doped VBS states with a superconducting property that interpolates various VBS states,
depending on the value of a hole-doping parameter. The parent Hamiltonians for SVBS states
are explicitly constructed, and their gapped excitations are derived within the single-mode
approximation on 1D SVBS chains. Prominent features of the SVBS chains are discussed in
detail, such as a generalized string order parameter and entanglement spectra. It is realized
that the entanglement spectra are at least doubly degenerate, regardless of the parity of bulk
(super)spins. The stability of the topological phase with supersymmetry is discussed, with
emphasis on its relation to particular edge (super)spin states.
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1. Introduction

Strongly correlated systems, such as cuprate superconductors, quantum Hall systems, and quantum
anti-ferromagnets (QAFM), have been offering arenas for unexpected emergent phenomena brought
about by strong many-body correlation. In particular, the study of QAFM bears the longest history since
Heisenberg introduced the celebrated quantum-spin model [1,2] and Bethe [3] found the first non-trivial
exact solution to the quantum many-body problem, and it is still providing us with attractive topics in
modern physics. Generally, in the presence of a many-body interaction, it is very hard to obtain exact
many-body ground-state wave functions, and even if possible, it is rare that we are able to write them
down in compact and physically meaningful forms. Fortunately, in the above mentioned three cases
(superconductivity (SC), quantum Hall effects (QHE), and QAFM), the paradigmatic ground-state wave
functions have been known and greatly contributed to our understanding of the exotic physics of these
systems: the Bardeen-Cooper-Schrieffer (BCS) state [4] for SC, the Laughlin wave function [5] for QHE
and for QAFM, the valence bond solid (VBS) states [6,7], which are the exact ground states of a certain
class of quantum-spin models called the VBS models. In the present paper, we give a pedagogical review
of the VBS models and their supersymmetric (SUSY) extension, i.e., the supersymmetric valence bond
solid (SVBS) models [8–10], with particular emphasis on their relation to fuzzy geometry. The VBS
models had been originally introduced by Affleck, Kennedy, Lieb and Tasaki (AKLT) [6,7] as a class
of “exactly solvable” models that exhibit the properties conjectured by Haldane [11,12], namely the
qualitative difference in excitation gaps and spin correlations in one-dimensional (1D) QAFM between
half-odd-integer-spin and integer-spin cases.

As with other quantum-disordered paramagnets, the VBS states have a finite excitation gap and
exponentially decaying spin correlations. However, the VBS states are not “mere” disordered
non-magnetic spin states; the spin-S VBS states necessarily have gapless modes at their edges or,
more specifically, emergent spin-S/2 edge spins [13,14]. This might remind the readers of the (chiral)
gapless modes at the edge of the QHE systems, where excitations are gapful in the bulk (see Figure 1).
Similar features are found in topological insulators, as well, [15–17] and considered as a hallmark of the
topological state of matter. Furthermore, in 1D, the VBS states are known to exhibit a non-local order,
called the hidden string order [18,19]. What is prominent in the VBS states is that they most typically
exhibit a certain kind of topological order even in 1D, while QHE needs at least 2 D to work. This
is a great advantage for the investigation of the VBS states, since in 1D, most calculations of physical
quantities can be carried out exactly by using the matrix product state (MPS) representation [20–25]
combined with the transfer-matrix method.

Since the topological character of a system is believed to be encoded in the many-body
ground-state wave functions rather than in its Hamiltonian one, the relatively simple structure of the
VBS wave function is suitable to investigate its topological properties by using such modern means as
entanglement entropy [26,27] or the entanglement spectrum [28]. For the above reasons, the VBS states
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or, more generally, the MPS as a class of model states that satisfy the so-called area-law constraint [29]
have attracted renewed attention as a “theoretical laboratory” in the recent study of topological states of
matter. In fact, the MPS representation is now regarded as a natural and efficient way to describe quantum
entangled many-body states and for a given (1D) Hamiltonian, the density matrix renormalization group
(DMRG) [30] provides a powerful tool to find the optimized variational wave function in the form of
MPS (see [31–33] for more details about the MPS method and DMRG). The key idea here is that for
generic short-range interacting systems, only a small part of the entire Hilbert space is important, and
depending on the problems in question, there are variety of ways to parametrize this physically relevant
subspace. Although the Wigner’s 3j-symbol may give a convenient description of SU(2)-invariant
MPS states [34–36], we adopt in the present paper the Schwinger-particle formalism (see, for instance,
chapters 7 and 19 of [37]) to emphasize the analogies to the lowest Landau level physics. The list of
possible applications includes a convenient description of gapped quantum ground states [29,38,39], as
well as its application to efficient simulations of dynamics [40–45] and variational calculations [46–49].
Due to their simple structure, the entanglement entropy of the VBS states comes only from the bond(s)
cut by the entanglement bipartition [50–53].

Figure 1. (Color online) Physical analogies between quantum Hall effects (QHE) and
valence bond solid (VBS) state. The bulk excitation on QHE is gapful, while the edge mode
is a gapless (chiral) mode. Meanwhile, the bulk excitation on the VBS state is gapful while
the motion of edge spins is a freely rotating gapless mode.
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In some “anisotropic” MPSs, it is known that generalized quantum phase transitions (QPT) occur
as the parameters contained in the MPSs are varied [54–57]. However, a remark is in order about the
interpretation of this kind of “quantum phase transitions” in MPS. Normally, these QPTs in MPS are
characterized by the divergence of spatial correlation lengths [57]. In generic lattice models, on the
other hand, the diverging spatial correlation does not necessarily mean the vanishing of the excitation
gap, while in the Lorentz-invariant systems, these two occur hand-in-hand. In fact, by the structure of
MPS, the block (with size L) entanglement entropy never exceeds the L-independent value, 2 lnD [58]
(with D being the dimension of the MPS matrix), while in quantum critical ground systems, whose
low-energy physics is well described by conformal field theories, the block entanglement entropy is
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proportional to lnL [58–60]. Therefore, one should take the QPTs in MPS mentioned above in a wider
sense. This kind of phase transition in the VBS-type of states in 2D have been discussed in [54,55].

Finally, we would like to mention the recent application of MPS to the classification of the gapped
topological phases in 1D. As is well-known, there is no true topological phase characterized by
long-range entanglement [61,62]. However, if certain symmetries (e.g., time reversal) are imposed,
topological phases characterized by short-range entanglement are possible. Since this kind of topological
phase is stable only in the presence of certain protecting symmetries, they are called symmetry-protected
topological (SPT) [63]. As has been mentioned above, an appropriate choice of MPS faithfully
represents any given gapped (short-range entangled) ground state. Therefore, the problem of classifying
all possible gapped topological phases reduces to classifying all possible MPSs by using group
cohomology [61,62,64]. This program has been carried out for such elementary symmetries as
time-reversal and link-parity in [65,66] (for the fermionic systems, see [67,68]) and for the Lie-group
symmetries in [69,70]. Topological quantum phase transitions among these SPT phases have been
discussed in, e.g., References [63,71,72].

In a sense, the second important keyword of this paper, fuzzy (super)geometry obtained by
replacing the ordinary (commuting) coordinates with non-commutative ones, is again closely related
to Heisenberg, who made a pioneering contribution in physics when he had built quantum mechanics
on the basis of non-commuting phase-space variables. Snyder first substantiated Heisenberg’s idea
of non-commutative coordinates in his paper “quantized space-time” [73] (see [74] for Heisenberg’s
contribution to the original idea of non-commutative geometry and related historical backgrounds.)
In fact, the VBS models have many interesting connections to QHE and fuzzy geometry. To explain
the interesting relationship among them, let us begin with an analogy between the VBS states and
the Laughlin wave functions of fractional quantum Hall effects (FQHE). Soon after the proposal of
AKLT [6,7], Arovas, Auerbach and Haldane [75] realized that the Laughlin wave function and the VBS
states (generalized to higher-spin cases) have analogous mathematical structures upon identifying the
odd integer, m, which characterizes the filling fraction, ν = 1/m, and the spin quantum number, S.
Specifically, the VBS state is transformed to the Laughlin wave function of the electron system on a
two-sphere, i.e., the Laughlin-Haldane wave function [76], by using the coherent-state representation
of the VBS states and assigning appropriate correspondences between their physical quantities. In
such a translation, the external symmetry (or SU(2)-rotation of the spatial coordinates) of the
Laughlin-Haldane wave function for QHE on a two-sphere is translated into the internal symmetry (or
spin-SU(2) symmetry) of the VBS states for the integer-spin chains. This analogy can be generalized,
and one can readily see that the Laughlin-Haldane wave functions with some external symmetry are
generally transformed to give the VBS states with the identical internal symmetry.

In the past decade, there have been remarkable developments in higher-dimensional generalization
of QHE (see [77,78] for reviews). So far, the set-up [5,76] of 2D QHE has been generalized to
higher-dimensional manifolds, such as 4D [79], 8D [80], S2n [81] and CPN [82,83]. There also
exist q-deformed QHE [84] and QHE on non-compact manifolds [85–88]. As is well-known, QHE
is a physical realization of the non-commutative geometry [89], and non-commutative geometry brings
exotic properties to QHE [90–93]. Therefore, for each higher-dimensional QHE, one can think of the
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underlying higher-dimensional fuzzy geometry, such as fuzzy two-sphere [94–96], four-sphere [97], 2n
sphere [98–103], CPN [104–106], q-deformed sphere [107] and fuzzy hyperboloids [108–111].

On the other hand, we have already seen that the Bloch spin-coherent state enables us to relate the
Laughlin-Haldane wave functions to the VBS states. In correspondence with such QHE, a variety
of VBS models have been constructed with the symmetries, such as SO(5), SO(2n + 1) [112–114],
SU(N + 1) [115–118], Sp(N) [119,120] and q-deformed SU(2) [22,23,121–123] [see Figure 2]. The
VBS states demonstrate manifest relevance to fuzzy geometry also, by adopting the Schwinger operator
formalism (see Section 2.1).

Figure 2. Close relations among fuzzy geometry, QHE and VBS. They are “transformed” to
each other with appropriate translations.
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One of the main goals of this review is to illustrate their relations, which have been less emphasized
in previous literature. As an explicit demonstration of the correspondence, we discuss a supersymmetric
(SUSY) generalization of the VBS models. Since fuzzy super-spheres have already been explored
in [124–128] and the SUSY QHE in [129–132] (a variety of super Landau models with super-unitary
symmetries have been constructed in [133–139] and fuzzy supergeometries have also been investigated
in [110,140–142]), we can develop a SUSY version of the VBS models (SVBS models) based on the
mutual relations [8–10]. For the inclusion of fermionic degrees of freedom, the SVBS states exhibit
particular features not observed in the VBS states with higher dimensional bosonic groups. For instance,
while the VBS states only exhibit a property of quantum magnets, the SVBS states accommodate two
distinct sectors, spin sector and charge sector, due to the inclusion of fermionic degrees of freedom.
Physically, the SVBS states can be interpreted as hole-doped VBS states with superconducting property.
Mathematically, the SVBS states are regarded as a type of “superfield” in terminology of SUSY field
theory. As the superfield unifies various fields as its components, the SVBS states realize a variety of
ordinary VBS states as the coefficients of the expansion with respect to Grassmann quantities.

By investigating topological features of the SVBS states, we address how SUSY affects the stability
of topological phase or entanglement spectrum. As concrete examples, we discuss topological feature of
the SVBS states with UOSp(1|2) and UOSp(2|2) symmetries, which we call type-I and type-II SVBS
states, respectively. To perform detailed analyses of the SVBS states on a 1D chain, we develop a SUSY
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version of the MPS formalism (SMPS) [21,24,25]. MPS formalism is now regarded as an appropriate
formalism to treat gapped 1D quantum systems [29,38]. Since the MPS formalism naturally incorporates
edge states, MPS provides a powerful formalism to discuss relations between topological order and edge
state. Taking this advantage, we can obtain general lessons for SUSY effects in topological phases.
Specifically, the robustness of the topological phase in the presence of SUSY is discussed in light of the
modern symmetry-protected topological order argument, with emphasis on the edge superspin picture.
We also generalize the lower SUSY analyses to the case of higher SUSY: fuzzy four-superspheres and
UOSp(1|4) SVBS states.

The following is the organization of the present paper. In Section 2, we give a brief introduction to
the original SU(2) VBS states and explain its relations to fuzzy two-sphere and the 2D QHE through
the Schwinger-operator representation and the Hopf map. In Section 3, the SUSY extensions of fuzzy
two-sphere are presented in detail. The corresponding SVBS states and their basic properties are
reviewed in Section 4. In Section 5, the SMPS formalism is introduced for the analysis of SVBS
states. Gapped excitations of SVBS states are derived with use of SMPS formalism within single
mode approximation. We investigate topological properties of the SVBS states in Section 6, where
the entanglement spectrum and entanglement entropy are derived (unpublished results for UOSp(2|2)
SVBS chain are also included here). The stability of topological phases in the presence of SUSY is
discussed, too. In Section 7, we extend the discussions to the case of fuzzy four-superspheres and the
UOSp(1|4) SVBS states. Section 8 is devoted to summary and discussions. In Appendix A, we provide
mathematical supplements for the super-Lie group, UOSp(N |2K). Fuzzy four-superspheres with an
arbitrary number of SUSY are described in Appendix B.

2. Fuzzy Geometry and Valence Bond Solid States

In this section, we give a quick introduction to fuzzy two-spheres and the (bosonic) VBS states. Their
mutual relations will be discussed, too.

The original idea of quantization of two-sphere was first introduced by Berezin in the 70s [94]. In
the beginning of the 80s, Hoppe [95] explored the algebraic structure and field theories on a quantized
sphere, and subsequently in the early 90s, Madore [96] further examined their structures, coining the
name “fuzzy sphere”. Unlike the ordinary sphere, the fuzzy sphere has a minimum scale of area, while
respecting the SU(2) continuum (rotational) symmetry as the ordinary two-sphere. This is a remarkable
property of the fuzzy sphere, when we consider the field theories on it. In fact, in the other regularized
field theories, such as lattice field theories, the extrinsic cut-off cures the UV divergence at the cost of
continuous symmetries, and the resulting theories only respect the discrete space-group symmetry of the
lattice on which they are defined. On the other hand, field theories defined on the fuzzy manifolds contain
an intrinsic “cut-off” coming from the minimum area of the fuzzy sphere, and the non-commutative field
theories constructed on it were expected to have the innate property that might soften the UV divergence
to be appropriately renormalized in conventional field theories.

In the middle of 90s, Grosse et al. [97] generalized the notion of the fuzzy two-sphere to construct
four-dimensional fuzzy spheres and supersymmetric fuzzy spheres, i.e., fuzzy superspheres [124,125].
In the late 90s, fuzzy geometry was rediscovered in the context of the “second revolution of string
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theory” and attracted a lot of attention. Researchers began to recognize that the fuzzy geometry is closely
related to the geometry that the string theory attempts to describe: the geometry of multiple D-branes is
naturally described by fuzzy geometry (see [143–145] as reviews), and fuzzy manifolds are also known
to arise as classical solutions of Matrix theory (see, e.g., References [98,146]). Similarly, field theories on
fuzzy superspheres provide a set-up for SUSY field theories with UV regularization [124,147,148], and
the fuzzy superspheres were also found to arise as classical solutions of supermatrix models [149,150].
For details and applications of the fuzzy sphere, interested readers may consult References [151–154].
Non-commutative geometry and fuzzy physics also found their applications in gravity [155–157] and in
condensed matter physics [90–93].

2.1. Fuzzy Two-Spheres and the Lowest Landau Level Physics

The fuzzy two-sphere [94–96] is one of the simplest curved fuzzy manifolds (The fuzzy spheres also
play a crucial role in studies of string theory; see [158–160] for reviews). The coordinates of the fuzzy
two-sphere, Xi (i = 1, 2, 3), are regarded as the operators that are constituted of the SU(2) generators

Xi =
2R

d
Ji (1)

Here, R denotes the radius of the sphere, and d is the dimension of the SU(2) irreducible representation:

d = 2j + 1 (2)

with the SU(2) Casimir index j (j = 0, 1
2
, 1, 3

2
, 2, · · · ), and Ji (i = 1, 2, 3) are the SU(2) matrices of the

corresponding representation that satisfy:

[Ji, Jj] = iϵijkJk (3)

and
JiJi = j(j + 1)1d (4)

where 1d denotes d× d unit matrix. The “coordinates”, Xi, defined in Equation (1), satisfy:

[Xi, Xj] = i
2R

d
ϵijkXk, XiXi = R2

(
1− 1

d2

)
1d (5)

Since J3 takes the eigenvalues, j, j − 1, j − 2, · · · ,−j, the eigenvalues of X3 are given by:

X3 =

{
R

(
1− 1

d

)
, R

(
1− 3

d

)
, R

(
1− 5

d

)
, · · · , R

(
−1 +

1

d

)}
(6)

Each “latitude” ofX3 corresponds to a patch of width, 2R/d, i.e., the minimum state, on the fuzzy sphere
( here, two different viewpoints are possible; one assumes, as is done here, R to be fixed and, in the
large-d (or large-j) limit, the width of the patch, 2R/d, becomes zero to recover the continuous space).
The other fixes the width, 2R/d, and the radius of the fuzzy two-sphere, R ∼ d, diverges in the large-d
limit. The former is reminiscent of the scaling limit of lattice field theories upon identifying R with the
physical mass. If the limit of large SU(2) representation, d → ∞ (with fixed radius R), is taken, the
patches become invisible, and the discrete nature of the fuzzy sphere is smeared off. In fact, one readily
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sees [Xi, Xj] = 0 and XiXi|d→∞ = R2, and the discrete spectrum (6) of X3 becomes continuum raging
between −R and R. In this sense, the fuzzy sphere reduces to the ordinary (commutative) sphere with
radius, R, in the limit, d→ ∞.

As a realization of the fuzzy two-sphere, a convenient way is to utilize the Schwinger operator
formalism [153,161] and introduce the following operator:

Φ = (a, b)t (7)

whose components satisfy the following ordinary bosonic commutation relations:

[a, a†] = [b, b†] = 1, [a, b] = [a, b†] = 0 (8)

By sandwiching the Pauli matrices with the Schwinger operators, Φ, one may simply represent the
coordinates Xi of the fuzzy two-sphere as:

Xi =
R

d
Φ†σiΦ (9)

where σi (i = 1, 2, 3) are the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(10)

This is the well-known construction of the SU(2) angular momentum operators introduced by
Schwinger [162]. In fact, one can easily check that Ji = (1/2)Φ†σiΦ satisfies the standard SU(2)

commutation relations (3) and that the Schwinger-operator representation (9) coincides with the original
definition (1). The square of the radius is given by:

XiXi =

(
R

d

)2

n(n+ 2)1n+1 (11)

where n denotes the eigenvalues of the number operator for the Schwinger bosons, n̂ = Φ†Φ = a†a+b†b.
Comparing this with Equation (5), one sees j = n/2 and:

d(n) = n+ 1 (12)

Since we utilize the Schwinger operator, the irreducible representation is given by the fully symmetric
representation of SU(2):

|n1, n2⟩ =
1√

n1! n2!
a†

n1
b†

n2 |vac⟩ (13)

where n1 and n2 are non-negative integers that satisfy n1 + n2 = n. Physically, |n1, n2⟩ stand for
a finite number of basis states constituting fuzzy two-spheres, which are the eigenstates of X3 with
the eigenvalues:

X3 =
R

d
(n1 − n2) =

R

d
(n− 2k) (14)

where k ≡ n2 = 0, 1, 2, · · · , n. The dimension of the space spanned by the basis states (13) is given by
d(n). From the expression, (14), it is not obvious that the definition (9) respects the SU(2) rotational
symmetry of the fuzzy two-sphere. However, this is an artifact of the particular choice of theX3-diagonal
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basis states (13). Any other complete sets of the basis states of the fuzzy two-sphere can be obtained
by applying SU(2) transformations to the basis set (13). In this sense, the whole Hilbert space of fuzzy
two-sphere is “symmetric” with respect to the SU(2) transformation, and hence, the fuzzy two-sphere is
SU(2) (rotationally) symmetric, like the ordinary (continuum) sphere.

Another description of fuzzy two-sphere is to utilize the coherent state (the coherent state here is
usually referred to as the Bloch spin coherent state in the literature.) formalism, which will be useful
in understanding the connection with the VBS states. The coherent state, ϕ, or, more precisely, the
Hopf spinor, that is labeled by a point on the two-sphere, (x1, x2, x3) (xixi = 1), is defined as a
two-component complex vector satisfying (the usual coherent “state” |ϕ⟩ (for S = 1/2), defined as
|ϕ⟩ ≡ Φ†·ϕ|0⟩, satisfies

(2xi·Ji)|ϕ⟩ = |ϕ⟩

Expressing the above in the basis a†|0⟩ and b†|0⟩, we obtain Equation (15)).

(xi · σi)ϕ({xi}) = ϕ({xi}) (15)

In general, the (normalized) coherent state is represented in terms of the Euler angles as:

ϕ({xi}) =

(
u

v

)
=

1√
2(1 + x3)

(
1 + x3

x1 + ix2

)
e−

i
2
χ =

(
cos θ

2

sin θ
2
eiφ

)
e−

i
2
χ (16)

where (x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ) (0 ≤ φ < 2π, 0 ≤ θ ≤ π, 0 ≤ χ < 2π) and e−
i
2
χ

denotes an arbitrary U(1) phase factor. The relation between the point, (x1, x2, x3), on a two-sphere
and the two-component Hopf spinor (u, v) is given by the so-called first Hopf map (for construction of
higher dimensional Hopf maps, see Reference [77], for instance):

xi = ϕ†σiϕ (17)

which maps the three-sphere, S3, onto the two-sphere, S2:

S3 S1

−→ S2 (18)

In fact, a space of normalized two-component complex spinors, ϕ = (u, v)t, subject to ϕ†ϕ = 1 is
isomorphic to S3, and Equation (17) gives the mapping onto S2:

xixi = (ϕ†ϕ)2 = 1 (19)

The Hopf spinor, ϕ, is regarded as the classical counterpart of the Schwinger operator, Φ

[Equation (7)] that satisfies:

Xi · Φ†σi =
R

d
(n+ 2)Φ† (20)

If we note that R(n + 2)/d → R, Xi → Rxi in the limit, d → ∞, the resemblance between (15) and
(20) is clear. Multiplying (R/d)Φ from the right to both sides of Equation (20) and using Φ†Φ = n,
we reproduce Equation (11). By replacing the Schwinger operator with the Hopf spinor, one sees that
the Schwinger operator construction (9) of fuzzy coordinates is an operator-generalization (xi 7→ Xi,
ϕ 7→ Φ) of the Hopf map (17) [163].
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The fully symmetric, SU(2), representation in terms of the Hopf spinor (u, v) is obtained if the
Schwinger operator in (13) is replaced with the Hopf spinor (a†, b†) → (u, v):

un1,n2 =
1√

n1! n2!
un1vn2

J+ = u
∂

∂v
, J− = v

∂

∂u
, Jz =

1

2

(
u
∂

∂u
− v

∂

∂v

) (21)

with n1 + n2 = n, n1, n2 ≥ 0.

Figure 3. (Color online) One-body-level relationship among fuzzy two-sphere (upper left),
Haldane sphere (upper right) and local spin states of the VBS state (lower middle). The
fuzzy two-sphere consists of a finite number of patches, i.e., the basis states, with width,
2R/(n + 1). The Haldane sphere is a two-sphere with a Dirac monopole at its center. The
S = n/2 is the monopole charge quantized as a half-integer or an integer by the Dirac
quantization condition. In the local spin state of the VBS state (lower center), each blob
denotes spin-1/2 degrees of freedom, and n blobs amount to S = n/2 local spin by a large
Hund coupling on each site.
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So far, (u, v) are just the two auxiliary variables needed to realize the fuzzy two-sphere. However, if
we regard them as the physical coordinates of the usual two-dimensional sphere [via the Hopf map (18)],
we may think that un1,n2 represents the wave functions of a certain kind of quantum-mechanical systems
in two dimensions. In fact, the wave functions, un1,n2 (21), coincide with those of the lowest eigenstates
of the Landau Hamiltonian on a two-sphere (with radius R) in the Dirac monopole background, (i.e., the
so-called Haldane’s sphere [76]):

H =
1

2MR2
ΛiΛi (22)

where Λi (i = 1, 2, 3) are the covariant angular momenta:

Λi = −iϵijkxj(∂k + iAk) (23)

in the presence of the gauge field, Ai, generated by the Dirac monopole at the origin:

Ai =
n

2
ϵij3

xj
R(R + x3)

(24)
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In the fuzzy geometry side, the monopole charge, n/2, corresponds to the quantized radius of the fuzzy
two-sphere (11) (see also Figure 3). Thus, the lowest Landau level eigenfunctions (on a two-sphere)
can be “derived” from the fuzzy two-sphere by switching from the Schwinger operator formalism to the
coherent state formalism (or the Weyl representation). This is the key observation of correspondence
between fuzzy geometry and the lowest Landau level physics [77].

2.2. Valence Bond Solid States

In order to translate the above features to those of QAFM, we first express the spin, 1/2, state in terms
of the Schwinger bosons:

|↑⟩ = a†|vac⟩, |↓⟩ = b†|vac⟩ (25)

The fully symmetric representation (13) constructed out of n Schwinger operators automatically realizes
the local spin defined on each site with the spin magnitude:

S =

n︷ ︸︸ ︷
(
1

2
⊗ 1

2
⊗ · · · ⊗ 1

2
)

fully symm.
=
n

2
(26)

Physically, this bosonic construction realizes the ferromagnetic (Hund) coupling among n spin-1/2s to
yield the maximal spin, S = n/2, at each site. We have already seen that the spin wave function, written
in terms of the Hopf spinor (u, v), coincides with those of the non-interacting electrons moving on a
two-sphere in the presence of the monopole magnetic field.

Now, we demonstrate that a similar analogy exists even when we switch on strong interactions.
Specifically, the exact ground-state wave functions of a class of interacting spin models, called
the valence-bond solid (VBS) model [6,7,75], closely resemble the Laughlin wave functions on a
two-sphere. The ground states of the VBS models (dubbed the VBS states) on a lattice with coordination
number, z (see Figure 4), are constructed as follows. As the first step of the construction, we prepare
n (= z) local S = 1/2 spins (auxiliary spins) on each vertex (site) of the lattice. Next, we connect
every pair of two spin-1/2s on the nearest neighbor sites by spin-singlet bonds (since the spin-singlet
state of the two spin-1/2s maximizes the entanglement entropy, the pair is sometimes called maximally
entangled in modern literature.) called the valence bonds (VB) (see Figure 4). Last, we project the entire
2n-dimensional Hilbert space of n spin-1/2s onto the subspace with the desired value of the (physical)
spin S (S ≤ n/2) on each site to obtain the spin-S many-body singlet state. Depending on which
irreducible representation we use to realize the physical spin, we obtain different states even for the
same lattice structure (some examples may be found in, e.g., Reference [114]). This kind of construction
(valene-bond construction) applies to any lattice in any dimensions (see Figure 4 for typical examples
in 1D and 2D), and the state obtained thereby is called the VBS state or, in modern terminology, the
projected entangled-pair state (PEPS) [164,165].

It is also possible to construct the VBS states for other symmetry groups (e.g., SU(N) [115,116] and
SO(N) [112,113]), with due extension of the notion of the singlet valence bond. In these examples,
the VBS states thus constructed are constrained by specific symmetry groups, and normally, they do
not have any tunable parameter (however, the parent Hamiltonians (i.e., the VBS models) may have
tunable parameters. For instance, the parent Hamiltonian of the spin-2 VBS state (in 1D) allows one
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free parameter to tune even after we fix the overall energy scale.) However, if we use the matrix-product
representation [21] in 1D or, in general, tensor-product representation (or, equivalently, the vertex-state
representation [54,55]) in higher dimensions to express the VBS states and consider their “anisotropic”
extensions of the tensors, it is possible to obtain parameter-dependent states. These generalized VBS
states are known to have interesting properties; see, for instance, References [21,23,56] for 1D and
References [54,55] for 2D honeycomb and square lattices.

Figure 4. (Color online) VBS states on 1D and 2D lattices. Filled circles denote auxiliary
spin-1/2 objects, which are finally symmetrized to form S =Mz physical spins at each site.
Solid lines stand for singlet valence bonds between the spin-1/2s.

z=2   M=1 z=2   M=2

z=4   M=1 z=3   M=1

S=1 S=2

S=2 S=3/2

Now, let us come back to the SU(2) VBS states. If we represent the up and down degrees of freedom
of auxiliary spin-1/2 by the Schwinger bosons, a† and b† (see Equation (25)), the singlet valence bond
on the bond ⟨ij⟩ reads:

(a†ib
†
j − b†ia

†
j) (27)

Physically, the spin singlet bond denotes the state with no specific spin polarization made of two
spin 1/2 states, and hence, the valence bond represents a non-magnetic spin pairing between the two
neighboring sites.

Of course, we can promote the power of the singlet bond from one to an arbitrary integer, M :

(a†ib
†
j − b†ia

†
j)

M (28)

to represent M valence bonds between the sites, i and j. Thus, one sees that the original
valence-bond construction [6,7] of the VBS states is equivalent to the following representation in terms
of the Schwinger bosons [75]:

|VBS⟩ =
∏

⟨ij⟩∈N.N.

(a†ib
†
j − b†ia

†
j)

M |vac⟩ (29)

where ⟨ij⟩ ∈ N.N. implies that the product is taken over all nearest-neighbor bonds, ⟨ij⟩, and |vac⟩
denotes the vacuum of the Schwinger bosons. From [Sa

i +S
a
j , a

†
ib

†
j−b

†
ia

†
j] = 0 (a = x, y, z), it is obvious

that the state Equation (29) is spin-singlet. As z bonds emanate from each site of the lattice (for instance,
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z = 2 is for 1D chain and z = 2D for D-dimensional hypercubic lattice), we have Mz Schwinger
bosons per site in the VBS state (29):

a†iai + b†ibi = zM (30)

and, hence, the local spin quantum number, Si =
1
2
(a†iai + b†ibi), is given by:

Si =
1

2
zM (31)

In particular, for the 1D (i.e., z = 2) M = 1 VBS state, we have:

Si = 1 (32)

and the local Hilbert space is spanned by the following three basis states:

|1⟩ = 1√
2
a†i

2|vac⟩, |0⟩ = a†ib
†
i |vac⟩, |−1⟩ = 1√

2
b†i

2|vac⟩ (33)

We were a bit sloppy in writing down Equation (29). When considering a finite open chain (with
length L), we should be careful in dealing with the edges of the system, while, for the VBS states on
a circle, the expression (29) is correct without any modification. In fact, in (29), the number of the
Schwinger bosons at sites 1 and L isM (half of that of the other sites), and we have to add the extra edge
degrees of freedom represented by the M -th order homogeneous polynomials in a† and b† to recover the
correct spin-Ms at the edges. The edge polynomials for M = 1 are given by:

f↑(a
†, b†) = a†, f↓(a

†, b†) = b† (34)

This representation naturally incorporates the physical emergent edge spins [13,14] localized around the
two edges. For general M , the precise form of the VBS states on an open chain reads as

|VBS⟩ = (a†1)
p(b†1)

M−p

L−1∏
j=1

(a†jb
†
j+1 − b†ja

†
j+1)

M(a†L)
M−q(b†L)

q|vac⟩ (0 ≤ p, q ≤M) (35)

Since the VBS Hamiltonian is defined as the projection operator for the Hilbert space of a pair of
neighboring spins (see Section 4.3 for detail), the state of the form (29) is the ground state regardless
of the edge polynomials. Therefore, there appear (M + 1) × (M + 1) degenerate ground states for
the spin-S(= M ) VBS state on a finite open chain (see Figure 5) [7]. From similar considerations,
it is obvious that the higher-dimensional VBS ground states (e.g., those in Figure 4) have degeneracy
exponentially large in the size of the boundary. In the following, unless otherwise stated, we implicitly
assume that the VBS state is defined in 1D and will focus on the spin-1 case.

Let us look at some key features of the VBS states in more detail. Classically, AFM on a bipartite
lattice assumes the Néel-ordered state, where any pair of neighboring spins point the opposite directions.
To be specific, in the Néel state of (classical) spin-1 AFM, the z-component Sz of local spins at the site,
i, takes either +1 or −1, depending on to which sublattice the site belongs. (without loss of generality,
we may assume that ordered spins are parallel to the z-axis). The spin configuration described by the
VBS state is totally different from that of the classical Néel state described above. First of all, we note
that the VBS state is SU(2)-invariant (being a product of singlet bonds between pairs of adjacent sites;
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see Equation (29) and Figure 4) and is non-degenerate (this is true for a periodic chain and the bulk
in a infinite chain; on a finite open chain, the ground state may not be spin-singlet and, hence, may
show degeneracy corresponding to the edge states), while the classical ground state, i.e., the Néel state,
is infinitely degenerate with respect to the SU(2) rotational symmetry. This implies that though the
magnitude of the local spin is Si = 1, its expectation value is zero, ⟨Si⟩VBS = 0, in the bulk (on a finite
open chain, ⟨Si⟩VBS may take a non-zero finite value near the two boundaries and decays exponentially
to zero toward the center of the system; in this sense, magnetism revives near the boundaries, and this is
the manifestation of the emergent edge states), and the system is non-magnetic. In this sense, the VBS
state is purely quantum-mechanical and does not have any classical counterpart.

Figure 5. (Color online) For the S = 1 VBS state on a finite open chain, there exist spin-1/2
degrees of freedom at each edge. By construction, the VBS state is the ground state of the
VBS Hamiltonian, regardless of the spin states at the edges.

Edge spin Edge spin

For better understanding of the VBS state, let us expand the spin-1 VBS state in the Sz-basis:

|VBS⟩ =
∏
i

(a†ib
†
i+1 − b†ia

†
i+1)|vac⟩

= | · · · 000 · · · ⟩+ | · · · 00− · · · ⟩+ | · · · 0−+ · · · ⟩+ | · · · 0− 0 · · · ⟩
+ | · · · 0 + 0 · · · ⟩+ | · · · −+− · · · ⟩+ | · · · − 0 + · · · ⟩+ | · · · −+0 · · · ⟩
+ | · · ·+ 00 · · · ⟩+ | · · ·+ 0− · · · ⟩+ | · · ·+−+ · · · ⟩+ | · · ·+−0 · · · ⟩
+ | · · · 0 + 0 · · · ⟩+ | · · · 0 +− · · · ⟩+ | · · · 00 + · · · ⟩+ | · · · 000 · · · ⟩ (36)

where the coefficient in front of each term on the right-hand side is omitted for simplicity. What is
remarkable with the above VBS state is that all the states appearing on the right-hand side have a very
special feature; the states, Sz = +1 and −1, appear in an alternating manner with intervening Sz = 0

states. Namely, the ground state exhibits an analogue of the classical Néel order, called the string
order [18,19], albeit “diluted” by randomly inserted zeros (see Section 6.1 for further detail). Unlike
in the case of the classical Néel order, by the SU(2) symmetry of the state, the existence of the string
order does not rely on the particular choice of the quantization axis (z-axis, here).

For the sake of later discussions, we introduce here a concise representation of the VBS state and point
out remarkable similarity [75] to the Laughlin-Haldane wave function [76] for FQHE on a two-sphere.
First, we note that by using the SU(2) ≃ USp(2) invariant matrix given by the 2 × 2 antisymmetric
matrix (see Appendix A):

R2 = iσ2 =

(
0 1

−1 0

)
(37)
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the VBS states (29) on generic lattices can be rewritten compactly as:

|VBS⟩ =
∏

⟨ij⟩∈N.N.

(Φ†
iR2Φ

∗
j)

M |vac⟩ (38)

where Φi denotes the Schwinger operator on the site i:

Φ∗
i ≡ (a†i , b

†
i )

t (39)

Then, we rewrite the VBS state (38) into the form of the wave function on a two-sphere. Specifically,
by replacing the Schwinger operator with the Hopf spinor:

Φ∗ = (a†, b†)t → ϕ = (u, v)t (40)

we obtain the coherent-state (or Weyl) representation of the VBS state (precisely, if we use the
coherent-state basis

|Ωi⟩ =
1√

(Mz)!
(uia

†
i + vib

†
i )

Mz|vac⟩

for the local spin-Mz/2 states and expand the VBS state in these basis, we obtain the “wave function”
⟨{Ωj}|VBS⟩ ∝ ΦVBS({u∗i , v∗i })):

ΦVBS({ui, vi}) =
∏

⟨ij⟩∈N.N.

(ϕt
i R2 ϕj)

M =
∏

⟨ij⟩∈N.N.

(uivj − viuj)
M (41)

Now, the formal similarity to the Laughlin-Haldane wave function of QHE:

ΦLH =
∏
i<j

(ϕt
i R2 ϕj)

m =
∏
i<j

(uivj − viuj)
m (42)

on a two-sphere [75] is clear. By the stereographic projection from a two-sphere to a complex plane:

ϕ =

(
u

v

)
−→ z = v/u (43)

ΦLH (42) is, in the thermodynamic limit, reduced to the celebrated Laughlin wave function:

ΦL =
∏
i<j

(zi − zj)
me−

∑
i ziz

∗
i (44)

Though the physical interpretation of the quantities appearing in these wave functions are different
(Table 1), mathematical similarities between the VBS model and QHE may be manifest from the above
constructions. Similarities between topological properties of VBS and QHE have also been discussed in
References [166,167].

Table 1. Correspondences between physical quantities of many-body wavefunctions of QHE
and quantum anti-ferromagnets (QAFM).

QHE QAFM

Many-body state Laughlin-Haldane wave function VBS state
ΦLH =

∏N
i<j(uivj − viuj)

m |Φ⟩ =
∏z

⟨ij⟩(a
†
ib

†
j − b†ia

†
j)

M |vac⟩
Power m: inverse of filling factor M : number of VBs between neighboring sites
Charge S = mN/2: monopole charge S =Mz/2: local spin magnitude
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3. Fuzzy Two-Supersphere

Next, we proceed to the SUSY version of fuzzy two-sphere (fuzzy superspheres are also realized as
a classical solution of supermatrix models [149,150].) and generalized VBS states. We mostly focus on
the cases of the SUSY numbers, N = 1 and 2.

3.1. N = 1

First, we introduce N = 1 SUSY algebra, UOSp(1|2) [168–170], which contains the SU(2) algebra
as its maximal bosonic subalgebra. The UOSp(1|2) algebra consists of the five generators, three of
which are SU(2) (bosonic) generators, Li (i = 1, 2, 3), and the remaining two are SU(2) fermionic
spinors, Lα (α = θ1, θ2), which amount to satisfy:

[Li, Lj] = iϵijkLk, [Li, Lα] =
1

2
(σi)βαLβ, {Lα, Lβ} =

1

2
(iσ2σi)αβLi (45)

The UOSp(1|2) Casimir is constructed as:

K = LiLi + ϵαβLαLβ (46)

and its eigenvalues are given by j(j + 1/2): j is referred to as the superspin taking the non-negative
integer or half-integer values, j = 0, 1, 1

2
, 1, 3

2
, · · · . The UOSp(1|2) irreducible representation with the

superspin index, j, consists of the SU(2) j and j − 1/2 spin representations, and hence, the dimension
of the UOSp(1|2) representation of superspin j is given by:

(2j + 1) + (2j) = 4j + 1 (47)

The fundamental representation (j = 1/2) matrices of the UOSp(1|2) generators are expressed by the
following 3 × 3 matrices:

li =
1

2

(
σi 0

0 0

)
, lα =

1

2

(
0 τα

−(iσ2τα) 0

)
(48)

where τα (α = 1, 2) are:

τ1 =

(
1

0

)
, τ2 =

(
0

1

)
(49)

Equation (48) may be regarded as a SUSY extension of the Pauli matrices. They are “Hermitian” in
the sense:

l‡i = li, l‡α = ϵαβlβ (50)

where ‡ signifies the super-adjoint defined by:(
A B

C D

)‡

≡

(
A† C†

−B† D†

)
(51)

Similar to the case of fuzzy sphere (9), the coordinates of fuzzy two-superspheres [124,125] are
constructed by the graded version of the Schwinger operator formalism [127–129]. The graded
Schwinger operator consists of two bosonic components, a and b, and one fermion component, f :

Ψ = (a, b, f)t (52)
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with satisfying:

[a, a†] = [b, b†] = {f, f †} = 1

[a, b] = [a, f ] = [b, f ] = [a, b†] = [a, f †] = [b, f †] = 0 (53)

With the use of Ψ, the coordinates of a fuzzy two-supersphere, S2|2
f (two on the left to | denotes the

bosonic degrees of freedom, while two on the right to | denotes the fermionic degrees of freedom), are
constructed as:

Xi =
2R

d
Ψ†liΨ, Θα =

2R

d
Ψ†lαΨ (54)

which satisfy:

[Xi, Xj] = i
2R

d
ϵijkXk, [Xi,Θα] =

R

d
(σi)βαΘβ, {Θα,Θβ} =

R

d
(iσ2σi)αβXi (55)

where d = n + 1 with n = Ψ†Ψ = nB + nF = a†a + b†b + f †f. The square of the radius of fuzzy
supersphere is given by the UOSp(1|2) Casimir:

XiXi + ϵαβΘαΘβ =

(
R

d

)2

n(n+ 1)12n+1 (56)

Notice that the zero-point energy in (56) reflects the difference between the bosonic and fermionic
degrees of freedom. The basis states on fuzzy supersphere consist of the graded fully symmetric
representation specified by the superspin, j = n/2:

|n1, n2⟩ =
1√

n1! n2!
a†

n1
b†

n2 |vac⟩ (57a)

|m1,m2) =
1√

m1!m2!
a†

m1
b†

m2
f †|vac⟩ (57b)

where n1, n2,m1 and m2 are non-negative integers that satisfy n1+n2 = m1+m2+1 = n. |m1,m2) is
the fermionic counterpart of |n1, n2⟩, and thus, |n1, n2⟩ and |m1,m2) exhibit N = 1 SUSY. The bosonic
and fermionic basis states are the eigenstates of the fermion parity, (−1)nF , with the eigenvalues, +1 and
−1, respectively. Their degrees of freedom are also respectively given by:

dB = d(n) = n+ 1, dF = d(n− 1) = n (58)

and the total degrees of freedom is:

dT = dB + dF = 2n+ 1 (59)

The eigenvalues of X3 for (57) read as:

X3 =
R

d
(n− k) (60)

where k = 0, 1, 2, · · · , 2n. Even k (k = 2n2) correspond to the bosonic states (57a), while odd k

(k = 2m2 + 1) to the the fermionic states (57b). Compare the X3 eigenvalues of fuzzy supersphere (60)
with those of the fuzzy (bosonic) sphere (14): the degrees of freedom of fuzzy supersphere for even k
are accounted for by those of a fuzzy sphere with radius, n, while those for odd k are by a fuzzy sphere
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with radius n − 1. In this sense, the fuzzy two-supersphere, S2|2
f (n), of radius, n, can be regarded as a

“compound” of two fuzzy spheres with different radii, R
d
n and R

d
(n− 1) [Figure 6]:

S
2|2
f (n) ≃ S2

f (n)⊕ S2
f (n− 1) (61)

The first S2
f (n) accounts for the bosonic degrees of freedom (57a), while the second S2

f (n − 1) does so
for the fermionic degrees of freedom (57b).

Figure 6. (Color online) N = 1 fuzzy supersphere is a “compound” of two fuzzy
two-spheres with radii, R

d
n and R

d
(n− 1). This figure corresponds to n = 2.

Similar to the first Hopf map, we can construct a graded version of the first Hopf map [171,172]:

ψ → xi = 2ψ‡Liψ, θα = 2ψ‡Lαψ (62)

where li and lα are the UOSp(1|2) matrices of fundamental representation (48) and ψ denotes a
normalized UOSp(1|2) superspinor:

ψ =

uv
η

 (63)

with:
ψ‡ψ = u∗u+ v∗v − η∗η = 1 (64)

Here, the super-adjoint of the superspinor is defined by ψ‡ ≡ (u∗, v∗,−η∗) [see, also, Equation (51)],
and ∗ represents the pseudo-conjugation (the pseudo-conjugation is defined as (η∗)∗ = −η and
(η1η2)

∗ = η∗1η
∗
2 for Grassmann odd quantities; see Refernence [173], for instance). The first two

components of ψ are Grassmann-even. and the third component is Grassmann-odd. The ψ subject
to the normalization (64) can be regarded as a coordinate of the manifold S3|2. From (62), we find that
xi and θα satisfy the condition of S2|2:

xixi + ϵαβθαθβ = (ψ‡ψ)2 = 1 (65)

Consequently, the map (62) represents:

S3|2 S1

−→ S2|2 (66)

The bosonic part of (66) exactly corresponds to the first Hopf map. Note that ψ satisfies the
super-coherent state equation:

xi · liψ + ϵαβlαψ · θβ =
1

2
ψ (67)
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and ψ is referred to as the super-coherent state or spin-hole coherent state [37] in the literature. xi are
Grassmann even, but not usual c-numbers, since the square of xi is not a c-number, xixi = 1− ϵαβθαθβ ,
as seen from (65). Instead of xi, one can introduce c-number quantities, {yi}, as:

yi =
1√

1− ϵαβθαθβ
xi (68)

which denoting coordinates on S2, the “body” of S2|2, as confirmed from yiyi = 1. With the use of the
coordinates on S2|2, ψ can be expressed as [129]:

ψ =
1√

2(1 + y3)(1 + θ1θ2)

 1 + y3

y1 + iy2

(1 + y3)θ1 + (y1 + iy2)θ2

 eiχ

=
1√

2(1 + x3)

 (1 + x3)(1− 1
2(1+x3)

θ1θ2)

(x1 + ix2)(1 +
1

2(1+x3)
θ1θ2)

(1 + x3)θ1 + (x1 + ix2)θ2

 eiχ (69)

where eiχ stands for the arbitrary U(1) phase factor. The last expression on the right-hand side manifests
the graded Hopf fibration, S3|2 ∼ S2|2 ⊗ S1 (here, ∼ denotes local equivalence): the S1(≃ U(1))-fiber,
eiχ, is canceled in the graded Hopf map (62), and the other quantities, xi and θα in (69), correspond to
the coordinates on S2|2.

3.2. N = 2

As the geometric structure of S2|2
f is determined by the UOSp(1|2) algebra, the N = 2 fuzzy

supersphere, S2|4
f , is formulated by the UOSp(2|2) algebra. The UOSp(2|2) algebra contains the

bosonic subalgebra, usp(2) ⊕ o(2) ≃ su(2) ⊕ u(1), and is isomorphic to SU(2|1). The dimension
is given by:

dim[uosp(2|2)] = dim[su(2|1)] = 4|4 = 8 (70)

Denoting the four bosonic generators as Li (i = 1, 2, 3) and Γ and the four fermionic generators as Lα

and L′
α (α = θ1, θ2), we can express the UOSp(2|2) algebra as:

[Li, Lj] = iϵijkLk, [Li, Lασ] =
1

2
(σi)βαLβσ

[Γ, Li] = 0, [Γ, Lασ] =
1

2
ϵτσLατ

{Lασ, Lβτ} =
1

2
δστ (iσ2σi)αβLi +

1

2
ϵστ ϵαβΓ (71)

where Lασ = (Lα, L
′
α). Li and Lα form the UOSp(1|2) subalgebra. There are two sets of fermionic

generators, Lα and L′
α, which bring N = 2 SUSY. The UOSp(2|2) algebra has two Casimirs, quadratic:

K = LiLi + ϵαβLαLβ + ϵαβL
′
αL

′
β + ΓΓ (72)

and cubic ones [169].
To specify a fuzzy manifold, an appropriate choice of irreducible representation is crucial as well.

The irreducible representation of UOSp(2|2) is classified into two categories: typical representation
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and atypical representation [169,170]. Since the quadratic Casimir (72) is identically zero for atypical
representation, we adopt typical representation for the construction of S2|4

f [128]. The UOSp(2|2)
matrices for typical representation for minimal dimension are represented by the following 4×4 matrices:

li =
1

2

(
σi 02

02 02

)
, lα =

1

2

 02 τα 0

−(iσ2τα)
t 0 0

0 0 0


l′α =

1

2

 02 0 τα

0 0 0

−(iσ2τα)
t 0 0

 , γ =
1

2

(
02 02

02 iσ2

)
(73)

Applying the Schwinger construction, we introduce the coordinates of S2|4
f as:

Xi =
2R

d
Ψ†LiΨ, Θα =

2R

d
Ψ†LαΨ, Θ′

α =
2R

d
Ψ†L′

αΨ, G =
2R

d
Ψ†ΓΨ (74)

where Ψ signifies the four-component, UOSp(2|2), Schwinger operator:

Ψ = (a, b, f, g)t (75)

and d = n + 1 with n = Ψ†Ψ = a†a + b†b + f †f + g†g. Here, a and b are bosonic operators, while f
and g are fermionic operators that satisfy:

[a, a†] = [b, b†] = {f, f †} = {g, g†} = 1

[a, b] = [a, f ] = [a, g] = · · · = {f, g} = {f, g†} = 0 (76)

It is straightforward to evaluate the square of the radius of S2|4
f :

XiXi + ϵαβΘαΘβ + ϵαβΘ
′
αΘ

′
β +GG =

(
R

d

)2

n2 (77)

With a given n, the basis states of S2|4
f are constituted of the graded fully symmetric representation of

the UOSp(2|2):

|n1, n2⟩ =
1√

n1! n2!
a†

n1
b†

n2 |vac⟩ (78a)

|m1,m2) =
1√

m1!m2!
a†

m1
b†

m2
f †|vac⟩ (78b)

|m′
1,m

′
2) =

1√
m′

1!m
′
2!
a†

m′
1b†

m′
2g†|vac⟩ (78c)

|l1, l2⟩ =
1√
l1! l2!

a†
l1
b†

l2
f †g†|vac⟩ (78d)

where n1, n2, m1, m2, m′
1, m

′
2, l1 and l2 denote non-negative integers that satisfy n1+n2 = m1+m2+

1 = m′
1 +m′

2+1 = l1+ l2+2 = n. The dimension of bosonic basis states, |n1, n2⟩ and |l1, l2⟩, and that
of fermionic basis states, |m1,m2⟩ and |m′

1,m
′
2⟩, are found to be equal:

dB = d(n) + d(n− 2) = 2n

dF = 2× d(n− 1) = 2n (79)



Symmetry 2013, 5 139

and the total degrees of freedom amount to:

dT = dB + dF = 4n (80)

The square of the radius of S2|4
f (77) does not have the zero-point, “energy”, since the bosonic and

fermionic degrees of freedom are canceled exactly (in the cases of fuzzy superspheres based on the
UOSp(2|N ) algebra for N > 2, the dimension of fermionic basis states is larger than that of the bosonic
basis states, and the zero-point “energy” becomes minus; in other words, the radius of fuzzy supersphere
would become minus for the UOSp(2|N ) representations with sufficiently small dimensions; thus, we
only deal with the fuzzy superspheres for N = 1, 2). The four sets of the basis states (78) forms the
N = 2 SUSY multiplet and suggests the following geometrical structure of S2|4

f :

S
2|4
f (n) ≃ S2

f (n)⊕ S2
f (n− 1)⊕ S2

f (n− 1)⊕ S2
f (n− 2) (81)

The latitudes for the the basis states (78) are given by:

X3 =
R

d
(n− k) (82)

with k = 0, 1, 2, · · · , 2n. The even ks (k = 2n2, k = 2l2 + 2) correspond to the bosonic basis states,
(78a) and (78b), while odd ks (k = 2m2 + 1, k = 2m′

2 + 1) to the fermionic basis states, (78c) and
(78d) (Figure 7). Except for non-degenerate states at the north and south poles X3 = ±n, all the other
eigenvalues of X3 (82) are doubly-degenerate.

Figure 7. (Color online) S2|4
f is a “compound” made of four fuzzy two-spheres that are

considered as N = 2 superpartners. The above picture corresponds to n = 2.

4. Supersymmetric Valence Bond Solid States

In this section, we review the basic properties of the SVBS states [8,9] and discuss its intriguing
connection to the SUSY QH wave function and BCS function.

4.1. Construction of SVBS States

4.1.1. N = 1

Here, we consider the SVBS states with UOSp(1|2) SUSY (N = 1), which we shall call the type-I
SVBS states. We apply the mathematical procedure of the constructions of the VBS states described in
Section 2.2. The first we prepare is the UOSp(1|2) invariant matrix (see Appendix A):

R1|2 =

 0 1 0

−1 0 0

0 0 −1

 (83)
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with the parameter dependent Schwinger operator:

Ψ(r) = (a, b,
√
rf)t (84)

the type-I SVBS state is constructed as:

|SVBS-I⟩ =
∏
⟨ij⟩

(Ψ†
i (r)R1|2 Ψ

∗
j(r))

M |vac⟩ =
∏
⟨ij⟩

(a†ib
†
j − b†ia

†
j − rf †

i f
†
j )

M |vac⟩ (85)

The operators ,ai, bi and fi, are components of the graded Schwinger operator defined on each site, i,
and satisfy the commutation relations, [ai, a

†
j] = [bi, b

†
j] = δij and {fi, f †

j } = δij . Physically, the three
fundamental states, a†|vac⟩, b†|vac⟩and f †|vac⟩, are interpreted as spin ↑, ↓ and spinless hole states (see
Table 2) (in Refernece [174], such a UOSp(1|2) triplet is dubbed the superqubit). Since the fermions
always appear in pairs of the form f †

i f
†
j (i, j are adjacent), the SVBS states can be regarded as hole-pair

doped VBS states, and r stands for a hole doping parameter.
Here, some comments are added. The UOSp(1|2)-specific feature does not enter the local Hilbert

space on each site. For instance, (57) can also be regarded as an irreducible representation of SU(2|1).
Meanwhile, in the construction of the type-I SVBS states (85), the UOSp(1|2) invariant matrix was
utilized, and then the UOSp(1|2) structure explicitly enters in the many-body states. This implies that
(super)spin interaction between adjacent sites reduces the SU(2|1) symmetry on each site to the lower
symmetry UOSp(1|2) in many-body physics.

Table 2. The physical interpretation of the local states made by the Schwinger operators. f †

denotes the hole degrees of freedom.

Schwinger operator SU(2) quantum number Spin state

a† 1/2 |↑⟩ = a†|vac⟩
b† −1/2 |↓⟩ = b†|vac⟩
f † 0 |h⟩ = f †|vac⟩

In the type-I SVB states (85), the total particle number of the Schwinger particles at each site is
given by:

zM = a†iai + b†ibi + f †
i fi (86)

Since the fermion number f †f takes either 0 or 1, the following two eigenvalues are possible for the
local spin quantum number Si =

1
2
(a†iai + b†ibi):

Si =M, M − 1

2
(87)

In particular, for M = 1, each site can take two spin values:

Si = 1,
1

2
(88)

and the local Hilbert space is spanned by the five (4M+1, in general) basis states:

|1⟩ = 1√
2
a†i

2|vac⟩, |0⟩ = a†ib
†
i |vac⟩, |−1⟩ = 1√

2
b†i

2|vac⟩

|↑⟩ = a†if
†
i |vac⟩, |↓⟩ = b†if

†
i |vac⟩

(89)
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These constitute a N=1 SUSY multiplet with the UOSp(1|2) superspin S = 1. Similarly, the edge
states consist of N = 1 SUSY multiplet with the UOSp(1|2) superspin S = 1/2:

|↑⟩⟩ = a†|vac⟩, |↓⟩⟩ = b†|vac⟩, |0⟩⟩ = f †|vac⟩ (90)

As we will see in Section 5, the ground state of a finite open chain is nine-fold degenerate (corresponding
to 3× 3 matrix-components of the M = 1 type-I SVBS states).

Intriguingly, the M = 1 type-I SVBS chain interpolates two VBS states in the two extreme limits of
the hole doping: in the limit r → 0, |SVBS-I⟩ reproduces the original spin-1 VBS state |VBS⟩:

|SVBS-I⟩ → |VBS⟩ =
∏
i

(a†ib
†
i+1 − b†iai+1)|vac⟩ (91)

while in the limit, r → ∞, |SVBS-I⟩ reduces to the Majumdar-Ghosh (MG) dimer state [175,176] |MG⟩,

|SVBS-I⟩ →

{∏
i

f †
i

}
|MG⟩ (92)

where |MG⟩ is either of the two dimerized states of the MG model (the open boundary condition has
been implicitly assumed here; if the periodic boundary condition had been used, the two states would
have been summed up with a minus sign, due to the anti-commutating property of the holes) [Figure 8]:

|MG⟩ =

|ΦA⟩ =
∏

i:even(a
†
ib

†
i+1 − b†ia

†
i+1)|vac⟩

|ΦB⟩ =
∏

i:odd(a
†
ib

†
i+1 − b†ia

†
i+1)|vac⟩

(93)

For larger M , |MG⟩ should be replaced with the inhomogeneous VBS states [75], where the number of
valence bonds alternates from bond to bond.

Figure 8. (Color online) Two MG dimer states related by translation.

In the super-coherent state (63) representation (in the following discussion, the explicit form of the
superspinor is not important; only the Grassmann property of the components matters), the SVBS state
is expressed as [8]:

ΨSVBS-I =
∏
⟨ij⟩

(uivj − viuj − rηiηj)
M (94)

From the Grassmann (odd) property of η, ΨSVBS-I (94) can be rewritten as:

ΨSVBS-I = exp

(
−Mr

∑
⟨ij⟩

ηiηj
uivj − viuj

)
· ΦVBS({ui, vi}) (95)

where ΦVBS is the coherent state representation of the original VBS state (41). We can deduce a nice
physical interpretation of the SVBS states from this expression. Since the SVBS states are written as a
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“product” of the exponential and the original VBS wave function ΦVBS, all physics inherent in the SVBS
must be included in this exponential factor:

exp

(
−Mr

∑
⟨ij⟩

ηiηj
uivj − viuj

)
=
∏
⟨ij⟩

{
1−Mr

ηiηj
uivj − viuj

}
(96)

Since every time when the factor:
ηiηj

uivj − viuj
(97)

acts to the VBS wave function, the VB between the adjacent sites, i and j, is replaced with a hole-pair
(see Figure 9):

uivj − viuj

ηiηj
uivj−viuj−−−−−→ ηiηj (98)

one sees that the SVBS wave function (95) may be expanded as:

ΨSVBS-I = ΦVBS −Mr
∑
i

ηiηi+1

uivi+1 − viui+1

· ΦVBS +
1

2
(Mr)2

(∑
i

ηiηj
uivi+1 − viui+1

)2

+ · · ·

+ (−Mr)L/2
∏
i

ηi · (
∏
i:even

−
∏
i:odd

)
1

uivi+1 − viui+1

· ΦVBS (99)

Thus, the SVBS chain is expressed as the superposition of many-body states on the right-hand side (r.h.s.)
of (99). The first term on the r.h.s. is the original VBS chain (which is consistent with (91)). The second
term is the VBS chain with one hole-pair doped, and the third term is the VBS chain with two hole-pairs
doped. In general, the nth term represents the VBS chain with (n − 1) hole pairs doped. As the last
term, partially dimerized chains, i.e., the VB chains whose half sites are occupied with hole-pairs, are
realized (see Figure 10) (for general M and the arbitrary lattice coordination number, z, the last term of
the expansion realizes a resonating valence bond (RVB) state [177]; for instance, on a 2D square lattice,
the M = 2 SVBS state with N = 3 SUSY gives the Rokhsar-Kivelson RVB state [178] as the last term).
For M = 1, the last term gives rise to the Majumdar-Ghosh dimer states:

(
∏
i:even

−
∏
i:odd

)
1

uivi+1 − viui+1

· ΦVBS = (
∏
i:odd

−
∏
i:even

)(uivi+1 − viui+1) = −ΦA + ΦB (100)

where ΦA and ΦB are the coherent state representation of |ΦA⟩ and |ΦB⟩ (93). Now, the physical meaning
of the SVBS states is transparent: the SVBS states signify a superposed state by all possible hole-pair
doped VBS states, which can be viewed as a generalization of the resonating valence bond state [177]
(see Section 4.2 for more details).

Figure 9. (Color online) When the exponential factor (97) acts on the VBS state, the factor
breaks the VB between i and i + 1 sites and creates a hole-pair instead. The figure and
caption are taken from [8].
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Figure 10. (Color online) The type-I SVBS is a superposed state of hole-pair-doped VBS
states. With the finite hole-doping parameter, r, all of the hole-pair-doped VBS states are
superposed to form the SVBS state, and the SVBS state exhibits the SC property. At r = 0,
the SVBS state is reduced to the original VBS state (depicted as the first chain), while for
r → ∞, the SVBS state is reduced to the MG dimer state (depicted as the last two chains).
The figure and caption are taken from [9].

i+1

i+1 j+1

i
Σ
Σ
i, j

+

+
+
+
+

i j 

i

As in the original correspondence between VBS and QHE, the super-coherent state representation of
SVBS (94) shows striking analogies to the SUSY Laughlin-Haldane wave function [130]:

ΦSLH =
N∏
i<j

(ψi(r)
t R1|2 ψj(r))

M =
N∏
i<j

(uivj − viuj − rηiηj)
m (101)

Furthermore, for one-particle mechanics, there exists apparent relations between the SVBS and the
SUSY Landau problem. Indeed, the super-coherent state representation of the basis states (57):

φ(B)
n1,n2

=
1√
n1!n2!

un1vn2 (102a)

φ(F)
m1,m2

=
1√

m1!m2!
um1vm2η (102b)

gives the lowest Landau level eigenstates of a SUSY Landau Hamiltonian [129]. Here, n1, n2, m1 and
m2 are non-negative integers that satisfy n1 + n2 = m1 +m2 + 1 = I . By the stereographic projection,
zi = vi/ui and ξi = ηi/ui, the SUSY Laughlin-Haldane wave function, ΦSLH (101), is transformed to
the SUSY Laughlin wave function defined by:

ΦSL ≡
N∏
i<j

(zi − zj − rξiξj)
me−

∑
i(ziz

∗
i +ξiξ

∗
i ) (103)

By expanding the polynomial part (zi − zj − rξiξj)
m in the Grassmann odd quantities, we have:

ΦSL = ΦL −mr
∑
i<j

ξiξj
zi − zj

ΦL + · · ·+ 1

(N/2)!
m

N
2 (−r)Nξ1, ξ2 · · · ξN · Pf

(
1

zi − zj

)
ΦL (104)

where N is the total number of particles (which we assumed to be an even integer) and ΦL coincides
with the Laughlin wave function on a 2D plane (up to the Grassmann factor e−

∑
i ξiξ

∗
i ):

ΦL =
N∏
i<j

(zi − zj)
me−

∑
i(ziz

∗
i +ξiξ

∗
i ) (105)
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Interestingly, the Pfaffian wave function, Pf
(

1
zi−zj

)∏N
i<j(zi − zj)

me−
∑

i ziz
∗
i , for the ground state of the

non-Abelian QHE [179] appears in the last term of the expansion (104) at m = 2.

4.1.2. N = 2

The N = 2 SVBS states, which we call the type-II SVBS states, are constructed as UOSp(2|2)
invariant VBS states. With the UOSp(2|2) invariant matrix:

R2|2 =


0 1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 −1

 (106)

and UOSp(2|2) Schwinger operator:

Ψ(r) ≡ (a, b,
√
rf,

√
rg)t (107)

we introduce the type-II SVBS states:

|SVBS-II⟩ =
∏
⟨ij⟩

(Ψ†
i (r)R2|2 Ψ

∗
j(r))

M |vac⟩ =
∏
⟨ij⟩

(a†ib
†
j − b†ia

†
j − rf †

i f
†
j − rg†i g

†
j)

M |vac⟩ (108)

The inclusion of two species of holes, f and g, allows us to write down a wave function more symmetric
with respect to the bosonic and fermionic degrees of freedom. The new fermionic degrees of freedom,
gi, are interpreted as another species of a (spinless) hole, and satisfy the standard anti-commutation
relations, {gi, g†j} = δij , {fi, gj} = 0, etc. In the type-II VBS states, there appear local sites, such as
f †
i g

†
i |vac⟩, with spin-0, which are not realized in the type-I SVBS states.
We have two species of fermions, and the total particle number of the Schwinger particles at each site

i reads as:
zM = a†iai + b†ibi + f †

i fi + g†i gi (109)

Since the eigenvalues of nf (i)=f
†
i fi and ng(i)=g

†
i gi can take either 0 or 1, in the type-II SVBS chain

(z = 2), the following four eigenvalues are allowed for the local spin quantum number, Si =
1
2
(a†iai +

b†ibi):

Si =M, M − 1

2
, M − 1

2
, M − 1 (110)

In particular, for the M = 1 SVBS chain, the local spin values are given by:

Si = 1,
1

2
,
1

2
, 0 (111)

and the local Hilbert space is spanned by the following nine basis states:

|1⟩ = 1√
2
a†i

2|vac⟩, |0⟩ = a†ib
†
i |vac⟩, |−1⟩ = 1√

2
b†i

2|vac⟩

|↑⟩ = a†if
†
i |vac⟩, |↓⟩ = b†if

†
i |vac⟩

|↑′⟩ = a†ig
†
i |vac⟩, |↓′⟩ = b†ig

†
i |vac⟩

|0′⟩ = g†i f
†
i |vac⟩ (112)
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The edge states are now given by

|↑⟩⟩ = a†|vac⟩, |↓⟩⟩ = b†|vac⟩, |0⟩⟩ = f †|vac⟩, |0′⟩⟩ = g†|vac⟩ (113)

and correspondingly, there appear 4 × 4 = 16 degenerate ground states for the M = 1 type-II
SVBS chain.

The M = 1 type-II SVBS chain has the following properties. As in the type-I SVBS state, the type-II
SVBS state reproduces the original VBS state for r → 0:

|SVBS-II⟩ → |VBS⟩ =
∏
i

(a†ib
†
i+1 − b†ia

†
i+1)|vac⟩ (114)

On the other hand, when r → ∞, it reduces to the totally uncorrelated fermionic (F) state filled
with holes:

|SVBS-II⟩ → |F-VBS⟩ ≡ ±
∏
i

f †
i g

†
i |vac⟩ (115)

Here, we have assumed the open boundary condition (if the periodic boundary condition is used, we have
a zero state for odd-length chains; the sign factor depends on both the parity of the system size and the
edge states). Note that, unlike type-I, type-II SVBS states have no spin degrees of freedom for r → ∞.
The super-coherent state representation of |SVBS-II⟩ is given by:

ΨSVBS-II =
∏
<ij>

(uivj − viuj − rηiηj − rη′iη
′
j)

M

= exp

(
−Mr

∑
<ij>

ηiηj + η′iη
′
j

uivj − viuj

)
· exp

(
−Mr2

∑
<ij>

ηiηiη
′
jη

′
j

(uivj − viuj)2

)
·ΦVBS (116)

By expanding the exponentials in terms of r, the type-II SVBS states can be expressed as a superposition
of the hole-pair doped VBS states, as shown in Figure 11.

4.2. Superconducting Properties

In both ΨSVBS-I and ΨSVBS-II, the fermions always appear in pairs, and the wave functions can be
expressed by a superposition of fermion pairs. We can point out interesting similarities between the
SVBS states and BCS state of SC [180]:

|BCS⟩ =
∏
k≥0

1√
1 + |gk|2

(1 + gkc
†
kc

†
−k)|vac⟩ (117)

with electron operator, ck, and coherence factor, gk. |BCS⟩ can be expressed as:

|BCS⟩ ∝
∏
k≥0

(1 + gkc
†
kc

†
−k)|vac⟩ = exp(

∑
k≥0

gkc
†
kc

†
−k)|vac⟩

= |vac⟩+ (
∑
k≥0

gkc
†
kc

†
−k)|vac⟩+ 1

2
(
∑
k≥0

gkc
†
kc

†
−k)

2|vac⟩+ · · ·+
∏
k≥0

gkc
†
kc

†
−k|vac⟩ (118)
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This expansion may remind us of the hole-pair expansion of the SVBS state (99). Furthermore, in the
limit, gk → 0, the BCS state reduces to the electron vacuum (no fermions), and for gk → ∞, it coincides
with the filled Fermi sphere |Fermi⟩:

|BCS⟩ gk→0−→ |vac⟩ (119a)

|BCS⟩ gk→∞−→ |Fermi⟩ ≡
∏
k≥0

c†kc
†
−k|vac⟩ (119b)

These also show apparent similarities with the asymptotic behaviors of the type-II SVBS chain, (114)
and (115), under the correspondence:

|vac⟩ ↔ |VBS⟩ (120a)

c†kc
†
−k ↔ f †

i g
†
i (120b)

From the analogies to the BCS state, the SVBS states are expected to exhibit a SC property in the
charge sector by the immersion of hole-pairs to (insulating) VBS states (see Figure 12). This is quite
similar to the mechanism of the Anderson’s RVB picture of high Tc SC [177]: a finite amount of
hole-doping transforms the insulator of resonating valence bond state to a high Tc SC state. In the
following, we explore qualitative arguments for the SC aspect of the SVBS states.

Figure 11. (Color online) Like the type-I SVBS chain, the type-II SVBS chain is also
expressed as a superposition of the hole-pair doped VBS chains. What is different to the
type-I SVBS chain is the appearance of the spinless sites, depicted by the large white circles
with double holes. The MG states are realized in the “middle” of the sequence. The original
VBS state and the hole-VBS state are respectively realized in the first and last lines. The
figure and caption are taken from [9].
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Figure 12. The SVBS states exhibit a superconducting property in the charge sector with
finite r in addition to a quantum AFM property in the spin sector.

Charge-sector

Doping Parameter

Spin-sector

Insulator InsulatorSuperconductor (SSB)

Disordered quantum anti-ferromagnets (no SSB)

4.2.1. N = 1

Since the naive SC order parameter, such as ⟨ f †
kf

†
k+1 ⟩, vanishes due to the violation of particle

number conservation at each site, as the SC order parameter of the type-I VBS state, we adopt the
following quantity:

∆ = (ak bk+1 − bk ak+1) f
†
k f

†
k+1 (121)

which is calculated as:

⟨∆ ⟩ =
2M(M + 1

2
)2 r(√

M(M+1)(1+|r|2) + 1
4
+ 1

2
(M+ 1

2
)
)2

− 1
4
(M+ 1

2
)2

(122)

It takes the maximum value:

|∆max| = (
√
5− 2)

√
2M(1 +

√
5)

M + 1
(123)

at:

|r| =
(
M +

1

2

)√
1 +

√
5

2M(M + 1)
(124)

In particular, for M = 1, |r| = 3
2

√
1+

√
5

6
≃ 1.10. The expectation values for the boson and fermion

numbers, nb(i) = a†iai + b†ibi and nf(i) = f †
i fi, are respectively calculated as:

⟨nb⟩ = 2M − 1 +
2M + 1√

4M(M + 1)(1 + |r|2) + 1

⟨nf⟩ = 1− 2M + 1√
4M(M + 1)(1 + |r|2) + 1

(125)

As expected, with an increase of the hole doping, |r|, ⟨nb⟩ monotonically decreases, while ⟨nf⟩
monotonically increases. The fluctuations for the boson and fermion numbers, δn2

b = ⟨n2
b⟩ − ⟨nb⟩2

and δn2
f = ⟨n2

f ⟩ − ⟨nf⟩2, are given by:

δn2
b = δn2

f =
2M + 1√

4M(M + 1)(1 + |r|2) + 1
− (2M + 1)2

4M(M + 1)(1 + |r|2) + 1
(126)

and their maximum δnb = δnf =
1
2

is met at

|r| = 3

(
1 +

1

4M(M + 1)

)
(127)
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The behaviors of such quantities are depicted in Figure 13.

Figure 13. (Color online) Plot of Osc = ⟨∆⟩, the hole density, ⟨nf⟩, and the hole-number
fluctuation, δn2

f , as a function of r. Here,the bulk values are plotted. Inset: pProfile of the
hole density (r = 0.5) for a finite system (L = 20) with different left edge states (↑, ↓ and
“hole”). Only the left edge state is changed with the right one fixed to sR =↑. The hole
density approaches exponentially to the bulk value as we move away from the edge. The
figure and caption are taken from [9].
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While the BCS state (117) has the particle-hole symmetry (for (117), the order parameter,
∆k = ⟨c†kc

†
−k⟩, the electron number, nk = c†kck, and its fluctuation, δnk, are calculated as:

∆k =
g∗k

1 + |gk|2
=

1

gk + g∗k
−1

⟨nk⟩ =
|gk|2

1 + |gk|2

δn2
k = ⟨(nk − ⟨nk⟩)2⟩ =

|gk|2

(1 + |gk|2)2
=

1

(gk + g∗k
−1)(g∗k + g−1

k )
(128)

∆k and δnk are symmetric under gk ↔ 1/g∗k, due to the particle-hole symmetry. The SVBS state does
not show an exact particle-hole symmetry, r ↔ 1/r (see the SC order parameter (122), for instance).
This is because of the unequal properties between boson and fermion operators, (aibj − biaj) ↔ fifj .

4.2.2. N = 2

We define the order parameter for the type-II SVBS state (108) as follows:

∆i ≡ (aibi+1 − biai+1)(f
†
i f

†
i+1 + g†i g

†
i+1) (129)

In Figure 14, we plotted its expectation value:

Osc = ⟨∆i⟩ (130)
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the hole-number ⟨nf⟩, and hole fluctuation, δnhole:

⟨nf⟩ = ⟨f †
i fi⟩ = ⟨g†i gi⟩ = ⟨ng⟩

δn2
hole = ⟨n2

hole⟩ − ⟨nhole⟩2 (nhole ≡ nf + ng)
(131)

The SC order parameter, OSC takes its maximal value at |r| ≃ 1.05 for M = 1. Comparing Figure 13
and Figure 14, one may find that the behavior of the order parameter of the type-II SVBS chain is more
symmetric with respect to |r| = 1 than that of the type-I SVBS chain. This is because of the almost
compensation of the contributions from the equal number of the boson and fermion species in the type-II
SVBS states.

Figure 14. (Color online) Plot of Osc = ⟨∆i⟩, the hole density, ⟨nhole(i)⟩ = ⟨f †
i fi⟩, and the

hole-number fluctuation, δn2
hole, as a function of r. Inset: profile of the hole density (r = 0.5)

for a finite system (L = 20). Only the left edge state is changed with the right one fixed to
sR =↑. The figure and caption are taken from [9].

2

b

4.3. Parent Hamiltonians

The VBS state is the exact and unique ground state of a many-body Hamiltonian, which we call
the parent Hamiltonian [6,7]. The relation between the VBS state and its parent Hamiltonian is quite
unique. Usually in quantum mechanics, Hamiltonian is firstly given, and then we solve the eigenvalue
problem of the given Hamiltonian. In most cases, particularly in the presence of many-body interaction,
it is formidable to exactly solve the eigenvalue problem, and so, we need to rely on some appropriate
approximation method. Interestingly, in VBS models, the procedure is completely inverse: the
many-body state (VBS state) is firstly given, and next the parent Hamiltonian is constructed, such that
its ground state is exactly given by the VBS state.

We briefly review the procedure for the construction of the parent Hamiltonian. Consider the VBS
chain with bulk spin 1. The SU(2) decomposition rule of two spin 1 gives the total spin J = 0, 1, 2:

1⊗ 1 = 0⊕ 1⊕ 2 (132)
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However, the values for the bond spin of the VBS chain does not take J = 2, since in that case, all four
1/2 spins are aligned to a same direction and do not form the spin-singlet bond between neighboring sites
(see Figure 15).

Figure 15. (Color online) The bond spin, J = 2, cannot be realized in the S = 1 VBS chain.

Hence, the VBS state satisfies the condition:

PJ=2(i, i+ 1)|VBS⟩ = 0 (133)

where PJ denotes a projection operator to the bond spin, J = 2. Since the eigenvalue of the projection
operator is either 0 or 1 for arbitrary adjacent sites, the minimum eigenvalue of the “many-body
operator”,

∑
i PJ=2(i, i + 1), is zero. This simple fact is the key observation for the construction of

the parent Hamiltonian. We then construct the parent Hamiltonian for the VBS chain as:

H =
∑
i

VJ=2PJ=2(i, i+ 1) (134)

where VJ=2 denotes a positive coefficient (VJ=2 can depend on the lattice site, i, but here, we postulate
lattice translation symmetry and drop the lattice index, i). It is obvious that the eigenvalues of the parent
Hamiltonian (134) are semi-positive definite, and its ground-state energy is zero. Furthermore, remember
that the VBS state vanishes by the projection operators in the parent Hamiltonian, and hence:

H|VBS⟩ = 0 (135)

Therefore, the VBS chain is a zero-energy ground state of the parent Hamiltonian (134). There is
uniqueness to the ground state (on a finite-size chain, the ground state is, by construction, either unique
(for a periodic chain) or degenerate with respect to the edge states (for an open chain)). In order to prove
the uniqueness in the infinite-size system, one has to define the infinite-size ground state carefully [7].)
for the parent Hamiltonian (up to the degeneracy coming from the edge degrees of freedom), which can
also be proven [7]. The projection operator is explicitly derived as:

PJ(i, i+ 1) =
∏
J ′ ̸=J

(S(i) + S(i+ 1))2 − J ′(J ′ + 1)

J(J + 1)− J ′(J ′ + 1)

=
∏
J ′ ̸=J

2S(i) · S(i+ 1) + 2S(S + 1)− J ′(J ′ + 1)

J(J + 1)− J ′(J ′ + 1)
(136)

In the present case, S = 1, PJ=2(i, i+ 1) is given by:

PJ=2(i, i+ 1) =
∏

J ′=0,1

2S(i) · S(i+ 1) + 4− J ′(J ′ + 1)

6− J ′(J ′ + 1)

=
1

2

(
S(i) · S(i+ 1) +

1

3
(S(i) · S(i+ 1))2 +

2

3

)
(137)
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After all, for the S = 1 VBS chain, the parent Hamiltonian takes the following form:

H = V
∑
i

{
S(i) · S(i+ 1) +

1

3
(S(i) · S(i+ 1))2 +

2

3

}
(138)

where the overall proportional factor, 1/2, has been absorbed in the coefficient, V . The parameter,
V , simply determines the energy scale of the system and is not important in the dynamical behaviors
of the system. The construction of the parent Hamiltonian is rather technical, but the resulting parent
Hamiltonian (138) appears to be “physical”: the spin-spin interaction represents the Heisenberg AFM,
though it contains the quadratic term whose coefficient is one-third of the first Heisenberg AFM term.
It may be obvious from the above discussion that the VBS state is the exact ground state of the parent
Hamiltonian, but if the Hamiltonian (138) was firstly given, one might think that it is almost impossible
to derive its exact energy spectra and corresponding many-body states. However, at least for the
ground-state, we know the exact form of the wave function and its energy. Taking this advantage,
we can develop precise discussions about physical quantities relevant to the ground-state, such as
entanglement spectrum. For excitations, we need to rely on some approximation technique to extract
useful information from the parent Hamiltonian (see Section 5.3.2). It should also be emphasized that
the present construction can be generalized to higher spin VBS states on an arbitrary lattice in any
dimensions. Generally, the parent Hamiltonian is given by:

H =
∑
⟨i,j⟩

zM∑
(z−1)M<J

VJPJ(i, j) (139)

where VJ denotes a positive coefficient and PJ(i, j) is given by:

PJ(i, j) =
∏
J ′ ̸=J

(S(i) + S(j))2 − J ′(J ′ + 1)

J(J + 1)− J ′(J ′ + 1)

=
∏
J ′ ̸=J

2S(i) · S(j) + 2S(S + 1)− J ′(J ′ + 1)

J(J + 1)− J ′(J ′ + 1)
(140)

In QHE, the parent Hamiltonian for the Laughlin-Haldane wave function is called the Haldane’s
pseudo-potential Hamiltonian [76]. As discussed in Section 2.2, the mathematical structure of the
VBS state and the QHE is similar to each other, and the pseudo-potential Hamiltonian for QHE can
also be obtained by applying the translations between QHE and VBS (Table 1). Indeed, the resultant
pseudo-potential Hamiltonian for the Laughlin-Haldane wave function takes the form similar to (139):

H =
∑
i<j

m(N−1)∑
m(N−2)<J

VJPJ(i, j) (141)

where PJ denotes the projection operator to two-body angular momentum, J .
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4.3.1. N = 1

By replacing the SU(2) operators with UOSp(1|2) ones, we readily construct the parent Hamiltonian
for the type-I SVBS states, which are invariant under UOSp(1|2) transformations generated by the
SU(2) bosonic generators, Li:

Li =
1

2
Ψ†(r)

(
σi 0

0 0

)
Ψ(1/r) (142)

and the parameter-dependent fermionic operators, Kα:

Kα =
1

2
Ψ†(r)

(
0 τα

−(iσ2τα)
t 0

)
Ψ(1/r) (143)

where Ψ(r) is defined by (84). Notice that Li and Kα satisfy the UOSp(1|2) algebra (45). With use of
the UOSp(1|2) generators, it is straightforward to construct the parent Hamiltonian for the SVBS states
with the arbitrary value of the parameter, r. First, we need to derive the projection operators to the
subspaces of bond-superspin, J . The decomposition rule for the two superspins S is given by:

J = S ⊗ S = 0⊕ 1/2⊕ 1⊕ 3/2⊕ 2⊕ · · · ⊕ 2S (144)

Note that the UOSp(1|2) decomposition rule is similar to that of the SU(2), except for the
bond-superspin decreasing by 1/2. The SVBS state does not contain any UOSp(1|2) bond superspins
larger than Jmax = (z − 1)M and is the exact zero-energy ground state of the parent Hamiltonian:

Htype-I =
∑
⟨ij⟩

2S∑
J=Jmax+

1
2

VJ PJ(i, j) (145)

where VJ are positive coefficients and PJ(i, j) are the projection operator onto the superspin-J
representation of UOSp(1|2), written in terms of the Casimir operator as:

PJ(i, j) =
2S∏

J ′ ̸=J

(KA(i) +KA(j))
2 − J ′(J ′ + 1

2
)

J(J + 1
2
)− J ′(J ′ + 1

2
)

=
2S∏

J ′ ̸=J

2KA(i)KA(j) + 2S(S + 1
2
)− J ′(J ′ + 1

2
)

J(J + 1
2
)− J ′(J ′ + 1

2
)

(146)

which projects to the two-site subspace of the bond superspin, J . Here, KA(i)KA(j) ≡ Li(i)Li(j) +

ϵαβKα(i)Kβ(j) and KA(i)KA(i) ≡ KA(j)KA(j) = S(S + 1
2
). Since the projection operators (146) are

UOSp(1|2) invariant, the parent Hamiltonian is (145), as well. Following similar discussions about the
uniqueness of the VBS state in Reference [7], we can prove that the SVBS state is the unique zero-energy
ground-state of the parent Hamiltonian (145).
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For concreteness, we demonstrate the derivation of the parent Hamiltonian for the S = 1 SVBS chain
(z = 2, M = 1 and then Jmax = 1). From (144), we obtain the parent Hamiltonian (145) for the type-I
SVBS chain as:

Hchain-I =
∑
i

{
V 3

2
P 3

2
(i, i+ 1) + V2 P2(i, i+ 1)

}
=
∑
i

{
1

35
(5V2 + 63V 3

2
)KA(i)KA(i+ 1) +

2

45
(9V2 − 7V 3

2
)(KA(i)KA(i+ 1))2

+
16

45
(V2 − 5V 3

2
)(KA(i)KA(i+ 1))3 +

32

315
(V2 − 7V 3

2
)(KA(i)KA(i+ 1))4 + V 3

2

} (147)

Here, we add several comments. Since the Casimir operator, (KA(i) +KA(j))
2, contains pair-creation

terms of fermions, such as f †
i f

†
j (aibj − biaj), the Hamiltonian (147) does not preserve the total fermion

number, Nf =
∑

i f
†
i fi (though the total particle number, i.e., the sum of boson number and fermion

number, is conserved). This fermion number non-conserving term is a particular structure of the BCS
Hamiltonian, and this is in agreement with the SC property of the SVBS model (see Section 4.2).

The fermionic generators, Kα, are non-Hermitian, and then the type-I parent Hamiltonian (145) is
non-Hermitian, as well. As a reasonable Hermitian extension of the type-I Hamiltonian, one may adopt:

H ′
type-I =

∑
⟨ij⟩

2S∑
J=Jmax+

1
2

VJ P†
J(i, j)PJ(i, j) (148)

The definition (148) is a natural generalization of the original type-I parent Hamiltonian, since, if the
projection operators were Hermitian, from the property P2

J = PJ , Equation (148) would be reduced to
the original one (145).

4.3.2. N = 2

The irreducible representation of the UOSp(2|2) group is specified by (j, b), which signify the
indices of the largest bosonic subalgebra, SU(2) ⊕ U(1) (we denote the eigenvalues of the SU(2)
Casimir operator, S2, as j(j + 1) (j = 0, 1/2, 1, · · · .) and arbitrary complex number eigenvalues of
the U(1) operator, B, as b.) The irreducible representation is classified into two categories: the typical
representation and atypical representation. For b ̸= ±j, the irreducible representation is called the typical
representation with dimension, 8j, while for b = ±j, the irreducible representation becomes the atypical
representation with dimension 4j + 1. The eigenvalues of the UOSp(2|2) quadratic Casimir operator
(72) for (j, b) representation are generally given by:

C = j2 − b2 (149)

Then, for the atypical representation, (b = j), the Casimir eigenvalues identically vanish. Since the
Casimir corresponds to the square of the radius of fuzzy manifold, it may not be probable to explore
fuzzy geometry based on the atypical representation. Meanwhile, the typical representation consists of
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four SU(2) representations, |b, j, j3⟩, |b+1/2, j− 1
2
, j3⟩, |b−1/2, j− 1

2
, j3⟩, |b, j−1, j3⟩, each of which

carries the SU(2) spin index S as:

(i) S = j · · · (2j + 1)-dim

(ii) S = j − 1/2 · · · 2j-dim

(iii) S = j − 1/2 · · · 2j-dim

(iv) S = j − 1 · · · (2j − 1)-dim

(150)

For instance, an eight-dimensional typical representation, (j, b) = (1, 0), is constructed with the use of
the components of the UOSp(2|2) Schwinger operator (107):

(i) |+⟩ = 1

2
a†i

2|vac⟩, |0⟩ = a†ib
†
i |vac⟩, |−⟩ = 1

2
b†i

2|vac⟩

(ii) |↑⟩ = a†if
†
i |vac⟩, |↓⟩ = b†if

†
i |vac⟩

(iii) |↑′⟩ = a†ig
†
i |vac⟩, |↓′⟩ = b†ig

†
i |vac⟩

(iv) |0′⟩ = g†i f
†
i |vac⟩

(151)

They give rise to a N = 2 SUSY multiplet. The UOSp(2|2) superspin operators can also be given by:

Si = Ψ(r)†liΨ(r), Kα = Ψ†(r)lαΨ(r), Dα = Ψ†(r)l′αΨ(r), B = Ψ†(r)γΨ(r) (152)

with li, lα, l′α and γ (73). Obviously, Si and −iB are the generators of the subalgebra su(2)⊕ u(1). The
basis states (151) carry the SU(2)⊕ U(1) indices as:

(i) : |b = 0, j = 1⟩, (ii)± i(iii) : |b = ±1/2, j = 1/2⟩, (iv) : |b = 0, j = 0⟩ (153)

For a two-site system, the UOSp(2|2) bond superspin operators are constructed as Stot = S(i)+S(j),
K tot

α = Kα(i) +Kα(j), Dtot
α = Dα(i) +Dα(j), Btot = B(i) +B(j), and the quadratic Casimir operator

is expressed as:

Ci,j = Stot · Stot + ϵαβK
tot
α K

tot
β − ϵαβD

tot
α D

tot
β −BtotBtot

= C(i) + C(j) + 2

{
S(i) · S(j) + ϵαβKα(i)Kβ(j)− ϵαβDα(i)Dβ(j)−B(i)B(j)

}
= C(i) + C(j) + 2L(i) · L(j)
= 2S2 + 2L(i) · L(j)

(154)

where C(i) = C(j) = S2 (S = 0, 1/2, 1, 3/2, · · · ) (the graded fully symmetric representation made of
the UOSp(2|2) Schwinger operator carries the SU(2) ⊕ U(1) indices, (j, b) = (S, 0)), and L(i) · L(j)
is defined as:

L(i) · L(j) = S(i) · S(j) + ϵαβKα(i)Kβ(j)− ϵαβDα(i)Dβ(j)−B(i)B(j) (155)

The tensor product of two identical typical representations is decomposed as:

(J,B) = (S, 0) ⊗ (S, 0)
= ⊕2S−1

n=0 (2S − n, 0) ⊕2S−1
n=0 (2S − 1/2− n, 1/2)

⊕2S−1
n=0 (2S − 1/2− n,−1/2) ⊕2S−1

n=1 (2S − n, 0)

(156)
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For instance, (on the right-hand sides of (157) and (156)) (1/2, 1/2) ⊕ (1/2,−1/2) is replaced by a
not-completely reducible atypical representation consisting of a semi-direct sum of atypical
representations, (0, 0), (1/2,−1/2), (1/2, 1/2), (0, 0) (for details, see Section 2.5.3 in [173]).

(1, 0)⊗ (1, 0) = (2, 0)⊕ (3/2, 1/2)⊕ (3/2,−1/2)⊕ (1, 0)⊕ (1, 0)⊕ (1/2, 1/2)⊕ (1/2,−1/2) (157)

Similar to the UOSp(1|2) decomposition (144), the UOSp(2|2) bond superspins decrease by 1/2 [see
the right-hand side of (157)]. As also observed in (157), B is specified by J : for integer, J , B = 0, while
for half-integer, J , B = 1/2 or −1/2. Hence, the square of B is uniquely determined as a function of J :

B(J)2 =
1

8
(1− (−1)2J) (158)

Invoking the usual arguments of constructing the parent Hamiltonian, we derive the type-II parent
Hamiltonian as:

Htype-II =
2S∑

(1−1/z)2S<J

∑
<ij>

VJPJ(Ci,j) (159)

where PJ stand for the projection operators of the bond superspin J :

PJ(Ci,j) =
∏
J ′ ̸=J

Ci,j − (J ′2 −B(J ′)2)

(J2 −B(J)2)− (J ′2 −B(J ′)2)
(160)

Here, B(J)2 and B(J ′)2 are given by (158). For a L = 1 type-II SVBS chain, the parent Hamiltonian is
given by:

Hchain-II =
∑
i

{V3/2P3/2(Ci,i+1) + V2P2(Ci,i+1)} (161)

where the projection operators are:

P3/2(Ci,i+1) =
∏

J ′=2,1,1/2,0

Ci,i+1 − (J ′2 −B(J ′)2)

2− (J ′2 −B(J ′)2)
= −1

8
C2

i,i+1(Ci,i+1 − 1)(Ci,i+1 − 4)

P2(Ci,i+1) =
∏

J ′=3/2,1,1/2,0

Ci,i+1 − (J ′2 −B(J ′)2)

4− (J ′2 −B(J ′)2)
=

1

96
C2

i,i+1(Ci,i+1 − 1)(Ci,i+1 − 2)

(162)

With the use of Ci,i+1 = 2L(i) · L(i+ 1) + 2, the type-II parent Hamiltonian (161) can be rewritten as:

Hchain-II =
∑
i

{
1

12
(V2 + 36V3/2)(L(i) · L(i+ 1)) +

1

3
(V2 + 3V3/2)(L(i) · L(i+ 1))2

+
1

12
(5V2 − 36V3/2)(L(i) · L(i+ 1))3 +

1

6
(V2 − 12V3/2)(L(i) · L(i+ 1))4 + V3/2

}
(163)

It is noticed that, unlike the type-I parent Hamiltonians (145), the type-II parent Hamiltonians (159)
themselves are Hermitian, since the UOSp(2|2) Casimir itself (154) is given by a Hermitian operator.
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5. Supersymmetric Matrix Product State Formalism

This section reviews the MPS formalism and its supersymmetric version, SMPS. In the formalism, the
edge degrees of freedom are naturally incorporated. Practically, the MPS formalism provides a powerful
method to calculate physical quantities, such as excitation gap, string order and entanglement spectrum.

5.1. Bosonic Matrix Product State Formalism

As we have discussed above, the VBS state is expressed as a product of valence bonds defined on
two adjacent sites. In 1D, the VBS state (29) can be rewritten as a product of matrices defined on local
site [21,24]:

|VBS⟩αβ = (R2Φ
∗
1)

α

L−1∏
i=1

(Φ†
iR2Φ

∗
i+1)(Φ

∗)βL|vac⟩

≡ (R2Φ
∗
1)

αΦ†
1 ·

(
L−1∏
i=2

R2Φ
∗
iΦ

†
i

)
· (R2Φ

∗
LΦ

∗
L
β)|vac⟩

= (A1A2 · · · AL)αβ (164)

where the “state-valued” matrix Ai is given by:

Ai = R2Φ
∗
i · Φ

†
i |vac⟩i =

(
a†ib

†
i (b†i )

2

−(a†i )
2 −a†ib

†
i

)
|vac⟩i =

(
|0⟩i

√
2|−1⟩i

−
√
2|1⟩i −|0⟩i

)
(165)

It is clear, by the Schwinger-boson construction, that the row and the column of the matrix, Ai,
correspond, respectively, to the valence bonds going from the site, i, to its adjacent left and right sites.
Sometimes, it is convenient to write (165) in a slightly different way:

Ai =
1∑

m=−1

A(m)|m⟩i (representation-(i)) (166a)

or

Ai =
∑

a=−x,y,z

A′(a)|a⟩i (representation-(ii))

|x⟩ = − 1√
2
(|+1⟩ − |−1⟩) , |y⟩ = i√

2
(|+1⟩+ |−1⟩) , |z⟩ = |0⟩

(166b)

In the first representation, the c-number matrices, A(m), are given by:

A(1) =

(
0 0

−
√
2 0

)
, A(0) =

(
1 0

0 −1

)
, A(−1) =

(
0

√
2

0 0

)
(167)

while, in the second, A′(a) is given by the Pauli matrices σa (a = x, y, z). Using these representation, we
can recast (164) into the form where the c-number coefficients and the basis part are separated explicitly:

(A1A2 · · · AL)αβ =
∑
{mj}

{A(m1)A(m2) · · ·A(mL)}αβ |m1⟩1⊗|m2⟩2⊗ · · ·⊗|mL⟩L (168)
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The state (164) or (168) represents a collection of the D2 states (with D being the matrix size) specified
by the matrix indices, (α, β). In the above case, (α, β) have a clear physical meaning that they specify
the states of the two emergent edge spins.

It is convenient to represent A(m) [and A∗(m)] by the following simple tripod diagrams:

(169)

where the thick and the thin lines, respectively, denote the d-dimensional physical Hilbert space (here,
d = 3 spin-1 states labeled by m = −1, 0, 1 or a = x, y, z) and the D-dimensional auxiliary space
(D = 2-dimensional space spanned by the spinors a† and b†); the matrix multiplication amounts to
connecting open thin lines on the adjacent sites. Then, the Bra and the ket vectors may be depicted by
strings of these tripods (Figure 16). Quantum states, which can be written in the form of (164) or (168),
are in general called matrix-product states (MPS). As has been mentioned in Section 1, any gapped
short-range states fall into this category. We refer the readers to recent readable reviews [32,33] for more
details and the applications.

Figure 16. Diagrammatic representation of MPS and its dual.

We would like to comment on an interesting property of MPS (168). When SU(2) rotation acts on
the state in (166b) as |a⟩ → Rba|b⟩, the local MPS matrix, Ai, transforms, like:

Ai
SU(2)−−−→

∑
a,b=x,y,z

RbaA
′(a)|b⟩i =

∑
a,b=x,y,z

Rbaσa|b⟩i =
∑

b=x,y,z

U †σbU |b⟩i = U †AiU (170)

where R is a three-dimensional rotation matrix and U is the corresponding spinor representation.
Namely, the original SU(2) symmetry for the local spin-1 objects “fractionalizes” into that for the two
spin-1/2 objects (spinors). From this, it is evident that the spin-1 VBS state on a finite open chain
[represented by the MPS (164)] transforms, under SU(2) rotation, as if there were two spin-1/2 objects
(“quark” and “anti-quark”) at the ends of the chain. The above is the simplest example of more general
symmetry fractionalization property of MPS, which will be extensively used in Section 6.4.

We can generalize the strategy to construct the parent Hamiltonian for the VBS state in Section 4.3 to
any MPS. The idea is to prepare a cluster Hamiltonian and tune the parameters, so that the Hamiltonian
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annihilates all the D2 states (i.e., matrix elements) of the MPS on that cluster. In fact, it can be shown
that for any given MPS, there exists the parent Hamiltonian for which the MPS (164) or (168) gives
the (degenerate) ground states [25]. By construction, the degree of degeneracy is equal to the number
of matrix elements (D2). For example, the ground state of the parent Hamiltonian of the spin-S VBS
state (the VBS model) is shown to have (S+1)×(S+1)-fold degeneracy, when the model is defined on
a finite open chain [6,7]. This exact degeneracy on a finite chain is peculiar to the VBS model and, if we
slightly deviate from the solvable VBS point, the emergent edge spins (S/2) start interacting with each
other with a coupling constant exponentially small in system size to (partially) resolve the degeneracy.
For a periodic chain, on the other hand, we have to take the trace over the matrix indices:

|MPS⟩PBC = Tr

{
L⊗
i=1

Ai

}
(171)

and hence the ground state is not degenerate.

5.2. Supermatrix-Product State (SMPS) Formalism and Edge States

The Schwinger boson construction described in the previous section can be generalized to SUSY
cases by using the Schwinger operator, which contains both bosons and fermion(s).

5.2.1. N = 1

Now let us consider the MPS representation for the type-I VBS chain [9]. The SVBS chain (85) is
written as a string of 3×3 matrices (α, β = 1, 2, 3):

|SVBS-I⟩αβ = (R1|2Ψ1(r)
∗)α

L−1∏
i=1

(Ψi(r)
†R1|2Ψi+1(r)

∗)Ψ∗(r)βL|vac⟩

≡ (R1|2Ψ1(r)
∗)αΨ1(r)

† ·

(
L−1∏
i=2

R1|2Ψi(r)
∗Ψi(r)

†

)
· (R1|2ΨL(r)

∗ΨL(r)
†)β|vac⟩

= (A1A2 · · · AL)αβ

(172)

where:

Ai = RIΨi(r)
∗ ·Ψi(r)

†|vac⟩i

=

 a†ib
†
i (b†i )

2
√
rb†if

†
i

−(a†i )
2 −a†ib

†
i −

√
ra†if

†
i

−
√
rf †

i a
†
i −

√
rf †

i b
†
i 0

 |vac⟩i

=

 |0⟩i
√
2|−1⟩i

√
r|↓⟩i

−
√
2|1⟩i −|0⟩i −

√
r|↑⟩i

−
√
r|↑⟩i −

√
r|↓⟩i 0


(173)

From the expression (172), it is clear that the nine-fold degenerate ground states correspond to different
possible choices of the edge states:

|SVBS-I⟩open =
L⊗
i=1

Ai =

|sL= ↓; sR= ↑⟩ |sL= ↓; sR= ↓⟩ |sL= ↓; sR=◦⟩
|sL= ↑; sR= ↑⟩ |sL= ↑; sR= ↓⟩ |sL= ↑; sR=◦⟩
|sL=◦; sR= ↑⟩ |sL=◦; sR= ↓⟩ |sL=◦; sR=◦⟩

 (174)
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The row index specifies the left edge states and the column one the right. On the left (right) edge, the
matrix indices {1, 2, 3} correspond respectively to {↓, ↑, hole} ({↑, ↓, hole}).

By looking at the form of Ai (173), one sees that the matrix has a block structure:(
B(2, 2) F (2, 1)

F (1, 2) B(1, 1)

)
(175)

where B(m,n) and F (m,n) respectively denote “bosonic” and “fermionic” (i.e., anti-commuting)
matrices of the dimension, m×n. Therefore, it is convenient to regard Ai as a supermatrix. Thus,
the SVBS chain can be expressed in the form of a supermatrix-product state (SMPS), and the matrix
size of the SMPS is directly related to the number of edge degrees of freedom. The (S)VBS states with
different edge states have finite overlaps with each other, which exponentially decrease by the system
size, L. That is, two (S)VBS states with different edge states are orthogonal to each other only in the
infinite-size limit.

In constructing the SVBS state on a periodic chain, one has to treat the fermion sign carefully, and
one sees that the trace operation used in the standard MPS representation (171) should be replaced with
the supertrace:

|SVBS-I⟩periodic = STr

{
L⊗
i=1

Ai

}
(176a)

where the supertrace is defined as:

STr(M) ≡ M11 +M22 −M33 (176b)

From these A-matrices, we obtain the following 9×9 T -matrices (transfer matrix):

Tᾱ,α;β̄,β ≡ A∗(ᾱ, β̄)A(α, β) =



1 0 0 0 2 0 0 0 r

0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −r 0

0 0 0 −1 0 0 0 0 0

2 0 0 0 1 0 0 0 r

0 0 0 0 0 0 r 0 0

0 0 0 0 0 −r 0 0 0

0 0 r 0 0 0 0 0 0

r 0 0 0 r 0 0 0 0


(ᾱ, α, β̄, β = 1, 2, 3)

(177)

Here, A∗ is obtained from A by |·⟩ 7→ ⟨·| and complex conjugation.
Using the matrices, A(m), and the diagrammatic representation introduced in Section 5.1, the transfer

matrix may be expressed as:

Tᾱ,α;β̄,β ≡
d∑

m=1

[A∗(m)]ᾱ,β̄ [A(m)]α,β = (178)
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The transfer matrix naturally appears in the calculations of the MPS formalism. For instance, by using the
diagrammatic representation in Figure 16 and the orthogonality of the local basis states, ⟨m|n⟩i = δmn,
one can show that the overlap of the two (S)MPSs with edge states {ᾱL, ᾱR} and {αL, αR} can be written
as (for the bosonic MPS, this is straightforward; for the SMPS, one has to treat the fermion sign carefully,
but at the end of the day, we can check that the final result is the same) (see Figure 17a):

(ᾱL,ᾱR)⟨MPS|MPS⟩(αL,αR) =
[
TL
]
ᾱL,αL;ᾱR,αR

(179)

where the matrix multiplication is taken over the tensor index (ᾱ, α).

Figure 17. (a) Diagrammatic representation of overlap of two supermatrix-product states
(SMPSs); (b) more general boundary conditions, which are linear combinations of different
(ᾱL/R, αL/R)s may be used. In those cases, edge states are expressed by D2-dimensional
vectors, “L” and “R” (for instance, in the simplest case (a), the edge-state vector has the
components, δᾱ,ᾱLδα,αL).

In the periodic case, the above expression is modified:

⟨SVBS-I|SVBS-I⟩PBC =
∑
α,β

sgn(α)sgn(β)
{
TL
}
(α,β;α,β)

(180)

where:

sgn(α) =

1 for α = 1, 2

−1 for α = 3
(181)

Notice that the transfer matrix directly appears in the right-hand side of (180), and hence, the calculation
is boiled down to that of the power of the transfer matrix. The eigenvalues of the transfer matrix (177)
are computed as:{

−1(×3), − ir(×2), ir(×2),
1

2

(
3−

√
8r2 + 9

)
,
1

2

(
3 +

√
8r2 + 9

)}
(182)

and plotted in Figure 18. The largest eigenvalue of the transfer matrix, 1
2

(
3 +

√
8r2 + 9

)
, will be relevant

in the thermodynamic limit.
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Figure 18. (Color online) Plot of absolute values of the five different eigenvalues of T . The
largest eigenvalue is always unique and non-degenerate (except for r → ∞). The figure and
caption are taken from [9].

5.2.2. N = 2

Similar to the type-I SVBS chain, we can express the type-II SVBS chain (M = 1) in the form
of SMPS:

|SVBS-II⟩αβ = (A1A2 · · · AL)αβ (183)

where:

Ai = R2|2Ψ
∗
i (r)Ψi(r)

†|vac⟩i =


a†ib

†
i (b†i )

2
√
rb†if

†
i

√
rb†ig

†
i

−(a†i )
2 −a†ib

†
i −

√
ra†if

†
i −

√
ra†ig

†
i

−
√
rf †

i a
†
i −

√
rf †

i b
†
i 0 −rf †

i g
†
i

−
√
rg†ia

†
i −

√
rg†i b

†
i rf †

i g
†
i 0

 |vac⟩i (184)

As in the type-I SVBS state, the supertrace is necessary for the periodic system:

|SVBS-II⟩ = STr

{
L⊗
i=1

Ai

}
(185)

where STr(M) ≡M11 +M22 −M33 −M44. The corresponding transfer matrix is a 16 × 16 matrix and
has seven different eigenvalues:{

−1(×3), − ir(×4), + ir(×4), − r2(×2), r2,
1

2

(
r2 + 3− f(r)

)
,
1

2

(
r2 + 3 + f(r)

)}
(186)

where f(r) ≡
√
r4 + 10r2 + 9. Regardless of the value of r, the largest eigenvalue is: 1

2
(r2 + 3 + f(r)) .

5.3. Excitations

In this section, we delve into dynamical properties, i.e., low-lying excitations on the SVBS chain. In
Section 4.3, we have already obtained the parent Hamiltonian from the VBS state. Given the form of
the Hamiltonian, we can, in principle, investigate dynamical properties of the system. Unfortunately,
however, even though we have the exact ground state in hand, only limited (exact or rigorous)
information about the excitations is available [181,182]. Nevertheless, when the explicit form of the
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(whether exact or approximate) ground-state wave function is known, the single-mode approximation
(SMA) gives reasonably good results [75,91,92]:

VBS state Exact−−→ Parent Hamiltonian SMA−−→ Excitation (187)

The SMA not only provides us with a simple transparent way of calculating (approximate) excitation
spectrum, but also sets a rigorous upper bound for the true spectrum.

5.3.1. Fixing Parent Hamiltonian

Since the type-I Hamiltonian (147) contains one extra parameter up to the overall factor, i.e., the ratio
of V3/2 to V2, we begin with fixing the form of the parent Hamiltonian. One way to fix the remaining
coupling is to require that the SUSY parent Hamiltonian (147) should reduce to the original SU(2) VBS
Hamiltonian (138) in the limit r → 0. This naturally fixes the two coupling constants in the type-I parent
Hamiltonian (147) as:

V3/2 = tanh r , V2 =
√
2 (188)

and we have:

H =
∑
i

{
tanh(r)P†

3
2

(i, i+ 1)P 3
2
(i, i+ 1) +

√
2P†

2(i, i+ 1)P2(i, i+ 1)

}
(189)

Some of the matrix elements in the fermionic sector have a factor, 1/r, and in the limit, r → 0, they
are divergent. However, they are harmless in the limit, since the ground states contain no fermion in the
r → 0 limit. Consequently, the type-I parent Hamiltonian projected onto the bosonic sector coincides
with the spin-1 VBS Hamiltonian (138).

5.3.2. Crackion Excitation

Now, we are ready to derive the excitation spectra by using SMA. The paradigmatic picture of the
low-lying excitations in the half-odd-integer-spin chains is provided by the so-called
Lieb–Schultz–Mattis construction [183], where we apply a slow twist along one of the symmetry
axis (say, the z-axis) of the spin Hamiltonian. Physically, this boosts the quasi-particles in the system
and thereby creates low-lying excitations [with energies of the order of ∼ (chain length)−1] at a special
momentum determined solely by the total magnetization. Unfortunately, this construction does not
work in the usual VBS state [24]. Instead, as we will see, an excited triplet bond (crackion [184], i.e., a
“crack” created in a “solid” of valence bonds; see Figure 19) in the VBS gives, to good approximation, a
physical low-lying excitation. Due to the simple structure of the VBS states, the excitations considered
in the SMA essentially coincide with the crackions [24,184]. In the Schwinger-boson construction of
the VBS states (29), the crackion excitation is obtained by replacing one of the singlet valence bonds,
(a†ib

†
j − b†ia

†
j), by a triplet one (either a†ia

†
j or (a†ib

†
j + b†ia

†
j) or b†ib

†
j). Since a single Schwinger boson a†

or b† describes a spin-1/2 spinon, we may thought of the triplet crackion as the confined triplet pair of
two spinons. The notion of crackion excitations can be generalized in other VBS-type models (states)
with higher symmetries (e.g., SU(N)), where an intriguing picture on the relation between spinon
confinement and the existence of “Haldane gaps” has been proposed [116,118].
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Now, let us consider the crackions in the SVBS chains [9]. Since we are dealing with a SUSY system,
we consider two different types of excitations (see Figure 19) that may be regarded as super-partners of
each other:

• Spin excitation:
Spin triplet excitation (S = 1) created by UOSp(1|2) bosonic operators

• Spinon-hole excitation:
Spin doublet excitation (S = 1/2) paired with a hole created by UOSp(1|2) fermionic operators

They are schematically represented in Figure 19.

Figure 19. (Color online) Action of bosonic (spin) operator, Sz (a), and fermionic generator,
K1 (b), onto the SVBS state. The local operators, Sa(i) (a = x, y, z) and K1,2(i),
respectively, create a triplet bond and a spinon-hole pair on either of the two adjacent bonds,
(i− 1, i) and (i, i+ 1). The figure and caption are taken from [9].

In the SMA, the (unnormalized) excited-state wave function is assumed to be given (for the spin
excitation) by:

|k, a⟩ = Sa(k)|SVBS⟩ (190)

where Sa(k) denotes the Fourier transform of the local spin operator Sa
j . Then, the excitation spectrum

(or the Bijl–Feynman frequency [185,186]) is obtained by calculating the following quantity:

ωa
SMA(k) =

⟨k, a|H|k, a⟩
⟨k, a|k, a⟩

− E0 =
⟨k, a|(H− E0)|k, a⟩

⟨k, a|k, a⟩
(191)

where H is given by (189) and E0 is the ground-state energy. We can consider other types of excitations
by changing Sa(k) to other operators.

5.3.3. Spin Excitation

Let us start by investigating the action of local spin operators:

S+(i) = a†ibi , S
−(i) = b†iai , S

z(i) =
1

2
(a†iai − b†ibi) (192)
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on the SVBS state. A little algebra shows that these spin operators create triplet bonds around the site i
(see Figure 19):

S+
i |SVBS-I⟩ = |ψ(1)

i−1⟩ − |ψ(1)
i ⟩ (193a)

Sz
i |SVBS-I⟩ = 1

2

{
−|ψ(0)

i−1⟩+ |ψ(0)
i ⟩
}

(193b)

where |ψ(1)
i ⟩ and |ψ(0)

i ⟩ are obtained by replacing the SUSY valence bond, (a†ia
†
i+1 − b†ib

†
i+1 − r f †

i f
†
i+1),

by triplet bonds, a†ia
†
i+1 and (a†ib

†
i+1 + b†ia

†
i+1), respectively. By taking the Fourier transform of

Equations (193a) and (193b), one immediately sees that the triplon-crackion equivalence (except for
the momentum-dependent form factor) found in the ordinary VBS states [24,184] holds in the SVBS
case, as well. By simple algebra, it is easy to show the following bound for the true spin-excitation
spectrum ωs,a

true(k):

ωs,a
SMA(k) =

⟨SVBS-I|Sa(k)(H− E0)S
a(−k)|SVBS-I⟩

⟨SVBS-I|Sa(k)Sa(−k)|SVBS-I⟩

=
1

2

⟨SVBS-I| [Sa(−k), [H, Sa(k)]] |SVBS-I⟩
⟨SVBS-I|Sa(k)Sa(−k)|SVBS-I⟩

≥ ωs,a
true(k)

(194)

The last inequality is proven by noting that the left-hand side can be rewritten as the following average:∫∞
0
dω ωSaa(k, ω)∫∞

0
dωSaa(k, ω)

(195)

and using the spectral decomposition of the dynamical structure factor, Saa(k, ω). The spin-excitation
spectrum obtained [9] in this way is shown in Figure 20. At r = 0, the dispersion reduces to the
well-known result of the original VBS chain [75]:

ωs,a
SMA(k) =

10

27
(5 + 3 cos k) (a = x, y, z) (196)

In the limit, r → ∞, on the other hand, the spin excitation loses its dispersion. This is easily understood
by noticing that the ground-state reduces to the Majumdar-Ghosh dimer states on which excitations
cannot move.

5.3.4. Spinon-Hole Excitations

The dynamics of doped holes in the spin-gapped background is in its own right interesting [187].
In the context of the VBS models, some (both exact and approximate) results have been obtained. For
instance, in [188], the motion of spin-0 holes in the spin-1 VBS background is considered and the
exact one-hole spectrum is obtained. Motivated by the experiments carried out for hole-doped spin-1
compound, Penc and Shiba [189] introduced a realistic model and investigated the motion of a single
spin-1/2 hole immersed in the gapped spin-1 VBS background.
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Figure 20. (Color online) The spin excitation (triplon) spectrum ωs
SMA(k) obtained by SMA.

At r = 0, it reduces to the well-known dispersion ωSMA(k) = 10(5 + 3 cos k)/27 of the
spin-1 VBS model. When r → ∞ (Majumdar-Ghosh limit), dispersion becomes flat. The
figure and caption are taken from [9].

A similar strategy can be used to obtain the spectrum of the charged (hole, f †) excitation, which is
always paired with the S = 1/2 spinon (a† or b†). These excitations are created by applying the two
fermionic generators of UOSp(1|2):

K1(i) =
1

2
(
1√
r
fia

†
i +

√
rf †

i bi)

K2(i) =
1

2
(
1√
r
fib

†
i −

√
rf †

i ai)
(197)

to the VBS ground state. By using the explicit form of the ground-state wave function, it is easy to show:

K1(i)|SVBS-I⟩ =
√
r

2

{
|ψ(1/2)

i−1 ⟩ − |ψ(1/2)
i ⟩

}
(198)

where the crackion state, |ψ(1/2)
i ⟩, is obtained by replacing the SUSY valence bond,

(a†ib
†
i+1 − b†ia

†
i+1 − rf †

i f
†
i+1), with a spinon-hole pair, (a†if

†
i+1 + f †

i a
†
i+1) (see Figure 19b). The

excited state, K2|SVBS⟩, is defined similarly with a† in the above expression replaced with b†. For
r = 0, the spectrum is given by:

ωh
SMA(k) =

8

3(2− cos k)
(199)

The behavior of the spectrum as a function of r [9] is plotted in Figure 21.
We add some comments about distinctions between ωs

SMA(k) and ωh
SMA(k). Since SUSY relates the

bosonic generators, S, and the two fermionic generators, Kα, one might naively expect the same spectra
for their corresponding excitations. However, this expectation relies on the existence of a “unitary”
transformation, which linearly transforms the set of the SUSY generators onto themselves. Since no
such transformation exists in the present SUSY, the spectra for the spin and charge sectors indeed exhibit
different behaviors.



Symmetry 2013, 5 166

Figure 21. (Color online) The excitation spectrum, ωh
SMA(k), of a spinon-hole pair obtained

by SMA. This spinon-hole pair state is created by fermionic generator, K1, except at r = 0,
where the transition matrix elements of K1 from the ground state vanish. The figure and
caption are taken from [9].

6. Topological Order

As has been discussed in Section 1, no true topological order is possible in 1D systems [61,62].
However, if we impose a certain kind of symmetries, there can be topologically non-trivial phases
protected by the symmetries dubbed symmetry-protected topological phases. One of the typical
examples would be a non-trivial topological phase with the Majorana edge mode in 1D interacting
fermions [190]. We already know that there exists an analogous “topological” phase with (almost)
free edge spins (S = 1/2) at the edges in 1D spin systems, as well. In this section, we give detailed
discussions about the topological properties of the SVBS states [9,10]. In particular, we investigate the
string order and the entanglement spectrum of type-I and type-II VBS states. Then, we generalize the
MPS argument of the symmetry-protected topological order [65,66] to SUSY cases to understand the
degeneracy structure in the entanglement spectrum.

6.1. Hidden Antiferromagnetic Order and String Order Parameter

Before proceeding to the SUSY cases, we briefly recapitulate the hidden non-local order in 1D spin
systems. The concept of hidden order is an isotropic generalization of the Néel order. As we have seen
in Section 2.2, the Néel order for S = 1 antiferromagnetic spin chains looks like (if we assume that the
ordering occurs in the z-axis):

· · · + − + − + − + − + · · · (200)

Here, + stands for Sz = +1 and − for Sz = −1. Clearly, the spin-spin correlation:

⟨Sz
i S

z
j ⟩ (201)
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depends on the parity of the number, n, of sites between i and j. A simple way of turning this
position-dependent (or alternating) correlation into the smooth ferromagnetic one would be to insert
a phase factor, (−1)n, between the two spins:

⟨Sz
jS

z
j+n⟩ 7→ ⟨Sz

j (−1)nSz
j+n⟩ (202)

in order to cancel the sign factor coming from the alternating +1 and −1 between the sites, j and
j + n. Namely, the Néel antiferromagnetic correlation translates to the ferromagnetic correlation in
⟨Sz

j (−1)nSz
j+n⟩.

On the other hand, as is seen in the expansion of the VBS state [see (36)], a typical Sz sequence
appearing in the state reads as:

· · · + − + 0 − + − 0 0 + − 0 + · · · (203)

As has been pointed out already in Section 2.2, by removing zeros in the sequence, we can reproduce
the usual Néel order. In this sense, there still exists a certain kind of Néel order, though “disordered” by
randomly inserted zeros, called the hidden string order (however, there is a striking difference from the
usual Néel order. As has been mentioned in Section 2.2, the string order exists regardless of the choice
of the quantization axis, while the Néel AF order is observed only in a particular direction) [18,19].
However, the trick used above does not work, since, due to the intervening zeros, the positions of +1

and −1 are random (though they still appear in an alternating way) and the phase (−1)n cannot cancel
the sign factor. Nevertheless, a little thought tells that the following choice will do the job:

exp (iπSz
tot(j, j + n)) = (−1)# of ±1 between j and j + n (204)

where:

Sz
tot(i, j) ≡

j∑
k=i

Sz
k (205)

stands for the partial sum of Sz
k between an arbitrary pair of sites, i and j. Therefore, it is suggested that

we should use instead of Equation (202), the following pair of non-local order parameters:

Ox,∞
string ≡ lim

n→∞

⟨
Sx
j exp{iπSx

tot(j + 1, j + n)}Sx
j+n

⟩

Oz,∞
string ≡ lim

n→∞

⟨
Sz
j exp{iπSz

tot(j, j + n− 1)}Sz
j+n

⟩ (206)

known as the string order parameters [18,19], in order to characterize the non-trivial spin order in the
(S = 1) VBS state. In the first line, Sx

tot(j + 1, j + n) is defined similarly to Sz
tot(j, j + n − 1) [see

Equation (205)].
The above expressions have been guided by a simple physical intuition. However, as has been pointed

out in [191,192], the string order parameters have in fact a deeper meaning than we expect from the
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above simple argument. To see this, first we note that the string correlation functions can be recasted in
a suggestive way:

Ox
string(j, j + n) ≡

⟨
Sx
j exp{iπSx

tot(j + 1, j + n)}Sx
j+n

⟩
=
⟨
S̃x
j S̃

x
j+n

⟩
Oz

string(j, j + n) ≡

⟨
Sz
j exp{iπSz

tot(j, j + n− 1)}Sz
j+n

⟩
=
⟨
S̃z
j S̃

z
j+n

⟩
(207)

where S̃x and S̃z are defined as:

S̃x
j ≡ Sx

j exp{iπSx
tot(j + 1, L)} , S̃z

j ≡ exp{iπSz
tot(1, j − 1)}Sz

j (208)

The physical meaning of these operators may be best understood by considering the “height plot” of the
VBS spin configurations [18,24], where the value Sz

tot(1, j) is represented by the “height” between the
sites, j and j+1 (hence, Sz

j itself is a “step” at the site j). Figure 23a is a plot of a typical Sz-configuration
of the spin-1 VBS state when the left edge state is ↑. One can clearly see that the meandering steps are
always confined between the heights 0 and +1. A similar analysis in the case with the left edge state
↓ shows that the heights are either 0 or −1. From these observations, it is concluded that the string
exp{iπSz

tot(1, j−1)} attached to the left of the operator, Sz
j , somehow suppresses the strong fluctuations

in Sz and that S̃z takes either 0 or +1 (0 or −1) when the left edge state is ↑ (↓). Similarly, one can show
that S̃x becomes weakly ferromagnetic depending on the right edge states. In short, non-zero string
order parameters translate to the existence of a certain kind of weakly ferromagnetic order in the x and
the z directions (i.e., ⟨S̃a⟩ ̸= 0 for a = x, z).

Remarkably, the following unitary transformation [193]:

UKT = exp

{
iπ
∑
k<j

Sz
kS

x
j

}
=
∏
k<j

exp{iπSz
kS

x
j } (209)

relating the two operators, Sa and S̃a, as:

S̃x
j = UKT S

x
j U

−1
KT , S̃z

j = UKT S
z
j U

−1
KT (210)

transforms the original [SU(2)-invariant] Hamiltonian into the one, UKT HU−1
KT , which is invariant only

under the dihedral group, D2 (or Z2×Z2), consisting of two π rotations with respect to the x and the
z axes [191,192]. Therefore, we can interpret the existence of the string order (both in x and z) in
the original system as a consequence of the spontaneous breakdown of the Z2×Z2-symmetry in the
transformed system, UKT HU−1

KT and the resulting (weak) ferromagnetic order in S̃x,z.
The idea of non-local hidden order and edge states has been to some extent

generalized [24,167,193–195] to other values of integer-spin-S, although the hidden Z2×Z2-symmetry
is never broken [193] in the case of even-S (see Figure 22) (this does not mean that Z2×Z2-symmetry
never breaks down in any even-S chains. In fact, even when S =even, one can construct the model
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ground states that have non-vanishing string order parameters.) In the course of these studies, it has
been recognized that there are some differences [24,193] in the ground-state properties according to
the parity of S. Nevertheless, by analogy with the quantum-Hall systems [166], the ground state of
generic integer-spin antiferromagnetic chains, including the original VBS state and its higher-spin
generalizations [75], characterized by certain kinds of non-local correlations and emergent edge states,
have been called “topological” in a rough sense.

Figure 22. (Color online) The behaviors of string order parameters in correspondence with
magnitude of bulk spins. In particular, at θ = π, the string order parameters of even spin
VBS (S = 2, 4) vanish, while those of odd spin VBS, (S = 1, 3), have finite values.

To illustrate distinct behaviors depending on the parity of spin, S, we may introduce the following
generalized (angle-dependent) string order parameter [193]:

Oz,∞
string(θ) ≡ lim

n→∞

⟨
Sz
j exp{iθSz

tot(j, j + n− 1)}Sz
j+n

⟩
(211)

where the parameter, θ, has been introduced for convenience (the introduction of the θ parameter is
mainly motivated by the idea that the intermediate string might somehow cancel the fluctuations between
the two spins, Sz(i) and Sz(i + n); for θ = π, this works perfectly in the S = 1 VBS state; except
for θ = 0 (ordinary spin-spin correlation) and θ = π (string correlation), no symmetry-related reason
has been found so far). When θ = 0, it reduces to the usual spin-spin correlation, and when θ = π,
it coincides with the string order parameter discussed above. The behaviors of the generalized string
order parameter (211) are shown for several values of bulk spin, S, in Figure 22 [24]. The string order
parameters are symmetric with respect to θ = π and generally have S peaks for the spin-S VBS state.
As is expected from the ground state being magnetically disordered, the infinite-distance limit of the
usual spin-spin correlation function (θ = 0) vanishes regardless of the value of S. On the other hand,
Figure 22 demonstrates that Oz,∞

string takes finite values for the odd-S VBS states, while it vanishes for
even-S. Therefore, in the sense of the Z2×Z2-symmetry argument [191,192] mentioned above, this
hidden symmetry is never broken [193] in the even-S VBS models.
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6.2. Generalized Hidden String Order in SVBS Chain

6.2.1. N = 1

Unlike the original VBS chains, Sz = 1/2 and −1/2 generally appear in the Sz sequence of the
SVBS chain, and a typical Sz sequence of the SVBS chains is given by (it may be worthwhile to give
some comments on the relation to the ferrimagnetic spin chains that also consist of alternating spin 1
and spin 1/2 [47]) Though both the ferrimagnetic chains and the present SVBS chains contain spin-1 and
spin-1/2 degrees of freedom, in the SVBS chains, the spin 1 and spin 1/2 are not necessarily alternating
(see (212) and Figure 10). More importantly, while the ferrimagnetic spin chain can exhibit a long-range
magnetic order as the order parameter commutes with the Hamiltonian, the ground state of the SVBS
chain itself is spin-singlet and the SU(2)-symmetry is never broken (spontaneously).

· · · 0 ↑ ↑︸︷︷︸ 0 0 ↓ ↓︸︷︷︸ + − 0 0 ↑ ↓︸︷︷︸ + ↓ ↑︸︷︷︸ ↓ ↓︸︷︷︸ 0 · · · (212)

From the sequence, one can “derive” the ordinary hidden order. First, we search the spin-half sites from
the left, and whenever we encounter a pair of spin-half sites, we sum the two Sz values to have the
effective Sz(= +, 0,−) (e.g., ↓ ↓ 7→ −):

· · · 0 + 0 0 − + − 0 0 0 + 0 − 0 · · · (213)

Next, we remove the zeros in the sequence to recover the standard Néel pattern:

· · · + − + − + − · · · (214)

This observation leads to the existence of a (generalized) hidden order of the SVBS chain. Figure 23
shows a typical height configuration corresponding to the usual VBS chain and its SUSY counterpart.
Reflecting the existence of hidden order, the height configuration is always meandering between the
height 0 and the height 1 (the same reasoning applies to the general spin-S VBS cases, and the
height configurations are confined within a region of width S [24]). It should also be noted that the
height-configuration (205) is directly reflected in the components of the SMPS (174): |Sz

tot(i)=0⟩ |Sz
tot(i)=− 1⟩ |Sz

tot(i)=− 1/2⟩
|Sz

tot(i)=1⟩ |Sz
tot(i)=0⟩ |Sz

tot(i)=1/2⟩
|Sz

tot(i)=1/2⟩ |Sz
tot(i)=− 1/2⟩ |Sz

tot(i)=0⟩

 (215)

To substantiate the existence of the hidden order, we explicitly calculate the string parameter for the
SVBS chains. The behaviors of the string order are depicted in Figure 24 with respect to the hole
doping parameter.

From Figure 24, one can find distinct behaviors of the string parameter in terms of the parity of
bulk superspin. The string parameters of odd superspin SVBS chains generally decrease with increase
of the hole doping, while those of the even superspin SVBS chains increase. Since the hole-doping
simply reduces the spin degrees of freedom on the spin chain, the decrease of the string order of the odd
superspin SVBS chains may be naturally understood. On the other hand, the string order behavior of the
even superspin SVBS chains is quite interesting, since the string order revives with the hole doping. An
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intuitive explanation may go as follows. For instance, consider S = 2 SVBS chain. At r = 0, the S = 2

SVBS chain is exactly identical to the S = 2 VBS chain, which is essentially constituted of two S = 1

VBS chains, upper and lower chains. By doping the holes to the S = 2 VBS chain, the spin degrees of
freedom, say, on the upper S = 1 VBS chain, decrease to have deficits in the chain. Below the deficits on
the upper chain, the spin degrees of freedom on the lower S = 1 VBS chain emerge and come into effect.
In this way, the spin degrees of freedom of the lower S = 1 VBS chain contribute to generate the finite
string order with the increase of hole doping to the S = 2 VBS chain. This intuitive explanation can be
applicable to the revival of the string orders of general, even superspin, SVBS chains. Consequently, the
SVBS states bear a finite string order with a finite amount of hole-doping regardless of the parity of the
bulk superspin. This is the salient SUSY effect to the topological stability of quantum spin chains. We
revisit this effect in the context of the symmetry protected topological order in Sections 6.3 and 6.4.

Figure 23. (Color online) Height plot of typical spin configurations in S = 1 VBS chain
(a) and S = 1 SVBS chain (b). Note that heights are confined within a region of width
1. Although a simple “diluted” Néel picture does not hold, because of the presence of hole
pairs, still, we can find a string order when hole pairs are grouped together in (b). The figure
and caption are taken from [9].

1 0 1 0 0 1−1 −1 −1
+1

0

1 1 1−1/2 −1 −1
+1

0

−1/2 −1/2 1/2 0

0

hole pair hole pair

+1/2

(a)

(b)

Figure 24. (Color online) The string correlation function O∞
string (206) of the SVBS

infinite-chain for several values of the superspin, S = M , is plotted as a function of r.
Notice that, in the limit r → 0, the string order parameter, O∞

string, for the S = M SVBS
chain reproduces that of the S =M VBS chain. The figure and caption are taken from [9].
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6.2.2. N = 2

For the S = 1 type-II SVBS infinite chain, the string correlation is computed as:

O∞
string =

4

(r2 + 1) (r2 + 9)
(216)

which is plotted in Figure 25. The string order (216) takes the value of the S = 1 VBS chain, 4/9, at
r = 0, like the S = 1 type-I chain, while approaches to zero in the r → ∞ limit, unlike the S = 1 type-I
chain. Since spin degrees of freedom completely disappear from the type-II chain in the r → ∞ limit
(Figure 11), the string order of the type-I and II chains shows qualitatively different behaviors.

Figure 25. The infinite-distance limit of the string correlation function (206) as a function
of r. The value of string correlation smoothly decreases from the original VBS value, 4/9,
to 0 (no spins left). The figure and caption are taken from [9].

6.3. Entanglement Spectrum and Edge States

As discussed above, the string order of type-I SVBS chains with even bulk-superspin S revives upon
hole doping. This suggests that, in contrast to their bosonic counterpart, even the SVBS states with
even superspin can host the stable topological phase. Though the string order parameter is appealing
in its similarity to the order parameter in FQHE [166] and its relation to the hidden Z2×Z2-symmetry,
its fragility under perturbations has also been discussed recently [63,196], and the alternative “order
parameter” has been sought.

Recent development in quantum-information-theoretic approaches to quantum many-body problems
enables us to extract information on the bulk topological order from the entanglement properties of
the ground-state wave function [28,197,198]. The topological states in one-dimensional (1D) spin
systems have been reconsidered [63,65,66] from the modern point of view, and the precise meaning
of the topological Haldane phase has been clarified. In these studies, the string order parameters and
the edge states, which in general are not robust against small perturbations, are replaced by more
robust objects (i.e., the structure of the entanglement spectrum or the structure of tensor-network). In
particular, it has been shown in [65,66] that the existence of (at least one of) the discrete symmetries
(time-reversal, link-inversion and Z2 × Z2 symmetry) divides all states of matter in 1D into two
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categories: topologically-non-trivial ones and the rest. Generic odd-integer-S spin chains belong to
the former, while even-S chains to the latter. The hallmark of the topological phase protected by the
above discrete symmetries is that all entanglement levels are even-fold degenerate. In this formulation,
the difference between the odd-S VBS states and the even-S ones are naturally understood in terms
of the entanglement structure, the degenerate structure exists only for odd-S cases (this does not mean
that all the odd-S spin chains have the degenerate entanglement spectrum. We can construct an odd-S
spin state without the even-fold degeneracy.) It should also be mentioned that the topological phases
of one-dimensional gapped spin systems have been classified by group cohomology [61,62,64] and the
detailed analyses based on the Lie group symmetries are reported in [69,70].

Following the proposal of Li and Haldane (Li and Haldane proposed to take the degeneracy of
entanglement spectrum as the hallmark of topological phases, which can be applicable to general
topological phases beyond QAFM) [28], we use the structure of the entanglement spectrum (e.g.,
degeneracy of the entanglement levels) as the fingerprint of topological phases. Then, the problem
of the topological stability of the SVBS chains translates to the stability of the degenerate structure of
the entanglement spectrum. Before proceeding to the details, we briefly introduce characteristic features
of the entanglement entropy of the original SU(2)-invariant VBS states. It has been reported that the
entanglement entropy of the SU(2) spin-S VBS state on an infinite chain is given by a constant (on the
other hand, for gapless spin chains, the entanglement entropy diverges as log(L) with L the length of
a subsystem for which entanglement entropy is defined [58]) determined essentially by the degrees of
freedom of the edge spins S/2 [51,52]:

SE.E. ∼ log(S + 1) (L → ∞) (217)

Corresponding to the parity of the bulk spin of the VBS chains, there appear either integer or half-integer
spin at the edge. Meanwhile, in the presence of SUSY, there necessarily appears both integer and
half-integer spins at the edge, since SUSY relates integer and half-integer spin degrees of freedom
(Figure 26). Such a particular feature of the edge spins is crucial in understanding the salient structures
of the entanglement spectrum of the SVBS chains.

Figure 26. (Color online) SUSY relates the edge spins with different parity.

Bulk spin Edge spin

Even
Integer

Half-odd-integer

Odd Half-odd-integer

Integer

SUSY
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6.3.1. Schmidt Decomposition and Canonical Form of MPS

Before going into the detailed discussion, it would also be worthwhile here to give the derivation of
the entanglement spectrum using MPS. Suppose we divide a system into the two parts, A and B (see
Figure 27). Then, we can express any wave function (state) |Ψ⟩ as [26]:

|Ψ⟩ =
χ∑

α=1

λα|α⟩A ⊗ |α⟩B (218)

with non-zero coefficients λα(≥ 0). Here, {|α⟩A} (1 ≤ α ≤ dimHA; HA: Hilbert space of A) and
{|β⟩B} (1 ≤ β ≤ dimHB) are orthonormal basis states in the subspaces, A and B, respectively:

⟨α|α′⟩A = δα,α′ , ⟨β|β′⟩B = δβ,β′ (219)

The expansion (218), called the Schmidt decomposition, defines the Schmidt coefficients λα and
describes the entanglement between the two subsystems. The Schmidt number χ is the number
of non-zero Schmidt coefficients and never exceeds the minimum of the dimensions of the Hilbert
subspaces. From the normalization of |Ψ⟩; the Schmidt coefficients satisfy

∑χ
α=1 λ

2
α = 1. The

“spectrum” of the entanglement energy ϵα defined by:

λα
2 = e−ϵα (ϵα ≥ 0) (220)

is called the entanglement spectrum [28]. In terms of the Schmidt coefficients, the (von Neumann)
entanglement entropy is given by [26]:

SE.E. = −
∑
α

λ2α log λ
2
α =

∑
α

ϵαe−ϵα (221)

It is interesting to observe that SE.E. may be viewed as the ordinary thermodynamic entropy if we
introduce a fictitious “temperature”, T , and “partition function” as:

Z(T ) ≡
∑
α

e−
1
T
ϵα , Z(T = 1) = 1 (222)

and define:
SE.E. = − ∂

∂T
{−T logZ(T )}

∣∣∣
T→1

(223)

Figure 27. The VBS state is divided into two parts and the edge degrees of freedom emerge
at the cut.

A B

entanglement cut

“edge”
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In the MPS formulation, the derivation of the Schmidt coefficients are rather straightforward. Since
the MPS is represented as the product of matrices, Aj , defined on each site, one can easily write
down an analogue of the Schmidt decomposition (218) (see Section 5.2 for the physical meaning of
the matrix indices):

(A1A2 · · · AN)αL,αR
=

D∑
α=1

(A1A2 · · · Ai︸ ︷︷ ︸
A

)αL,α · (Ai+1 · · · AN︸ ︷︷ ︸
B

)α,αR
(224)

where D is the size of the matrix, Aj , and each state-valued matrix, A, is expanded explicitly in terms
of the c-numbered matrices, A(m), and the orthogonal local basis states, |m⟩j as:

Aj =
d∑

m=1

Aj(m)|m⟩j (225)

(d: dimension of local physical Hilbert space). For simplicity of argument, we assume that the system is
uniform [Aj(m) = A(m)] and defined on an open chain.

One may think that Equation (224) already completes the Schmidt decomposition (218) with
the identification:

|α⟩A = (A1A2 · · · Ai)αL,α

|α⟩B = (Ai+1 · · · AN)α,αR

(226)

However, the orthonormality condition (219) are not always satisfied for the above choice. Normally, we
use “gauge ambiguity” [25,32] to find an appropriate set of edge states in such a way that the following
overlap matrices may equal to identity:

Lα,β = (A∗
1A∗

2 · · · A∗
i )αL,α(A1A2 · · · Ai)αL,β

Rα,β = (A∗
i+1 · · · A∗

N)α,αR(Ai+1 · · · AN)β,αR

(227)

This procedure can be carried out both for finite systems and for infinite-sized systems by using the
singular-value decomposition (SVD) [40,41,45]. As a result, we obtain, instead of a single matrix,A(m),
two different MPS matrices, ΛΓ(m) for the left subsystem A and Γ(m)Λ for the right subsystem B. The
(diagonal) matrix elements of the D×D diagonal matrix Λ coincide with the Schmidt coefficients:

[Λ]αα = λα (228)

The MPS characterized by the set of matrices {Λ,Γ(m)} (m = 1, . . . , d) is called canonical [25] and
automatically completes the Schmidt decomposition (218) as [40,41,45]:

|Ψ⟩ =
D∑

α=1

λα|α⟩A ⊗ |α⟩B

=
D∑

α=1

∑
{mi}

λα [· · ·ΛΓ(mi−1)ΛΓ(mi)]αL,α
[Γ(mi+1)ΛΓ(mi+2)Λ · · · ]α,αR

× |m1⟩⊗|m2⟩⊗ · · · ⊗|mL⟩

(229)

(For a rather comprehensive account of the use of SVD in MPS, see, for instance, [33].)



Symmetry 2013, 5 176

Figure 28. (Color online) Norm of MPS on a semi-infinite system. If the MPS is pure,
the norm is essentially determined only by the dominant eigenvector, V(1)

L (except for the
boundary factor, which depends on the boundary condition imposed on the edge states).
Similar relation holds for the right semi-infinite system.

In infinite-size systems, the overlap calculation, (227), simplifies a lot, since L (R) reduces essentially
to the left (right) eigenvector, V

(1)
L (V(1)

R ), with the largest eigenvalue (dominant eigenvector; see
Figure 28 for a diagrammatic representation; when the MPS is not of the canonical form, we can take
Γ(m) = A(m) and Λ = 1 (and hence, TL = TR).) of the transfer matrix, TL (TR), defined by:

(TL)ᾱ,α;β̄,β ≡
∑
m

(ΛΓ∗(m))ᾱβ̄(ΛΓ(m))αβ (230a)

(TR)ᾱ,α;β̄,β ≡
∑
m

(Γ∗(m)Λ)ᾱβ̄(Γ(m)Λ)αβ (ᾱ, β̄, α, β = 1, . . . , D) (230b)

Specifically, except for the unimportant factors determined solely by the edge states, the overlap
matrices (227) coincide with the (D2-dimensional) eigenvectors, V(1)

L and V
(1)
R of TL and TR, respectively

(see Figure 28):
Lᾱβ ∝ [V

(1)
L ]ᾱ,β , Rᾱβ ∝ [V

(1)
R ]ᾱ,β (231)

If our infinite-size MPS (iMPS) assumes the canonical form, [L]ᾱβ ∝ δᾱβ = (1D)ᾱβ and [R]ᾱβ ∝
δᾱβ = (1D)ᾱβ , by definition (with 1D being the D-dimensional identity matrix), and therefore the two
transfer matrices satisfy (by the assumption of pure MPS, the largest eigenvalue is unique [21,199]; MPS
is called a pure MPS when transfer matrix has non-degenerate maximal eigenvalue; in the infinite-size
limit, the pure MPS is reduced to a pure state, and hence, the name, pure MPS). When the value of
the largest eigenvalue is not 1, we can rescale the matrices, A(m), so that it may be 1) [21,199] (see
Figure 29).

∑
ᾱ,α

(1D)ᾱ,α [TL]ᾱ,α;β̄,β =
D∑

α=1

d∑
m=1

[ΛΓ∗(m)]α,β̄ [ΛΓ(m)]α,β

=
d∑

m=1

[
Γ†(m)Λ2Γ(m)

]
β̄,β

= (1D)β̄,β (left action)

(232a)



Symmetry 2013, 5 177

and: ∑
β̄,β

[TR]ᾱ,α;β̄,β (1D)β̄,β =
D∑

β=1

d∑
m=1

[Γ∗(m)Λ]ᾱ,β [Γ(m)Λ]α,β

=
d∑

m=1

[{
Γ(m)Λ2Γ†(m)

}t
]
ᾱ,α

= (1D)ᾱ,α (right action)

(232b)

Notice that these equations can also be regarded as the eigenvalue equations for the transfer matrices:
1D is the left (right) eigenstate of the transfer matrix, TL (TR), with the eigenvalue, 1. Equation (232)
may be thought of as the conditions in order that the iMPS is of the canonical form.

Figure 29. (Color online) Graphical representation of the two conditions, (232a) and (232b),
for canonical iMPS. In Reference [199], the action of the type (a) ((b)) is denoted by
E∗(Λ2) = Λ2 (E(1) = 1).

On the other hand, when the MPS in question satisfies (this is the case for all the (S)MPSs treated in
this paper):

Lαβ ∝ δα,β , Rαβ ∝ δα,β (233)

in the infinite-size limit, the Schmidt decomposition for the infinite chain is obtained very easily, just by
rescaling the MPSs for the subsystems. The normalized state, |Ψ⟩, is constructed as:

|Ψ(α, β)⟩ = 1√
A(α, β)

(A1A2 · · · AN)α,β (234)

where A(α, β) is the magnitude of |Ψ(α, β)⟩:

A(α, β) = |(A1A2 · · · AN)α,β|2 = (A†
N · · · A†

2A
†
1)β,α(A1A2 · · · AN)α,β (235)

With these normalization constants, the normalized MPS is written as:

|Ψ(αL, αR)⟩ =
D∑

α=1

√
A(αL, α)A(α, αR)

A(αL, αR)
|Ψ(αL, α)⟩ · |Ψ(α, αR)⟩ (236)

Comparing this expansion with (218), one may read off the Schmidt coefficients as:

λα =

√
A(αL, α)A(α, αR)

A(αL, αR)
(237)

In the infinite limit, λα is not relevant to the polarization of the edge spins, αL and αR. Therefore, for
the infinite (S)VBS chain, we only need to evaluate the magnitude of the matrix product to obtain the
Schmidt coefficients, and thus, the derivation of Schmidt coefficients is boiled down to the computation
of the normalization constants, A(α, β) (235).
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6.3.2. N = 1

To substantiate the topological stability of the SVBS chain, we investigate two type-I chains with
distinct bulk superspins, S = 1 and S = 2.
(i) Superspin S = 1

From the formula (237), the entanglement spectrum of the S = 1 type-I state (on an infinite chain) is
derived as:

λB
2 ≡ λ1

2 = λ2
2 =

1

4
+

3

4
√
9 + 8r2

(238a)

λF
2 ≡ λ3

2 =
1

2
− 3

2
√
9 + 8r2

(238b)

They are shown in Figure 30a with the entanglement entropy (right-figure). At r = 0, the SVBS state
reduces to the S = 1 VBS state and reproduces both the entanglement spectra and entanglement entropy
of the S = 1 VBS chain, i.e., λB2 → 1/2 and SEE → ln2, which should be compared with (217) for
S = 1. Similarly, in the limit, r → ∞, the SVBS chain reduces to the MG chains, and the entanglement
entropy of SVBS chain also reproduces the finite entanglement entropy of the MG chain (Figure 30b).

Figure 30. The change of the entanglement spectra as a function of r (a) and entanglement
entropy (b) of the S = 1 type-I chain. The insets are the results for the bosonic-pair VBS
chain. The figure and caption are taken from [10].

As in the entanglement spectra of the left of Figure 30, we have two distinct entanglement spectra,
one of which is doubly degenerate spectrum (blue curve) for the “bosonic” Schmidt coefficients
corresponding to those of the original S = 1 VBS chain (238a), and the other is the non-degenerate
spectrum (red curve) for the “fermionic” Schmidt coefficient (238b).

The existence of such two types of entanglement spectra is a salient feature of the SUSY state and
can be readily understood based on the following edge state picture. For S = 1 SVBS chain, its edge
superspin states are given by the UOSp(1|2) multiplet with superspin Sedge = 1/2 that consists of the
ordinary SU(2) states with spin, 1/2⊕ 0 (Figure 31):

(Sedge = 1/2) = (Sedge = 1/2)⊕ (Sedge = 0) (239)

or:
3 = 2⊕ 1 (240)
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The S = 1/2 SU(2) edge spin states generate the double degeneracy in the entanglement spectra, while
the S = 0 SU(2) edge spin state gives the non-degenerate one. Due to the existence of 1/2 spin
edge degrees of freedom, the double degeneracy is guaranteed (we will give a detailed discussion in
Section 6.4), and hence, we find that the type-I SVBS chain is in the topological phase.

Figure 31. (Color online) There always exist half-integer and integer edge spin states as
the super-partner of the SUSY. The half-integer edge spin states play a crucial role in the
stability of topological phases.

Edge superspin

Bulk superspin

SUSY

To highlight the effect of SUSY, we consider the non-SUSY (i.e., purely bosonic) cases and replace
the fermion operator, fi, with the boson operator, ci ([ci, c

†
j] = δij), to define the following boson-pair

VBS chain:
|Φb.p.⟩ =

∏
i

(a†ib
†
i+1 − b†ia

†
i+1 − rc†ic

†
i+1)|vac⟩. (241)

As the insets of Figure 30, we depicted the entanglement spectra and entanglement entropy. The crucial
difference to the SUSY case will be apparent in the limit, r → ∞; |Φb.p.⟩ is reduced to a simple
product state:

|Φb.p.⟩ →
∏
i

c†i |vac⟩ (242)

and the entanglement entropy vanishes (the inset of the right figure of Figure 30).
(ii) Superspin S = 2

Next, we examine the entanglement spectrum of the S = 2 type-I SVBS chain. Though the topological
phase of its bosonic counterpart, S = 2 VBS chain, is fragile under perturbation [196], the S = 2 type-I
SVBS chain itself is topologically stable with a finite amount of hole doping. As we shall see below,
SUSY plays a crucial role for the stability of the topological phase. At r = 0, the S = 2 SVBS chain is
reduced to the S = 2 VBS chain, while in the limit, r → ∞, the SVBS chain is reduced to the partially
dimerized chain. We have the following five Schmidt coefficients for the S = 2 SVBS chain:

λB
2 ≡ λ1

2 = λ2
2 = λ3

2 =
1

6
+

5(4 +
√
25 + 24r2)

6(25 + 24r2 + 4
√
25 + 24r2)

(243a)

λF
2 ≡ λ4

2 = λ5
2 =

1

4
− 5(4 +

√
25 + 24r2)

4(25 + 24r2 + 4
√
25 + 24r2)

(243b)

Thus, the five Schmidt coefficients are split into the triply degenerate (243a) and doubly degenerate
(243b) spectra showing distinct behaviors in Figure 32. Again, such splitting of the Schmidt coefficients
are readily understood by the edge state picture for the SUSY chain. For the S = 2 type-I SVBS chain,
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the edge superspin is given by Sedge = 1 that consists of the SU(2) edge spin Sedge = 1 and Sedge = 1/2

(Figure 33):
(Sedge = 1) = (Sedge = 1)⊕ (Sedge = 1/2) (244)

or:
5 = 3⊕ 2 (245)

The Sedge = 1 degrees of freedom generate the triple degeneracy in the entanglement spectra, while the
Sedge = 1/2 degrees of freedom give the double degeneracy. Due to the existence of SUSY, the S = 2

SVBS chain necessarily contains the Sedge = 1/2 edge spin degrees of freedom that do not originally
exist in the S = 2 VBS chain (Figure 33), and they guarantee the double degeneracy in the entanglement
spectra, i.e., the stability of the topological phase [65,66].

Figure 32. The behaviors of the Schmidt coefficients (243) and the entanglement entropy
(inset) of the S = 2 type-I SVBS chain. The figure and caption are taken from [10].

Figure 33. (Color online) Sedge = 1/2 generates the stability of topological phase of the
S = 2 type II SVBS chain.

Edge superspin

Bulk superspin

SUSY

From the above demonstrations for S = 1 and S = 2 type I SVBS chains, one may see that regardless
of the parity of bulk superspin, the SUSY introduces the half-integer edge-spin states that necessitate at
least double degeneracy in the entanglement spectrum.
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6.3.3. N = 2

It is also straightforward to calculate the Schmidt coefficients for the type-II SVBS chain:

λ1
2 = λ2

2 =
1

4
− 3− r2

4
√
9 + 10r2 + r4

λ3
2 = λ4

2 =
1

4
+

3− r2

4
√
9 + 10r2 + r4

(246)

The four Schmidt coefficients are split into two groups showing distinct behaviors (Figure 34) according
to the SU(2) decomposition of the UOSp(1|2) edge superspin state:

(Sedge = 1/2) = (Sedge = 1/2)⊕ (Sedge = 0)⊕ (Sedge = 0) (247)

or:

4 = 2⊕
2︷ ︸︸ ︷

1⊕ 1 (248)

The first 2 on the right-hand side of (248) corresponds to the doubly degenerate blue curve in Figure 34,
while the remaining 1⊕ 1(= 2) represents the doubly degenerate red curve.

Figure 34. The behaviors of the Schmidt coefficients and the entanglement entropy (inset)
of the S = 1 type-II SVBS chain.
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6.4. Supersymmetry-Protected Topological Order

In this section, we clarify the relation between the structure of the entanglement spectra discussed
in the previous sections and the symmetry-protected topological order [63]. To this end, we use the
MPS representation established in Section 5. Because of its simplicity in the entanglement structure and
the wide applicability to gapped states in 1D, the MPS approach provides us with a powerful tool in
investigating the topological phases in 1D [61,62,64–68].
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6.4.1. Symmetry Operation and MPS

For later convenience, we give a quick summary of some tools used in the MPS approach. As has
been discussed in Sections 5 and 6.3.1. , any MPS on an open chain may be written as:

|MPS⟩ =
∞⊗

i=−∞

Ai = · · · ⊗ A−1 ⊗A0 ⊗A1 ⊗A2 ⊗ · · · (249)

or in terms of the c-number matrices, A(m) (Aj =
∑d

m=1Aj(m)|m⟩j , d being the dimension of the local
physical Hilbert space), as:

|MPS⟩ =
∑
{mi}

{· · ·A(m−1)A(m0)A(m1)A(m2) · · · } |m1⟩⊗|m2⟩⊗ · · · ⊗|mL⟩ (250)

As has been mentioned in Section 6.3.1, we can “gauge-transform” this into the canonical form, which
conforms with the Schmidt decomposition; on the left of the entanglement cut, we use the MPS matrix,
AL(m) = ΛΓ(m), and on the right, AR(m) = Γ(m)Λ. In the following sections, our arguments will be
based on the canonical form characterized by the MPS data {Λ,Γ(m)} (m = 1, . . . , d).

Now, let us consider unitary operations on MPS. A given MPS (|ΨMPS⟩) is said to be invariant under a
unitary operation if the product of local unitary operators ⊗û leaves the MPS invariant (up to an overall
phase) [199,200]:

û⊗ û⊗ · · · ⊗ û|ΨMPS⟩ = eiαg.s.|ΨMPS⟩ (251)

The local unitary operation, û, acts on A in a site-wise manner:

Ai 7→ A′
i =

∑
m

ΛΓ′(m)|m⟩i =
∑
m

Λ

{∑
n

⟨m|û|n⟩iΓ(n)

}
|m⟩i (252)

where we have used the completeness relation on each site,
∑

m |m⟩i⟨m|i = 1. If the symmetry
operation is anti-unitary (like time-reversal), the complex-conjugation, Γ(m) 7→ Γ∗(m), should be taken
in Equation (252).

Then, it can be shown that the above unitary invariance is equivalent to the existence of the following
unitary operator, U , acting on Γ(m) [199]:

û⊗ û⊗ · · · ⊗ û|ΨMPS⟩ = eiαg.s. |ΨMPS⟩ ⇐⇒
d∑

n=1

⟨m|û|n⟩Γ(n) = eiθu U †Γ(m)U (253)

where θu denotes a û-dependent phase. Once the unitary û is given, U is uniquely determined [199] up
to an overall phase. To be more precise, if we define a generalized transfer matrix

[T (u)]ᾱ,α;β̄,β ≡
d∑

m,n=1

[ΛΓ∗(m)]ᾱ,β̄ [ΛΓ(n)]α,β ⟨m|û|n⟩ (254)

the D-dimensional unitary matrix, U , is given essentially by its left eigenvector with the largest
eigenvalue (we have assumed that Γ(m) is rescaled in such a way that the largest (or dominant)
right-eigenvalue of TL,R is unity), eiθu (see Equation (270) and the explanations around it). Since U
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leaves the MPS |ΨMPS⟩ invariant, it is natural to assume that U does not change the physical entanglement
spectrum, Λ, i.e.,

[U , Λ] = 0 (255)

Physically, the above relation (253) implies that the original symmetry operation (acting on the physical
Hilbert space at each site) “fractionalizes” into the ones (U and U †), which act on the edge states on both
ends of the system. The equation (253) plays a crucial role in the following discussions.

6.4.2. Case of SMPS

Now we extend the arguments developed by Pollmann et al. [65,66] for the bosonic MPS to the
SUSY case. First remember that degeneracy in energy spectra of quantum mechanical Hamiltonian
can be attributed to some symmetry of the Hamiltonian. Meanwhile, since the entanglement spectrum is
solely determined by a ground-state wave function, the degeneracy of entanglement spectrum is expected
to stem from some symmetry of the ground-state wave function. Indeed, several discrete symmetries
are identified to guarantee degeneracy in the entanglement spectrum. Since the degeneracy of the
entanglement spectrum is the hallmark of the topological order, it is said that the topological order is
protected by the symmetry of the ground-state wave function and, hence, the name symmetry protected
topological order. In the following, we will show that the SUSY guarantees the existence of at least
two-fold degeneracy of entanglement spectrum, regardless of , the parity of superspin, provided that at
least one of the three symmetries, inversion, time-reversal and Z2 × Z2 is present. We will also find that
the (S)MPS formalism plays a crucial role in the discussions.

As has been discussed in Section 5.2, the SMPS is generally represented as [9]:

|Ψ⟩ = A1A2 · · · AL (256)

where Ai (i = 1, 2, . . . , L) are supermatrices defined on the sites, i. Then, we follow the same steps as
in Section 6.4.1 to transform the SMPS into the canonical form. When a given unitary operation leaves
the MPS invariant [in the sense of Equation (251)], the unitary operation, û, fractionalizes into U and
U †, and acts like:

d∑
n=1

⟨m|û|n⟩Γ(n) = eiθU U †Γ(m)U (257)

In fact, the local symmetry operation need not be unitary (as will be in the following sections). In this
case, the left-hand side may be replaced with the general form, Γ′(m). Therefore, the most general form
reads as:

Γ′(m) = eiθU U †Γ(m)U (258)

where the phase, θU , depends on the symmetry operation considered. In the above equations, m labels
both bosonic and fermionic states, i.e., m = i, α, and Γ(m) are given, for UOSp(1|2), by:

Γ(i) =

(
M1(i) 0

0 M2(i)

)
(i = x, y, z)

Γ(α) =

(
0 N1(α)

N2(α) 0

)
(α = θ1, θ2)

(259)
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where M1,M2, N1 and N2 are c-number matrices.
Here, a remark is in order about the form of U . The (c-number) unitary matrix, U , in (257) may be

postulated as:

U =

(
U1 0

0 U2

)
(260)

where U1 and U2 are unitary matrices that act on the two bosonic subspaces having different fermion
numbers. The reason for choosing the above form may be seen as follows. First, we note that
Equation (257) implies that the MPS on a periodic chain transforms like:

|Ψ⟩ ⊗û−→ STr(U †A1A2 · · · A2n+1U) (261)

where the supertrace STr is defined for general supermatrices as [see also Equation (176b)]:

STr

(
A

(1)
B A

(1)
F

A
(2)
F A

(2)
B

)
= TrA(1)

B − TrA(2)
B (262)

We expect that for a periodic chain, which does not have edges, is fully invariant under the unitary
operation, i.e., the expression (261) coincides with the original MPS (up to an overall phase). While
in the case of bosonic MPS, this, combined with Tr(AB) = Tr(BA), immediately implies ⊗û|Ψ⟩ ∝
|Ψ⟩; the relation STr(AB) = STr(BA) holds only when A and B are super-matrices (that contain the
Grassmann-odd blocks in their off-diagonal parts):

|Ψ⟩ ⊗û−→ STr(U †A1A2 · · · A2n+1U)
?
=STr(A1A2 · · · A2n+1UU

†) (263)

In fact, if an arbitrary pair of two super matrices, A and B, were merely c-number matrices, A
and B, in general, would not commute inside STr(·): STr(AB) ̸= STr(BA). In order to satisfy
STr(AB) = STr(BA) only with c-number matrices, either A or B is forbidden to have c-number
components in the off-diagonal blocks.

For later convenience, we derive a useful property of pure canonical MPSs [25,45]. In the following
sections, we assume that the MPS in question is defined on an infinite-size system. The Equation (258)
is the most general statement about how a given symmetry of MPS is realized by a projective
representation. However, sometimes it happens that Γ′(m) = Γ(m) for a certain symmetry operation,
and in these cases, we can draw an interesting conclusion about the properties of U [10,65,66]. Suppose
that we have a pure MPS whose canonical form is characterized by the MPS data [25,45], {Λ,Γ}, and
that it satisfies the following relation for some unitary matrix U :

Γ(m) = eiθU U †Γ(m)U (264)

Since the MPS is canonical, the following holds [see Equation (232a)]:∑
m

Γ†(m)Λ2Γ(m) = 1D (265)

Physically, it states that the D2-dimensional vector, V(1)
L :

(V
(1)
L )a,b ≡ δab (1 ≤ a, b ≤ D) (266)
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is the dominant left-eigenvector of the left transfer matrix (see Figure 29):

(TL)ᾱ,α;β̄,β ≡
∑
m

(ΛΓ∗(m))ᾱβ̄(ΛΓ(m))αβ (267)

Plugging Γ†(m) = e−iθU U †Γ†(m)U into (265), we obtain:

e−iθU
∑
m

U †Γ†(m)UΛ2Γ(m) = 1D (268)

or equivalently: ∑
m

Γ†(m)ΛUΛΓ(m) = eiθU U (269)

This implies that the D×D unitary matrix:

(U)b̄b =
∑
a

{1⊗U}aa;b̄b ≡
∑
a

δab̄(U)ab (270a)

when viewed as a D2-dimensional vector, is the left-eigenvector of TL with the eigenvalue, eiθU :

UTL = eiθUU (270b)

Since, by assumption of canonical MPS, 1D is the only left-eigenvector having the eigenvalue |λ| = 1,
we conclude:

eiθU = 1 , U = eiΦU1D (271)

Since, in deriving the above, we have only assumed that the (infinite-system) MPS in question is pure
and takes the canonical form, (271) holds for any MPS (including SMPS) satisfying the assumption.

6.4.3. Inversion Symmetry

Now, let us look at what inversion symmetry, I, with respect to a given link, implies the structure of
the entanglement spectrum. It is convenient to consider an inversion transformation on a circle:

Ψ = STr(A1A2 · · · A2n+1) (272)

The inversion on a given link transforms the SMPS chain as:

IΨ = STr(A2n+1A2n · · · A1) (273)

By the relation, STr(M1M2) = STr((M1M2)
st) = STr(M st

2M
st
1 ), (273) can be rewritten as:

IΨ = STr(Ast
1Ast

2 · · · Ast
2n+1) (274)

where “st” stands for supertransposition, defined by:(
M1 N1

N2 M2

)st

≡

(
M t

1 N t
2

−N t
1 M t

2

)
(275)
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It is easy to verify that applying the supertrace twice does not return a supermatrix to the original one:{(
M1 N1

N2 M2

)st}st

=

(
M1 −N1

−N2 M2

)
= P

(
M1 N1

N2 M2

)
P (276)

where the matrix:

P ≡

(
11 0

0 −12

)
(277)

has been defined in such a way that its adjoint action, P (·)P , multiples the fermionic blocks by a factor,
(−1) (11 and 12 correspond to the unit matrices of two bosonic subspaces and should not be confused
with the D ×D unit matrix 1D).

Therefore, at the level of the local MPS matrix, the inversion, I, is realized as:

Aj
I−→ Ast

j (278)

Finally, from Equation (258), one sees that when Ψ has the inversion symmetry, the A-matrix should
satisfy the relation: [10]

Γ(m)st = eiθIU †
IΓ(m)UI (279)

Note that at this stage, we can not apply the argument in Section 6.4.2, since Equation (279) does not
assume exactly the same form as Equation (264) (the LHS is not Γ(m)).

In order to obtain the relation of the form (264), we combine Equation (279) with the fact that the
link-inversion squared to unity, I2 = 1. Applying supertransposition, (·)st, to (279), once again and using
(Ast)st = PAP (Equation (276)), we obtain (in the bosonic case, the matrix, P , is not necessary [65,66]):

Γ(m) = e2iθI (UIPU
∗
I )

†Γ(m) (UIPU
∗
I ) (280)

This is of the form of Equation (264) and then (271) immediately implies that:

(UIPU
∗
I ) = eiΦI1D , e2iθI = 1 ⇔ eiθI = ±1 (281)

After multiplying U t
I from the right and making transposition, we deduce:

UI = e−iΦIPUI
t = e−2iΦIP 2UI = e−2iΦIUI ⇔ e−iΦI = ±1 (282)

(note: PUI = UIP by Equations (260) and (277)). Therefore, we obtain [10]:

U t
I = ±PUI (283)

Equation (283) states that when U1 is symmetric (anti-symmetric), U2 is anti-symmetric (symmetric). It
should be noted that unlike in the bosonic case [65,66], the symmetry constraint is imposed on each of
the spin-S “bosonic” sector, U1, and S − 1/2, the “fermionic” sector, U2, in the case of SUSY.

When U1 is anti-symmetric, for instance, the sector with (−1)F = +1 must have a special structure
in its entanglement spectrum. In fact, by computing the determinant of U1:

detU1 = detU t
1 = det(−U1) = (−1)d1 detU1 (d1 : dimension of U1) (284)

one can immediately see that d1 should be even (the same argument applies to U2 as well). From
this, one can conclude that either the fermionic (when the sign + occurs) or bosonic (−) sector has
even-fold degeneracy in each entanglement level, which we can be used as the fingerprint [63,65,66] of
the SUSY-protected topological order [10].
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6.4.4. Time-Reversal Symmetry

We can draw a similar conclusion for the time-reversal symmetry T . Let us recall the time-reversal
operation for the superspin, Si and Sα:

Si
T−→ (eiπSyK)Si(Ke

−iπSy) = −Si

Sα
T−→ (eiπSyK)Sα(Ke

−iπSy) = ϵαβSβ

(285)

with complex conjugation operator, K. The set of equations (285) implies that, for integer superspins,
S, T = Ke−iπSy satisfies (recall that, in the SU(2) case, T 2 = +1 for integer S). When superspin, S ,
is a half-odd-integer, the time reversal-operator satisfies, T 2 = −P (this is indeed a generalization of
T 2 = −1 for the SU(2) half-integer spin case):

T 2 = P = (−1)F (286)

where the d-dimensional matrix, P , which acts on the physical Hilbert space and multiples a minus sign
when the state is fermionic (i.e., when the fermion number F = odd), is analogous to the D-dimensional
matrix, P (see Equation (277)) acting on the auxiliary space.

From (285), one sees that, in terms of the canonical matrix, the time reversal transformation is
represented as:

Γ(m)
T−→ Γ(m)′ =

∑
n

[Ry(π)]mnΓ(n)
∗ (287)

where m,n = i, α and Ry(π) = eiπSy . For instance, Ry(π) is given, for superspin S = 1, by:

Ry(π) =


−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 0 1

0 0 0 −1 0

 (288)

Again, by Equation (258), the time-reversal invariance implies that there exists a unitary matrix UT

that satisfies:
Γ(m)

T−→
∑
n

Ry
mn(π)Γ

∗(n) = eiθTU †
TΓ(m)UT (289)

Applying this twice and using T 2 = P , we obtain

(P)ll Γ(l) =
d∑

m=1

[Ry(π)]lm

{
d∑

n=1

[Ry(π)]mnΓ
∗(n)

}∗

=
d∑

m=1

[Ry(π)]lm
{

e−iθTU t
TΓ

∗(m)U∗
T

}
= e−iθTU t

T

{
d∑

m=1

[Ry(π)]lmΓ
∗(m)

}
U∗
T

= {UTU
∗
T}

† Γ(l) {UTU
∗
T}

⇔ Γ(l) = {UTU
∗
T}

† (P)ll Γ(l) {UTU
∗
T}

(290)
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Using the relation, (P)llΓ(l) = P Γ(l)P , we may rewrite (290) into the following form:

Γ(l) = {UTPU
∗
T}

† Γ(l) {UTPU
∗
T} (291)

to which we can apply the argument presented in Section 6.4.2 (see Equation (264)). Thus, we obtain:

UTPU
∗
T = eiΦT1 (292)

(the value of θT cannot be determined by this method). This is of exactly the same form as (281), and
we deduce the same conclusion:

U t
T = ±PUT , eiΦT = ±1 (293)

Therefore, as in the previous case (see Equation (283)), we see that time-reversal symmetry guarantees
the existence of at least double degeneracy in the entanglement spectrum of (either of the bosonic or the
fermionic sector).

6.4.5. Z2 × Z2 Symmetry

Lastly, we consider the two independent π rotations around the x [ûx(π)] and the z axes [ûz(π)] (note
that ûy(π) is redundant, since ûx(π)ûz(π) = ûz(π)ûx(π) = ûy(π)). As will be seen below, ûx(π) or
ûz(π) alone does not lead to any significant conclusion. However, the combination of the two [65,66]
leads to a similar conclusion about the entanglement spectrum. Under the π rotation around the x (z)
axis, ûx(π) (ûz(π)), SMPS transforms as:

Γ(m)
ûa(π)−−−→ Γ(m)′ =

∑
n

Ra
mn(π)Γ(n) (a = x, z) (294)

When the SMPS respects such a symmetry, we have:∑
n

[Ra(π)]mnΓ(n) = eiθaU †
aΓ(m)Ua (295)

where (Ra(π))2 = P for integer superspin, S . Again, we follow the same steps as before to show:

e2iθa = 1 ⇒ eiθa = ±1

UaPUa = eiΦa1 (a = x, z)
(296)

Note that the phase factor, eiΦa , can be absorbed in the definition of Ua, and hereafter, we assume
U †
a = PUa (a = x, z). Unlike in the previous cases, this relation alone does not give any useful

information about Ua.
On the other hand, the combination of the “commutation relation”, ûx(π)ûz(π) = Pûz(π)ûx(π), and

Equation (295), implies, in terms of Γ(m):

Γ(m) = (UxUzU
†
xPU

†
z )Γ(m)(UzPUxU

†
zU

†
x) (297)

and hence gives
(UzPUx)(U

†
zU

†
x) = eiΦxz1 (298)



Symmetry 2013, 5 189

In obtaining Equation (297), the phase factor eiθxz = eiθxeiθz appears. However, it cancels out in the final
expression (297).

Since the phases of Ux and Uz have been already fixed, the phase of UxUz cannot be arbitrary and has a
definite physical meaning. By multiplying UzP and Ux from the left and the right of (298), respectively,
and using U †

a = PUa = UaP repeatedly, one can show:

UxUz = eiΦxzUzPUx (299)

which is combined with (298) to give eiΦxz = ±1. To summarize, the two unitary matrices Ux and Uz

obey the following commutation relation:

UxUz = ±PUzUx (300)

In terms of the block components, Ua,1 and Ua,2, Equation (300) reads as:

Ux,1Uz,1 = ±Uz,1Ux,1 , Ux,2Uz,2 = ∓Uz,2Ux,2 (301)

As in the previous cases, (301) immediately implies at least double degeneracy of each entanglement
levels in the sector (1 or 2), taking the minus sign in the above equation.

6.4.6. String Order Parameters and Entanglement Spectrum

In the previous sections, we have shown that, as in the purely bosonic cases [63,65,66], such
elementary symmetries, as inversion and time-reversal, protect the Haldane phase from collapsing into
trivial gapped phases on the basis of the assumption that the even-fold degeneracy in the entanglement
spectrum either in the fermionic or in the bosonic sector is the entanglement fingerprint of the topological
“Haldane phase” in SUSY systems. On the other hand, the string order parameters (see Section 6.1) have
been used traditionally to characterize the Haldane phase [18,19]. Then, a natural question arises: is there
any connection between the description by the string order parameters and the modern characterization
in terms of the entanglement spectrum? In this section, we give the answer to this question.

Let us first consider the structure of the string order parameters, Ox,∞
string and Oz,∞

string (Equation (206)),
from the MPS viewpoint [24,199]. When we evaluate them using MPSs, we encounter the following
matrices [24]:

[T a]ᾱ,α;β̄,β ≡
d∑

m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β ⟨m|Sa|n⟩ (a = x, z)

[Tstring]ᾱ,α;β̄,β ≡
d∑

m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β ⟨m| exp(iπSa)|n⟩

[T a
string]ᾱ,α;β̄,β ≡

d∑
m,n=1

[A∗(m)]ᾱ,β̄ [A(n)]α,β ⟨m|Sa exp(iπSa)|n⟩ (a = x, z)

(302)

as well as the usual transfer matrix, T . By using these matrices, the MPS expression of the string order
parameter Oz

string is given as:
TNLT z

string(Tstring)
|i−j|T z TNR (303)
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where we have omitted the denominator necessary to normalize the MPS. The parts, TNL and TNR , are
easy; for the canonical MPS, they reduce, in the infinite-size limit, to (see Section 6.3.1):

[TNL ]ᾱL,αL;β̄,β
NL↗∞−−−−→ δᾱL,αLδβ̄,β , [TNR ]ᾱ,α;β̄R,βR

NR↗∞−−−−→ δᾱ,αδβ̄R,βR
(304)

The boundary dependent factors, δᾱL,αL and δβ̄R,βR
, are canceled by those coming from the denominator.

Therefore, the quantity which we have to compute is:∑
α,β

[
T z

string(Tstring)
|i−j|T z

]
α,α;β,β

(305)

Since we are interested in the long-distance limit, |i−j| → ∞, we need know the asymptotic behavior
of the string, (Tstring)

|i−j|. First we note that Tstring may be thought of as the overlap:

⟨MPS|û⊗ û⊗ · · · ⊗ û|ΨMPS⟩ (306)

with û = exp(iπSa) (a = x, z) (see Equation (251)). Then, it can be shown [199] that in order for the
string, (Tstring)

|i−j|, not to vanish in the long-distance limit, the MPS should be invariant under both of
the π-rotations ûx(π) and ûz(π).

Then, from the discussion in Section 6.4.5 (we just replace P 7→ 1 to obtain the results for the purely
bosonic case), we see that there exists a pair of unitary matrices satisfying (295) and:

UxUz = ±UzUx (307)

(see Equation (300)). Unfortunately, we cannot tell whether the even-fold degeneracy in the
entanglement spectrum, which is the fingerprint of the topological Haldane phase, happens or not, since
we do not know which of the ± signs is chosen.

Now, we show that when the string order parameters are non-vanishing Oz,x
string ̸= 0, the minus sign in

fact realizes (i.e., Ux and Uz anti-commute) in Equation (307), and the entanglement spectrum exhibits
the degenerate structure. To this end, we investigate Equation (305). Since the largest (right) eigenvalue
of Tstring is eiθa (see Section 6.4.1), (Tstring)

|i−j| reduces essentially to a phase, (eiθa)|i−j| = (±1)|i−j|. The
price to pay is the following boundary factors appearing at the two end points of the string correlators
(see Figure 35):

∑
α,β

{
T z

string

(
D2∑
n=1

V
(u)
R,nV

(u)
L,n

)
(Tstring)

|i−j|T z

}
α,α;β,β

|i−j|↗∞−−−−−→
∑
α,β

{
(T z

stringV
(u)
R,1)(V

(u)
L,1T

z)
}

α,α;β,β
=
∑
α,β

{
(T z

string

{
1⊗U †

z

}
1)(1 {1⊗Uz}T z)

}
α,α;β,β

(308)

where V
(u)
L,1 (V(u)

R,1) denotes the left (right) dominant eigenvector of Tstring and the tensor notations are
defined as:

[1⊗B]ᾱ,α;β̄,β = δᾱ,β̄ [B]αβ ,

[1 {1⊗B}]β̄,β =
∑
ᾱ,α

δᾱ,αδᾱ,β̄ [B]αβ = [B]β̄β , [{1⊗B}1]ᾱ,α =
∑
β̄,β

δᾱ,β̄ [B]αβ δβ̄,β = [Bt]ᾱα
(309)
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In fact, the eigenvalues of Tstring precisely coincides with those of T for all the spin-S VBS states, and
the different behaviors in the string order for the odd-S and the even-S chains comes only from these
boundary factors.

To see whether the boundary factors are non-vanishing or not, we consider the right-boundary factor,
(1 {1⊗Uz}T z), of Oz

string. First, we rewrite it by using (see the second figure of Figure 36):

Sz = (û†xûx)S
z(û†xûx) = û†x(−Sz)ûx (ûx = e−iπSx

) (310)

The unitary operators, û†x and ûx, appearing on both sides of −Sz, can be absorbed into the MPS matrices
by using Equation (295) (the third figure of Figure 36). By re-arranging the unitary matrices, UxUz, with
the help of Equation (307) (the fourth figure of Figure 36), we arrive at the expression:

1 {1⊗Uz}T z = 1
{
1⊗(UxUzU

†
x)
}
(−T z)

= 1
{
1⊗(±UzUxU

†
x)
}
(−T z) = ∓1 {1⊗Uz}T z

(311)

Therefore, we see that the boundary factor, (1 {1⊗Uz}T z), vanishes (and so does the string order
parameter, Oz,∞

string) when Ux and Uz are commuting (i.e., when the minus sign in the last expression
is chosen). By the explicit construction of Ux and Uz, we can easily see that for the even-S VBS state,
UxUz = +UzUx holds. Therefore, it immediately results that the string order parameters identically
vanish for the even-S VBS state solely for a symmetry reason.

Figure 35. (Color online) Diagrammatic representation of the main part of string correlation
function,

{
(T z

stringV
(u)
R,1)(V

(u)
L,1T

z)
}

. V
(u)
L,R,1 denotes the dominant eigenvector of Tstring. The

figure has been adapted from [10].

In short, the existence of non-vanishing string order parameters, Ox,∞
string ̸= 0 and Oz,∞

string ̸= 0, implies
that the existence of the two anti-commuting unitary matrices, Ux and Uz, and, thereby, guarantees the
even-fold degeneracy in the entanglement spectrum. To put it another way, the string order parameters
work as the sufficient condition for the topological Haldane phase. It is crucial that both of the string
order parameters are finite. For instance, if we “deform” the original SU(2)-invariant VBS state by using
the quantum group, Uq(su(2)), we obtain a VBS state with uniaxial anisotropy [23], where one of the
string order parameters (Ox,∞

string ̸= 0) vanishes, while the other is still finite [121]. In this case, the unitary
Ux does not exist, and the existence of the degenerate structure in the entanglement spectrum is no longer
guaranteed. In fact, explicit calculation shows that the two-fold degenerate entanglement levels in the
S = 1 VBS state split into two non-degenerate levels in the deformed state.
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Figure 36. (Color online) Rewriting the boundary factor, 1 {1⊗Uz}T z (for a = z), using
ûx (see Equation (311)). When Ux and Uz are anti-commuting, the minus sign coming from
ûxS

zû†x = −Sz is canceled and an overall plus sign is recovered. The figure has been adapted
from [10].

It is straightforward to generalize [10] this to SUSY cases by taking into account the appearance of
the P -matrix. Again, by using ûx(π)Szû†x(π) = −Sz and UxUz = ±PUzUx, the second factor of the
right-hand side of Equation (308) can be recasted as:

1 {1⊗Uz}T z = 1
{
1⊗(UxUzU

†
x)
}
(−T z)

= 1
{
1⊗(±PUzUxU

†
x)
}
(−T z) = ∓1 {1⊗PUz}T z

(312)

Since this implies:∑
β

{1 {1⊗Uz}T z}β,β =
∑
α,β

{{1⊗Uz}T z}α,α;β,β

=
∑
α∈B

+
∑
α∈F

= ∓
∑
α∈B

±
∑
α∈F

(313)

we see that one of the two components (bosonic or fermionic) vanishes just by symmetry:

=



∑
α∈F when eiΦxz = +1

∑
α∈B when eiΦxz = −1

(314)

In conclusion, we have established the connection between the string order parameters, which
have been commonly used [167,201–204] to characterize the Haldane phase and the entanglement
spectrum [28], which is a modern tool to look at the topological properties in the bulk. As has been shown
in Sections 6.4.3–6.4.5, SUSY guarantees, regardless of the parity of the bulk superspin S , the existence
of the even-fold degeneracy in the entanglement spectrum of either of the bosonic or the fermionic sector,
provided at least one of the three symmetries (inversion, time-reversal and Z2×Z2) is present. Therefore,
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in contrast to the usual bosonic (i.e., SU(2)) VBS states, in which the Haldane phase is stable only for
odd-integer spins, in the SVBS states, SUSY plays the crucial role in protecting the topological Haldane
phase. The “revival” of the string order parameters upon doping the system (discussed in Section 6.2)
may be naturally understood by the above argument.

As has been seen above, that both of the two string order parameters are non-vanishing is the
sufficient condition for the symmetry-protected Haldane phase. However, one may seek more faithful
order parameters and, in fact, some results have been obtained in this direction. See, for instance,
References [205] and [206] for recent attempts at finding better order parameters.

7. Higher Symmetric Generalizations

In this section, we extend the previous SUSY formulation to the higher symmetric UOSp(1|4) case.
We begin with the construction of fuzzy four-supersphere based on the UOSp(1|4) algebra [128]. As
the coordinates of fuzzy four-sphere correspond to the SO(5) gamma matrices [97], the coordinates
of the fuzzy four-supersphere are constructed from “super gamma matrices” of the UOSp(1|4)
algebra. Next, based on the UOSp(1|4) structure, we derive the UOSp(1|4) SVBS state [10], whose
bosonic counterpart is the SO(5) VBS state [112–114] (there still exists the correspondences among
fuzzy geometry, QHE and VBS in the higher dimension case; the SO(5) VBS corresponds to the
Laughlin-Haldane wave function in 4D QHE [79,207], and 4D QHE realizes the fuzzy geometry of fuzzy
four-sphere). We also develop the SMPS formalism for the UOSp(1|4) SVBS state and investigate the
topological properties.

7.1. Fuzzy Four-Supersphere

Here, we utilize UOSp(1|4) algebra to construct fuzzy four-supersphere with N = 1 SUSY. It may
be worthwhile to first point out a nice correspondence between algebras and fuzzy spheres. For fuzzy
two-sphere, we have:

SU(2) ≃ USp(2) → S2
f , UOSp(1|2) → S

2|2
f (315)

and for fuzzy four-sphere:

SO(5) ≃ USp(4) → S4
f , UOSp(1|4) → S

4|2
f (316)

The UOSp(1|4) algebra is constituted of fourteen generators:

dim[uosp(1|4)] = 10|4 = 14 (317)

ten of which are the bosonic generators, Γab = −Γba (a, b = 1, 2, · · · , 5) (the SO(5) generators), and the
remaining four are the fermionic ones, Γα (α = 1, 2, 3, 4) (the SO(5) spinor). They amount to satisfy
the following algebra:

[Γab,Γcd] = i(δacΓbd − δadΓbc − δbcΓad + δbdΓac)

[Γab,Γα] = (γab)βαΓβ

{Γα,Γβ} =
∑
a<b

(Cγab)αβΓab (318)
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where C is the SO(5)(≃ USp(4)) charge conjugation matrix:

C = R4 =

(
iσ2 0

0 iσ2

)
(319)

and γab are the SO(5) matrices. In the following discussion, we take the SO(5) matrices as:

γ12 =
1

2

(
σ3 0

0 σ3

)
, γ13 =

1

2

(
−σ2 0

0 −σ2

)
, γ14 =

1

2

(
σ1 0

0 −σ1

)

γ15 =
1

2

(
0 −σ1

−σ1 0

)
, γ23 =

1

2

(
σ1 0

0 σ1

)
, γ24 =

1

2

(
σ2 0

0 −σ2

)

γ25 =
1

2

(
0 −σ2

−σ2 0

)
, γ34 =

1

2

(
σ3 0

0 −σ3

)
, γ35 =

1

2

(
0 −σ3

−σ3 0

)

γ45 =
1

2

(
0 i12

−i12 0

)
(320)

The UOSp(1|4) quadratic Casimir is given by:

K =
∑
a<b

ΓabΓab + CαβΓαΓβ (321)

The fundamental five-dimensional representation matrices of uosp(1|4) are constructed as follows. From
the (bosonic) “gamma matrices” of UOSp(1|4) algebra:

Γa =

(
γa 0

0 0

)
(322)

with:

γ1 =

(
0 iσ1

−iσ1 0

)
, γ2 =

(
0 iσ2

−iσ2 0

)
, γ3 =

(
0 iσ3

−iσ3 0

)

γ4 =

(
0 12

12 0

)
, γ5 =

(
12 0

0 −12

)
(323)

we can derive the SO(5) generators:

Γab = −i1
4
[Γa,Γb] =

(
γab 0

0 0

)
(324)

The fermionic “gamma matrices” are also constructed as:

Γα =
1√
2

(
04 τα

−(Cτα)
t 0

)
(325)

where:

τ1 =


1

0

0

0

 , τ2 =


0

1

0

0

 , τ3 =


0

0

1

0

 , τ4 =


0

0

0

1

 (326)
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They satisfy the “hermiticity” condition:

Γ‡
a = Γa, Γ‡

ab = Γab, Γ‡
α = CαβΓβ (327)

where the super-adjoint ‡ is defined in (50). It is straightforward to check that (324) and (325) satisfy the
UOSp(1|4) algebra (318). In the similar manner to the case of S2|2

f (74), we introduce the coordinates
of S4|2

f , Xa and Θα, as:

Xa =
R

d
Ψ†ΓaΨ, Θα =

R

d
Ψ†ΓαΨ (328)

where Ψ is the UOSp(1|4) Schwinger operator:

Ψ = (b1, b2, b3, b4, f)t (329)

Here, bα (α = 1, 2, 3, 4) and f , respectively, denote four bosonic and one fermionic operators that satisfy:

[bα, bβ
†
] = δαβ, {f, f †} = 1, [bα, bβ] = [bα, f ] = {f, f} = 0 (330)

The square of the radius of fuzzy four-supersphere is also readily derived as:

XaXa + 2CαβΘαΘβ =

(
R

d

)2

(Ψ†Ψ)(Ψ†Ψ+ 3) (331)

In the Schwinger formalism, the Casimir (321) is represented as:

K =
∑
a<b

XabXab + CαβΘαΘβ =
1

2

(
R

d

)2

(Ψ†Ψ)(Ψ†Ψ+ 3) (332)

where:
Xab =

R

d
Ψ†ΓabΨ (333)

Notice that in the Schwinger operator formalism the Casimir (332) is equivalent to (331) up to 1/2

coefficient on the r.h.s. The basis states on fuzzy four-supersphere are given by the graded fully
symmetric representation:

|n1, n2, n3, n4⟩ =
1√

n1! n2! n3! n4!
b1

†n1

b2
†n2

b3
†n3

b4
†n4

|vac⟩ (334a)

|m1,m2,m3,m4) =
1√

m1!m2!m3!m4!
b1

†m1

b2
†m2

b3
†m3

b4
†m4

f †|vac⟩ (334b)

where n1, n2, · · · ,m4 are all non-negative integers satisfying the constraint, n1 + n2 + n3 + n4 =

m1+m2+m3+m4+1 = n ≡ Ψ†Ψ. Therefore, the dimensions of bosonic states (334a) and fermionic
states (334b) are, respectively, given by:

DB = D(n) ≡ 1

3!
(n+ 1)(n+ 2)(n+ 3) (335a)

DF = D(n− 1) =
1

3!
n(n+ 1)(n+ 2) (335b)

and the total dimension is:

DT = DB +DF =
1

6
(n+ 1)(n+ 2)(2n+ 3) (336)
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The bosonic and fermionic degrees of freedom (335) are respectively accounted for by the SO(5)

symmetric basis states with the Casimir indices, n and n − 1, and hence, the N = 1 fuzzy
four-supersphere can be regarded as a “compound” of two fuzzy four-spheres with different radii n
and n− 1:

S
4|2
f (n) ≃ S4

f (n)⊕ S4
f (n− 1) (337)

The eigenvalues of X5 take the following values:

X5 =
R

d
(n− k) (338)

with k = 0, 1, 2, · · · , 2n. These eigenvalues are equal to those of X3 of fuzzy two-supersphere (60),
except for the degeneracy of the basis states at each latitude. The degeneracies at the latitude (338) for
even k = 2l and for odd k = 2l + 1 are respectively given by:

Dk=2l(n) = (n− l + 1)(l + 1) (339a)

Dk=2l+1(n) = (n− l)(l + 1) (339b)

which reproduce the total dimensions of bosonic and fermionic basis states (335) as:
n∑

l=0

Dk=2l(n) = DB,

n−1∑
l=0

Dk=2l+1(n) = DF (340)

From (331), one may find that the condition for fuzzy four-supersphere is invariant under the SU(4|1)
rotation of the Schwinger operator Ψ, which is larger than the original UOSp(1|4) symmetry. It may be
pedagogical to demonstrate how such “hidden” SU(4|1) structure is embedded in the algebra of fuzzy
four-supersphere. First, notice that the fuzzy four-supersphere coordinates, Xa and Θα, do not satisfy a
closed algebra by themselves:

[Xa, Xb] = i
4R

d
Xab, [Xa,Θα] =

R

d
(γa)βαΘβ, {Θα,Θβ} =

R

d

∑
a<b

(Cγab)αβXab (341)

On the right-hand sides of (341), there appear “new” operators:

Xab =
R

d
Ψ†ΓabΨ, Θα =

R

d
Ψ†DαΨ (342)

where Γab and Dα are, respectively, given by (324) and:

Dα =
1√
2

(
04 τα

(Cτα)
t 0

)
(343)

Xab and Θα, respectively, act as SO(5) antisymmetric two-rank tensor and spinor. Commutation
relations for these new operators can be derived as:

[Xa,Θα] =
R

d
(γa)βαΘβ, [Xa, Θα] =

R

d
(γa)βαΘβ

[Xab,Θα] =
R

d
(γab)βαΘβ, [Xab, Θα] =

R

d
(γab)βαΘβ

{Θα,Θβ} =
R

d

∑
a<b

(Cγab)αβXab, {Θα, Θβ} = −R
d

∑
a<b

(Cγab)αβXab

{Θα, Θβ} =
R

4d
(Cγa)αβXa +

R

4d
CαβZ (344)
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where the last equation further yields another new operator:

Z =
R

d
Ψ†HΨ (345)

with:

H =

(
14 0

0 4

)
(346)

Commutation relations with Z are obtained as:

[Z,Xa] = [Z,Xab] = 0, [Z,Θα] = −3R

d
Θα, [Z,Θα] = −3R

d
Θα (347)

Consequently, for the closure of the algebra of the fuzzy coordinates, Xa and Θα, we have introduced the
fifteen new “coordinates”, Xab, Θα and Z. In total, with the original coordinates, they amount to twenty
four operators that satisfy the SU(4|1) algebra. The basic concept of the non-commutative geometry is
the algebraic construction of geometry, and the SU(4|1) structure, the symmetry of the basis states on
fuzzy four-supersphere, has indeed appeared as the fundamental algebra of the fuzzy four-supersphere.

7.2. UOSp(1|4) SVBS States

Similar to the UOSp(1|2) SVBS case, the UOSp(1|4) SVBS states (to be precise, there exist two
types of UOSp(1|4) VBS states, one of which is the tensor type (348) and the other is the vector
type [10]; here, we focus on the tensor type.) can be constructed as:

|SVBS⟩ =
∏
⟨i,j⟩

(Ψ†
i (r)R1|4 Ψ

∗
j(r))

M |vac⟩

=
∏
i

(b1i
†
b2j

† − b2i
†
b1j

†
+ b3i

†
b4j

† − b4i
†
b3j

† − rf †
i f

†
j )

M |vac⟩ (348)

where Ψ(r) denotes the parameter-dependent UOSp(1|4) Schwinger operator:

Ψ(r) ≡ (b1, b2, b3, b4,
√
rf)t (349)

and R1|4 signifies the UOSp(1|4) invariant matrix:

R1|4 =


0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 −1

 (350)

The SO(5) spin magnitude on site i reads as:

Si =
1

2
(b1i

†
b1i + b2i

†
b2i + b3i

†
b3i + b4i

†
b4i ) =M, M − 1

2
(351)

In the following, we focus on the M = 1 UOSp(1|4) SVBS chain and its corresponding SMPS
representation:

|SVBS⟩aL,aR =
L∏
i=1

(Ψ†
iR1|4Ψ

∗
i+1)aL,aR |vac⟩ = (A1A2 · · · AL)aL,aR (352)
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where A is a supermatrix given by:

Ai = R1|4Ψ
∗
i (r)Ψ

†
i (r) =


|1, 2⟩i

√
2|2, 2⟩i |2, 3⟩i |2, 4⟩i

√
r|2⟩i

−
√
2|1, 1⟩ −|1, 2⟩i −|1, 3⟩ −|1, 4⟩i −

√
r|1⟩i

|1, 4⟩ |2, 4⟩ |3, 4⟩i
√
2|4, 4⟩i

√
r|4⟩i

−|1, 3⟩ −|2, 3⟩i −
√
2|3, 3⟩ −|3, 4⟩i −

√
r|3⟩i

−
√
r|1⟩i

√
r|2⟩i −

√
r|3⟩i −

√
r|4⟩i 0


with the matrix elements:

|α, α⟩ = 1√
2
(bα†)2|vac⟩ (no sum for α)

|α, β⟩α̸=β = bα†bβ
†|vac⟩

|α⟩ = bα†f †|vac⟩ (353)

The basis states |α, α⟩ and |α, β⟩α̸=β are SO(5) 10-dimensional adjoint representations, while |α⟩ are
SO(5) 4-dimensional spinors. In total, the components of A consist of UOSp(1|4) 14-dimensional
representation of the graded fully symmetric representation (334) for n = 2.

7.3. Entanglement Spectrum and (Z2 × Z2)
2 Symmetry

For the UOSp(1|4) SVBS infinite chain, the Schmidt coefficients are computed as:

λB
2 ≡ λ1

2 = λ2
2 = λ3

2 = λ4
2 =

1

8
+

5

8
√
25 + 16r2

(354a)

λF
2 ≡ λ5

2 =
1

2
− 5

2
√
25 + 16r2

(354b)

The bosonic Schmidt coefficients are quadratically degenerate, while the fermionic one is
non-degenerate. The behaviors of the Schmidt coefficients and the entanglement entropy,
SE.E. = −4λ2B log2 λ

2
B − λ2F log2 λ

2
F, are plotted in Figure 37. The qualitative behaviors of the

entanglement spectra of the UOSp(1|4) VBS chain are quite similar to those of the type-I SVBS chain
(see Figure 30), except for the quadratical degeneracy in the blue curve.

Figure 37. The behaviors of the Schmidt coefficients and entanglement entropy (inset) of
the S = 1 UOSp(1|4) VBS chain. The figure and caption are taken from [10].
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The degeneracy of the entanglement spectra of the UOSp(1|4) SVBS chain can be understood
based on the arguments of the symmetry protected topological order. Before proceeding to the case
of UOSp(1|4), we introduce the original arguments for its bosonic counterpart, the SO(5) VBS
state [112–114]. Each of inversion symmetry and time reversal symmetry guarantees at least double
degeneracy of the entanglement spectra of the SO(5) VBS states, as proven by a similar manner to
the SU(2) VBS states. This is simply because each of the inversion symmetry, and time reversal
symmetry is a realization of Z2 symmetry. The crucial difference to the SU(2) case is the existence
of (Z2×Z2)

2 symmetry of the SO(5) VBS states originating from the SO(5) spin degrees of freedom at
the edge [208]. The SO(5) rotation represents a rotation in five-dimensional space, and we “divide”
the five-dimensional coordinates (1, 2, 3, 4, 5) to two three-dimensional subsectors, (1, 2, 5) and
(3, 4, 5). The π-rotational symmetry around x and z axes in each sector generates the Z2×Z2 symmetry,
and in total, two independent sets of such discrete rotations give rise to (Z2 × Z2)

2 symmetry in the
five-dimensional space. The group elements of (Z2 × Z2)

2 consist of 16 bases:

Z2×Z2︷ ︸︸ ︷
(1, u12)× (1, u15)×

Z2×Z2︷ ︸︸ ︷
(1, u34)× (1, u35) (355)

where uab are the SO(5) group elements of π rotation generated by the SO(5) generator σab:

uab(π) = eiπσab (356)

As the Z2×Z2 symmetry generates at least doubly degeneracy in the entanglement spectra, the (Z2×Z2)
2

symmetry guarantees the four-fold degeneracy of the entanglement spectra of the SO(5) VBS chain. For
the SUSY case, just as we have discussed in the UOSp(1|2) SVBS case, symmetry transformations are
attributed to those of the bosonic and fermionic sectors:

Uab =

(
u
(B)
ab 0

0 u
(F )
ab

)
(357)

Similar to the discussions about double degeneracy in the UOSp(1|2) case, either of the bosonic and
fermionic sectors brings the quadruple degeneracy to the entanglement spectra of the UOSp(1|4) SVBS
state in the presence of (Z2 × Z2)

2 symmetry.

8. Summary and Discussions

We reviewed the constructions and basic properties of the fuzzy superspheres and SVBS models.
Particularly, fuzzy superspheres and SVBS models with UOSp(1|2), UOSp(2|2) and UOSp(1|4)
symmetries were discussed in detail. We clarified the mutual relations among the fuzzy spheres; QHE
and VBS states were also emphasized based on the Schwinger operator formalism. It was illustrated that,
though the SVBS states incorporate fermionic degrees of freedom, they “inherit” all the nice properties
of the VBS:

• Solvable parent Hamiltonian
• Gapped bulk and gapless edge excitations
• Generalized hidden order.
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We explicitly derived the spectra for gapped excitations (magnon and hole excitations) on 1D SVBS
chain within SMA. Physical properties of the SVBS models are qualitatively different from those of
the other generalized VBS models based on bosonic Lie groups, in the sense that the SVBS states
accommodate the charge sector in addition to the spin sector. In each sector, the SVBS states exhibit the
following properties:

• In the charge sector, the SVBS states have the superconducting property (SSB).
• In spin sector, the SVBS states show a non-trivial topological order of QAFM (no SSB).

We also established the SMPS formalism for the SVBS states, which naturally incorporates the edge
degrees of freedom to provide a powerful tool in investigating topological property. For practical use, the
(S)MPS formalism greatly simplifies the calculations of physical quantities, such as the string order and
entanglement spectrum. The SVBS states bear a finite string order, regardless of the parity of the bulk
superspin, unlike the original VBS states. From the explicit calculations of the entanglement spectra
of the SVBS chains, we demonstrated that there exists a hallmark of topological phase, the double
degeneracy in SUSY entanglement spectrum. The degeneracy is naturally understood by invoking
particular edge states in the SUSY chain: since SUSY relates the integer and half-integer edge-spin
states, the SVBS chains always accommodate half-integer edge spin (as well as integer edge spin),
which guarantees at least double degeneracy of the entanglement spectra. Consequently, the topological
order is stabilized regardless of the parity of bulk-spin in the presence of SUSY.

Though we focused on the SVBS states, the arguments of the present SUSY protected topological
order are applicable to general boson-fermion systems. By reformulating the boson-fermion system,
such as the boson-fermion mixture cold atom system [209] with SUSY, we may apply the present results
to discuss the stability for their topological phases. The idea of the topological insulator has begun to be
applied to the particle theory model [210]. It may also be interesting to apply the present arguments to
other SUSY models that are not directly related to condensed matter physics.
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Appendix

A. UOSp(N|2K)

Here, we summarize the basic properties of UOSp(N|2K) algebra. We denote the generators of the
orthosymplectic group, OSp(N|2K) as ΣAB, which satisfy the following relation (the minus sign in
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front of 1N in (358) is not important for the definition of OSp(N|2K), but added to be consistent with
the notation of the present paper.):

Σst
AB

(
J2K 0

0 −1N

)
+

(
J2K 0

0 −1N

)
ΣAB = 0 (358)

where the supertranspose, st, is defined in (275), 1N denotes the N ×N unit matrix and J2K represents
the Sp(2K,C) invariant matrix:

J2K =

(
0 1K

−1K 0

)
(359)

ΣAB can be expressed by a linear combination of the following matrices:

Σαβ =

(
σαβ 0

0 0

)
, Σlm =

(
0 0

0 σlm

)
, Σlα =

(
0 σlα

(J2Kσlα)
t 0

)
(360)

where α and β are the indices of Sp(2K,C) (α, β = 1, 2, · · · , 2K) and l and m are those of O(N )

(l,m = 1, 2, · · · ,N ). σlα stand for arbitrary 2K×2K matrices, while σαβ and σlm, respectively, signify
2K × 2K and N ×N matrices that satisfy:

σlm
t + σlm = 0 (361a)

σαβ
tJ2K + J2Kσαβ = 0 (361b)

The OSp(N|2K) algebra contains the maximal bosonic subalgebra, sp(2K,C) ⊕ o(N ,C), whose
generators are σαβ and σlm. The off-diagonal block matrices, Σlα, are fermionic generators that transform
as the fundamental representation under each of the transformations of Sp(2K,C) and O(N ,C). The
o(N ,C) matrices σlm are antisymmetric matrices (361a), and then, we can take the indices of σlm to
be antisymmetric, σlm = −σml. In the following, we consider the real antisymmetric matrices, the
generators of o(N ), with N (N − 1)/2 real degrees of freedom. Meanwhile, from the relation (361b),
the generators of Sp(2K,C) σαβ take the form of:

σαβ =

(
k s

s′ −kt

)
(362)

where k stands for an arbitrary K × K complex matrix and, similarly, s and s′ are K × K symmetric
complex matrices. If the Hermiticity condition is imposed, σαβ are reduced to the generators of
USp(2K) that take the form of:

σαβ =

(
h s

s† −h∗

)
(363)

where h represents an arbitrary Hermitian matrix and s also signifies an arbitrary symmetric complex
matrix. Consequently, UOSp(N|2K) generators consist of (360), whose blocks satisfy (361) and (363).
The real independent degrees of freedom of σαβ areK(2K+1). Then, for usp(2K) matrices σαβ , we can
take the indices to be symmetric, σαβ = σβα. Meanwhile, the real degrees of freedom of the fermionic
generators, Σlα, are 2KN . Then in total, the real degrees of freedom of uosp(N|2K) are given by:

dim[uosp(N|2K)] =
1

2
(4K2 +N 2 + 2K −N )|2KN =

1

2
((2K +N )2 + 2K −N ) (364)
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In the present paper, instead of J2K (359), we adopt the following 2K×2K matrix (which is unitarily
equivalent to J2K):

R2K =


iσ2 0 0 0

0 iσ2 0 0

0 0
. . . 0

0 0 0 iσ2

 (365)

and the following UOSp(N|2K) invariant matrix:

RN|2K =

(
R2K 0

0 −1N

)
(366)

For instance, for the UOSp(1|2), UOSp(2|2) and UOSp(1|4), RN|2K are, respectively, given by:

R1|2 =

 0 1 0

−1 0 0

0 0 −1

 , R2|2 =


0 1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 −1

 , R1|4 =


0 1 0 0 0

−1 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 −1

 (367)

B. Fuzzy Four-Supersphere with Higher Supersymmetries

By generalizing the construction of N = 1 fuzzy four-supersphere based onUOSp(1|4) (Section 7.1),
we can construct N -SUSY fuzzy four-sphere with use of the UOSp(N|4) algebra [128]. The dimension
of the UOSp(N|4) algebra is given by:

dim[uosp(N|4)] = 10 +
1

2
N (N − 1)|4N = 10 +

1

2
N (N + 7) (368)

We denote the bosonic generators of uosp(N|4) as Γab = −Γba (a, b = 1, 2, 3, 4, 5), Γ̃lm = −Γ̃ml

(l,m = 1, 2, · · · ,N ) and fermionic generators as Γlα (α = θ1, θ2, θ3, θ4). In total, they satisfy:

[Γab,Γcd] = i(δacΓbd − δadΓbc + δbcΓad − δbdΓac)

[Γab,Γlα] = (γab)βαΓlβ

[Γab, Γ̃lm] = 0

{Γlα,Γmβ} =
∑
a<b

(Cγab)αβΓabδlm +
1

4
CαβΓ̃lm

[Γlα, Γ̃mn] = (γmn)plΓpα

[Γ̃lm, Γ̃np] = −δlnΓ̃mp + δlpΓ̃mn − δmpΓ̃ln + δmnΓ̃lp (369)

where C is the SO(5) charge conjugation matrix (319) and γlm = −γml (l < m) are SO(N ) generators
given by:

(γlm)np = δlnδmp − δlpδmn (370)

We introduce the coordinates of S4|2N
f as (Xa; Θ(l)

α , Ylm do not satisfy a closed algebra by themselves,
and the minimally extended closed algebra including these operators is SU(4|N ) [128]):

Xa =
R

d
Ψ†ΓaΨ, Θ(l)

α =
R

d
Ψ†ΓlαΨ, Ylm =

R

d
Ψ†Γ̃lmΨ, (371)
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where Ψ = (b1, b2, b3, b4, f1, f2, · · · , fN )t denotes the UOSp(N|4) Schwinger operator whose first four
components, bα (α = 1, 2, 3, 4), are the bosonic operators, while the remaining N components, fl
(l = 1, 2, · · · ,N ), are the fermionic operators. The sandwiched matrices in (371):

Γa =

(
γa 0

0 0N

)
, Γlα =

 03+l τα 0

−(Cτα)
t 0 0

0 0 0N−l

 , Γ̃lm =

(
04 0

0 γlm

)
(372)

are the fundamental representation matrices of uosp(N|4). Here, 0k denotes k × k zero-matrix, and τα
are given by (326). The square of the radius of the N -SUSY fuzzy four-supersphere is readily derived as:

XaXa + 2
N∑
l=1

CαβΘ
(l)
α Θ

(l)
β +

N∑
l<m=1

YlmYlm =

(
R

d

)2

n(n+ 4−N ) (373)

with n = Ψ†Ψ. Notice that the square of the radius of N -SUSY fuzzy supersphere is proportional to
n(n+ 4−N ) and takes negative values for sufficiently small n that satisfy n < N − 4. For the positive
definiteness of the radius, the SUSY number should be restricted to N ≤ 4. The basis states on N -SUSY
fuzzy supersphere S4|N

f are given by the graded fully symmetric representation:

|l1, l2, l3, l4⟩ =
1√

l1! l2! l3! l4!
b†1

l1
b†2

l2
b†3

l3
b†4

l4 |vac⟩

|m1,m2,m3,m4)i1 =
1√

m1!m2!m3!m4!
b†1

m1
b†2

m2
b†3

m3
b†4

m4
f †
i1
|vac⟩

|n1, n2, n3, n4⟩i1<i2 =
1√

n1! n2! n3! n4!
b†1

n1
b†2

n2
b†3

n3
b†4

n4
f †
i1
f †
i2
|vac⟩

...

|q1, q2, q3, q4⟩i1<i2<···<iN−1
=

1√
q1!q2!q3!q4!

b†1
q1
b†2

q2
b†3

q3
b†4

q4
f †
i1
f †
i2
f †
i3
· · · f †

iN−1
|vac⟩

|r1, r2, r3, r4) =
1√

r1!r2!r3!r4!
b†1

r1
b†2

r2
b†3

r3
b†4

r4
f †
1f

†
2f3 · · · f

†
N−1f

†
N |vac⟩ (374)

where l1+l2+l3+l4 = m1+m2+m3+m4+1 = n1+n2+n3+n4+2 = · · · = q1+q2+q3+q4+N−1 =

r1 + r2 + r3 + r4 +N = n. Therefore, with D(n) (335a), the dimension of (374) is given by:

DT =
N∑
l=0

(
N
l

)
·D(n− l) =

1

3
(2n+ 4−N )

(
(2n+ 4−N )2 − 4 + 3N

)
2N−4 (375)

for n ≥ N − 3. The degrees of freedom of the basis states (374) imply that S4|2N
f (n) can be interpreted

as a “compound” of lower SUSY fuzzy four-spheres with different radii:

S
4|2N
f (n) ≃

l∑
m=0

lCm · S4|2N−2l
f (n−m)

≃ S
4|2N−2l
f (n)⊕

[
l×S4|2N−2l

f (n−1)

]
⊕
[
l(l − 1)

2!
×S4|2N−2l

f (n−2)

]
⊕ · · · ⊕ S

4|2N−2l
f (n−l)

(376)
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More explicitly:

S
4|2N
f (n) ≃ S

4|2N−2
F (n)⊕ S

4|2N−2
f (n− 1)

≃ S
4|2N−4
f (n)⊕

[
2× S

4|2N−4
f (n− 1)

]
⊕ S

4|2N−4
f (n− 2)

≃ S
4|2N−6
f (n)⊕

[
3× S

4|2N−6
f (n− 1)

]
⊕
[
3× S

4|2N−6
f (n− 2)

]
⊕ S

4|2N−6
f (n− 3)

≃ · · · (377)

For N = 1, this reproduces the relation for S4|2
f (n) (61).
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48. Weichselbaum, A.; Verstraete, F.; Schollwöck, U.; Cirac, J.I.; von Delft, J. Variational
matrix-product-state approach to quantum impurity models. Phys. Rev. B 2009, 80,
165117:1–165117:7.

49. Porras, D.; Verstraete, F.; Cirac, J.I. Renormalization algorithm for the calculation of spectra of
interacting quantum systems. Phys. Rev. B 2006, 73, 014410:1–014410:7.

50. Fan, H.; Korepin, V.; Roychowdhury, V. Entanglement in a valence-bond solid state. Phys. Rev.
Lett. 2004, 93, 227203:1–227203:4.

51. Katsura, H.; Hirano, T.; Hatsugai, Y. Exact analysis of entanglement in gapped quantum spin
chains. Phys. Rev. B 2007, 76, 012401:1–012401:4.

52. Katsura, H.; Hirano, T.; Korepin, V.E. Entanglement in an SU(n) valence-bond-solid state. J.
Phys. A Math Theor. 2008, 41, 135304:1–135304:13.



Symmetry 2013, 5 207

53. Xu, Y.; Katsura, H.; Hirano, T.; Korepin, V.E. Entanglement and density matrix of a block of spins
in AKLT model. J. Stat. Phys. 2008, 133, 347–377.
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55. Niggemann, H.; Klümper, A.; Zittartz, J. Ground state phase diagram of a spin-2 antiferromagnet
on the square lattice. Eur. Phys. J. B 2000, 13, 15–19.
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