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Abstract: We review solvable models within the framework of supersymmetric quantum
mechanics (SUSYQM). In SUSYQM, the shape invariance condition insures solvability
of quantum mechanical problems. We review shape invariance and its connection to a
consequent potential algebra. The additive shape invariance condition is specified by a
difference-differential equation; we show that this equation is equivalent to an infinite set
of partial differential equations. Solving these equations, we show that the known list of
~-independent superpotentials is complete. We then describe how these equations could be
extended to include superpotentials that do depend on ~.
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1. Introduction

Supersymmetric quantum mechanics (SUSYQM) is a generalization of the factorization method
commonly used for the harmonic oscillator. The factorization technique begun by Darboux [1] about one
hundred years ago, and used by Schrödinger [2–4] in the 1940’s and Infeld and Hull in the 1950’s [5],
could be considered a precursor of SUSYQM.
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The current form of SUSYQM appeared in 1981 [6] as a model of dynamical symmetry breaking. It
was developed further by the authors of [7,8] among others. This simplified model turned out to have
important applications in quantum mechanics.

In the next section, we will describe the general formalism of SUSYQM and in Section 3 we introduce
the shape invariance condition that makes a potential solvable. Section 4 is dedicated to a description
of potential algebra and its connection to shape invariance. In Section 5 we will describe a method for
determining solutions of the translational shape invariance condition. We will then conclude with the
analysis of recently discovered shape invariant potentials that are inherently functions of ~.

2. Supersymmetric Quantum Mechanics

Throughout this paper, we use units such that 2m = 1. For the harmonic
oscillator, the Hamiltonian [9] Hho = −~2 d2

dx2
+ 1

4
ω2x2 − 1

2
~ω is factorized into

A+ ≡ −~ d
dx

+ 1
2
ωx and A− ≡ ~ d

dx
+ 1

2
ωx. Similarly, in the SUSYQM formalism [10,11] a

general Hamiltonian H− = −~2 d2

dx2
+ V−(x, a) is written as a product of A+ ≡ −~ d

dx
+ W (x, a) and

A− ≡ ~ d
dx

+ W (x, a), where the function W (x, a) is known as the superpotential. The product A+A−

is then given by

A+A− =

(
−~ d

dx
+W (x, a)

) (
~
d

dx
+W (x, a)

)
= −~2 d

2

dx2
+W 2(x, a)− ~

dW (x, a)

dx
(1)

Thus, the productA+A− indeed reproduces the Hamiltonian H− above, provided the potential V−(x, a)

is related to the superpotential W (x, a) by V−(x, a) = W 2(x, a) − ~dW (x,a)
dx

. The product A−A+

produces another Hamiltonian H+ = −~2 d2

dx2
+ V+(x, a) with V+(x, a) = W 2(x, a) + ~dW (x,a)

dx
. To see

the underlying supersymmetry of this formalism, let us construct a generator Q− and its adjont Q+ by:

Q− =

(
0 0

A− 0

)
; and Q+ =

(
0 A+

0 0

)
(2)

Operators Q− and Q+ generate the following supersymmetry algebra:

{
Q−, Q−

}
=
{
Q+, Q+

}
= 0 ; and

{
Q−, Q+

}
= H ≡

(
A+A− 0

0 A−A+

)
(3)

The groundstate energy of this Hamiltonian is then given by

〈Ψ0|H|Ψ0〉 = 〈Ψ0|
{
Q−, Q+

}
|Ψ0〉 =

∣∣Q+|Ψ0〉
∣∣2 +

∣∣Q−|Ψ0〉
∣∣2 ≥ 0 (4)

Thus, the non-vanishing of the groundstate energy implies that either Q+|Ψ0〉 6= 0 or Q−|Ψ0〉 6= 0, and
hence signals the spontaneous breaking of the supersymmetry. We therefore require that 〈Ψ0|H|Ψ0〉 = 0

to preserve unbroken supersymmetry.
The Hamiltonians H+ and H− are intertwined; i.e., A+H+ = H−A+ and A−H− = H+A−. This

leads to the following relationships among their eigenvalues and eigenfunctions [12]

E−n+1 = E+
n ;

A−√
E+
n

ψ
(−)
n+1 = ψ(+)

n and
A+√
E+
n

ψ(+)
n = ψ

(−)
n+1 ; n = 0, 1, 2 · · · (5)
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Since H± are products of the operator A− and its adjoint A+, their eigenvalues are either zero or
positive [13]. The ground state eigenvalue of one of these Hamiltonians must be zero in order to have
unbroken supersymmetry. Without loss of generality, we choose that Hamiltonian to be H−. Thus,
we have

A+A− ψ(−)
0 = 0 ; which is satisfied when A− ψ(−)

0 = 0 , i.e. ψ(−)
0 (x, a) = N e

− 1
~
∫ x
x0
W (y,a) dy (6)

where x0 is an arbitrary point in the domain and N is the normalization constant that depends on
the choice of x0. Thus, if ψ(−)

0 is a normalizable groundstate, we have a system with unbroken
supersymmetry. Its groundstate E−0 is zero and the operatorA− annihilates the corresponding eigenstate
ψ

(−)
0 . For all higher states of H−, as indicated in Equation (5), there is an one-to-one correspondence

with the states of H+.

2.1. Example

Consider a system described by the superpotential W (x, b) = −b cotx, defined over the
domain (0, π). Corresponding partner potentials are given by V±(x, b) = b(b± ~) cosec2 x− b2. This is
a rather complicated potential, and rarely analyzed in quantum mechanics courses. However, for b = ~,
the potential V−(x, ~) reduces to the infinite square well, with the bottom of the potential at −~2 and
zero groundstate energy. We know that the corresponding eigenstates are given by ψ(−)

n = sin(nx) and
eigenvalues E−n = n2 ~2. Thus, using the familiarity with the relatively simpler potential V−, we are
able to derive all of the eigenvalues and eigenfunctions of V+. Then the inter-relations expressed through
Equation (5) enable us to determine eigenvalues and eigenfunctions of V+(x, ~) = 2 ~2 cosec2 x− ~2.

Although we assume that our Hamiltonians are hermitian, hermiticity is not necessary to generate
real eigenvalues. Replacing the sufficient but not necessary condition of hermiticity with the
weaker condition of PT symmetry, has led to the discovery of new potentials with real energy
eigenvalues [14–16]. Considerable work has been done on the study of SI potentials with PT symmetry.
In reference [17], the author examined the shape invariant hyperbolic Rosen-Morse potential as a case of
exact solvability with PT invariance. In reference [18], the Scarf II potential was shown as an example
of spontaneous PT-symmetry-breaking. The case of a square well with discrete PT symmetry but with
intervals of non-hermiticity was shown in reference [19] to produce real eigenvalues. Authors of [20]
constructed the spectrum of a square well of imaginary strength, to obtain the hierarchy of SI potentials,
while authors of [21] constructed a set of solvable rational potentials, and related the PT symmetry
condition to the condition that they be free of singularities. However, in this paper we limit ourselves to
the case of hermitian Hamiltonians, i.e., real W (x, a).

The remainder of this manuscript is devoted to the study of the shape invariance condition and
its solutions.

3. Shape Invariance in Supersymmetric Quantum Mechanics

If the superpotential W (x, ai) of a system obeys the condition

W 2(x, ai) + ~
dW (x, ai)

dx
+ g(ai) = W 2(x, ai+1)− ~

dW (x, ai+1)

dx
+ g(ai+1) (7)
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where ai+1 = η(ai), the system is called shape invariant [5,22–24]. Various forms of the function η
define classes of shape invariance. The most commonly discussed classes are:

1. Translational or Additive Shape Invariance: ai+1 = η(ai) = ai + ~ ;
2. Multiplicative or Scaling Shape Invariance [25,26]: ai+1 = η(ai) = r ai where 0 < r < 1 ;
3. Cyclic Shape Invariance [27]: ai+n = ηn(ai) = ai .

From Equation (7) it follows that for a shape invariant system, the partner potentials V+(x, ai) and
V−(x, ai+1) differ only by values of parameter ai and additive constants g(ai). In particular,

V+(x, a0) + g(a0) = V−(x, a1) + g(a1) (8)

In terms of operators A±, the shape invariance condition becomes

A−(x, a0)A+(x, a0)−A+(x, a1)A−(x, a1) = g(a1)− g(a0) (9)

As we will see in Section 4, Equation (9) implies that for every shape invariant system, there is always
an underlying potential algebra [28–32] that guarantees its solvability. In the rest of this section, we will
show how shape invariance enables us to find the eigenvalues and eigenfunctions of the system.

3.1. Determination of Eigenvalues

From Equation (9), we see that Hamiltonians H+(x, a0) and H−(x, a1) differ only by the
constant g(a1) − g(a0). We already know that E−0 (a0) = 0. Let us determine the first excited
state of H−; i.e., E−1 (a0). Hence, using E−0 (a1) = 0 [33], we find that the energy E−1 (a0) of
the first excited state of H−(x, a0) and E+

0 (a0) of the groundstate of H+(x, a0) both are given by
g(a1) − g(a0). Similarly, to determine E−2 (a0), we use the isospectrality condition (5) to relate
it to E+

1 (a0). But by the shape invariance condition (9), E+
1 (a0) = E−1 (a1) + g(a1) − g(a0).

Following the method used for determining E−1 (a0), we find E−1 (a1) = g(a2) − g(a1), and hence,
E−2 (a0) = g(a2) − g(a1) + g(a1) − g(a0) = g(a2) − g(a0). Extending this argument to higher excited
states of H−(x, a0), we get

E(−)
n (a0) = g(an)− g(a0) for n ≥ 0 (10)

3.2. Determination of Eigenfunctions

Again from Equation (9), we see that since H+(x, a0) and H−(x, a1) only differ by the constant
g(a1) − g(a0), they must have common eigenfunctions. Hence, from Equation (6), we have
ψ

(+)
0 (x, a0) = ψ

(−)
0 (x, a1) ∼ e−

1
~
∫ xW (y,a1) dy . Then the isospectrality condition (5), requires

ψ
(−)
1 (x, a0) ∼ A+(a0) e

− 1
~
∫ xW (y,a1) dy. Iterating this procedure, we obtain

ψ(−)
n (x, a0) ∼ A+(a0) A+(a1) · · · A+(an−1) ψ

(−)
0 (x, an)

∼ A+(a0) A+(a1) · · · A+(an−1) e
− 1

~
∫ xW (y,an) dy (11)
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Thus, for a system with a given shape invariant superpotential, the eigenvalues and eigenfunctions can
be determined analytically. This result makes it very important to find all such potentials. In the
past, researchers had found a list of additive shape invariant potentials [10,11], mostly by trial and
error [34,35]. In Section 5, we will discuss how to find solutions of Equation (9) for the additive
case. Before that, however, in the next section we will show why the shape invariance condition leads
to solvability.

4. Shape Invariance and Potential Algebra

We will now show that the symmetry behind the shape invariance is essential in building the algebraic
structures known as potential algebras. As we will show below, a potential algebra is in general
a deformation of a three-dimensional Lie algebra, whose representations yield the spectrum of the
corresponding shape invariant system.

4.1. Building the Algebra

The starting point of our construct is the shape invariance condition given by Equation (9), which we
rewrite as

A+(x, a1)A−(x, a1)−A−(x, a0)A+(x, a0) = f(a0) (12)

where f(a0) = g(a0)−g(a1) ≡ g(a0)−g(η(a0)), and η is a function that models the change of parameter
a1 = η(a0). For example, if the change of parameter is a translation, a1 ≡ η(a0) = a0 + s.

The left hand side of Equation (12) resembles a commutation relation. This suggests that we use
A− and A+ to build the generators of the potential algebra. To transform the above shape invariance
condition into an exact commutator, we replace operators A−(x, a0) and A+(x, a0) by

A−(x, a0) 7→ J− ≡ Â− (x, χ (i ∂φ)) e−isφ , and

A+(x, a0) 7→ J+ ≡ (J−)† = eisφÂ+ (x, χ (i ∂φ)) (13)

where s is a constant parameter, φ is an auxiliary variable, and ∂φ ≡ ∂
∂φ

. The function χ will be
appropriately chosen to emulate the relationship between parameters a0 and a1. Thus, to generate J−,
we multiplied the operatorA−(x, a0) from right by e−isφ and replaced the parameter a0 by the differential
operator χ (i ∂φ). If we now compute the commutator between operators J+ and J−, we find [36]

[J+, J−] = J+J− − J−J+
= eisφÂ+(z, χ(i∂φ)) Â−(x, χ(i∂φ)) e−isφ − Â−(x, χ(i∂φ)) Â+(x, χ(i∂φ))

= Â+(x, χ(i∂φ + s)) Â−(x, χ(i∂φ + s))− Â−(x, χ(i∂φ)) Â+(x, χ(i∂φ)) (14)

Observe now that the right hand side of Equation (14) matches the left hand side of Equation (12)
provided that we make the following mappings

a0 7→ χ(i∂φ) a1 7→ χ(i∂φ + s) (15)
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Since we know that a1 = η(a0), these mappings require that the function χ(i∂φ) satisfy

χ(i∂φ + s) = η (χ(i∂φ)) (16)

Let us look at some examples to illustrate this procedure.

• Translation: a1 ≡ η(a0) = a0 + s

If the change of parameters is a translation, then the function χ that models it is the
identity function

χ(z) = z (17)

We have χ(z + s) = z + s = χ(z) + s, which gives the desired change of parameters.

• Scaling: a1 ≡ η(a0) = ra0

For shape invariant potentials characterized by a scaling change of parameters, the corresponding
function χ is the exponential

χ(z) = ez (18)

Indeed χ(z + s) = ez+s = es ez = r χ(z) where we denoted es = r.

• Cyclic: a0, a1 = η(a0), a2 = η(a1), . . . , ak−1 = η(ak−2), ak = η(ak−1) = a0

Cyclic potentials form a series of shape invariant potentials that repeats after a cycle of k iterations.
These potentials appear also in connection with the dressing chain formalism [37]. To satisfy
the cyclic parameter change, the function η should obey η(η(. . . η(z) . . .)) ≡ ηk(z) = z. The
projective map η(z) = (αz+ β)/(γz+ δ) with specific constraints [38] on the parameters α, β, γ,
and δ satisfies such a condition [27]. The function χ satisfying Equation (16) in this case is
given by

χ(z) =
(λ1 − δ)λz/s1 + (λ2 − δ)λz/s2 B(z)

γ[λ
z/s
1 + λ

z/s
2 B(z)]

(19)

where λ1,2 are solutions of the equation (λ−α)(λ− δ)−βδ = 0 and B(z) is an arbitrary periodic
function of z with period k.

• Other choices of parameters follow from more complicated choices for χ(z). For example taking

χ(z) = exp (ez) (20)

we obtain the change of parameters: a1 = a20.
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Now, let us get back to the building of the potential algebra. In terms of operators J+ and J−, the
shape invariance condition (12) becomes:

[J+, J−] = f (χ (i ∂φ)) (21)

Thus, the commutation relation of operators J+(x, φ) and J−(x, φ) generates an operator f (χ (i ∂φ))

that has no x-dependence. If we now define a third operator J3 in terms of the operator i ∂φ, the
shape invariance condition becomes simply one of the commutation relations of the potential algebra. In
particular, if we define

J3 = k − i

s
∂φ (22)

where k is an arbitrary constant, the three commutators among these generators are given by [39]

[J3, J+] = J+ , [J3, J−] = −J− , [J+, J−] = f (χ (i ∂φ)) ≡ F (J3) (23)

Putting together the above results, we arrive at the following

Lemma: To any shape invariant system characterized by

A+(x, a1)A−(x, a1)−A−(x, a0)A+(x, a0) = f(a0) , a1 = η(a0) (24)

for which we can find a function χ such that χ(z + s) = η (χ(z)) for arbitrary parameters z and s, we
can associate an algebra [40] generated by

J+ = eisφ Â+ (z, χ(i∂φ)) (25)

J− = Â− (z, χ(i∂φ)) e−isφ (26)

J3 = k − i

s
∂φ (27)

satisfying the commutation relations

[J3, J+] = J+ , [J3, J−] = −J− , [J+, J−] = F (J3) (28)

where

F (J3) = f (χ(s k − sJ3)) (29)

The function f in Equation (29) is given by the shape invariance condition (24), while the function
χ satisfies the compatibility equation: χ(i∂φ + s) = η (χ(i∂φ)), where η models the change of
parameter a1 = η(a0) of Equation (24).
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As an example let us build the potential algebra corresponding to the Pöschl-Teller II potential.
The potential

V−(x, l) = −l(l + ~) sech2x+ l2 (30)

is generated by the superpotential W (x, l) = l tanh x, through V− = W 2 − ~W ′, where W ′ ≡ ∂W
∂x

. Its
supersymmetric partner V+ = W 2 + ~W ′ is given by

V+(x, l) = −l(l − ~) sech2x+ l2 (31)

The shape invariance is now evident if we observe that V+(x, l) = V−(x, l− ~) + (2l− ~). Therefore, in
terms of A+ and A− operators, the shape invariance (24) for the Pöschl-Teller II potential reads

A+(x, l − ~)A−(x, l − ~)− A−(x, l)A+(x, l) = ~− 2l (32)

Now we can identify the main objects of our model and build the corresponding algebra:
1. The parameters of the model are a0 = α − l and a1 = α − l + ~, where α is an arbitrary positive

constant greater than l so that a0 is a positive quantity;
2. The change of parameter a1 = η(a0) is thus given by a1 = a0 +~. This is a translational change of

parameter a1 = a0 + s with the translation parameter s = ~. Translation implies that the function
χ satisfying (16) is the identity function χ(z) = z;

3. From the concrete shape invariance condition (32) of this potential we get
f(a0) = ~ − 2 (α − a0) = ~ − 2α + 2a0. Then, the function F (J3) is given by
F (J3) = f(χ(s k − sJ3))) = f(J3 − k) = ~ − 2α + 2(J3 − k) = 2J3 if we choose the
arbitrary constant k = 1

2
~− α;

4. Defining J± and J3 as prescribed by Equations (25) and (27), we obtain the differential realization
of the algebra’s generators:

J+ = e−iφ
(
− d

dx
+ i∂φ tanh x

)
, J− =

(
d

dx
+ i∂φ tanh x

)
eiφ , J3 =

1

2
~− α + i ∂φ

(33)

satisfying the commutation relations [J3, J±] = ±J±, and [J+, J−] = 2J3. Thus, shape invariance
of this system implies that the system has a potential algebra given by su(2) [41,42].

4.2. Obtaining the Energy Spectrum from Algebra Representations

Once we know the potential algebra for a given potential, we can use its representations to obtain the
energy spectrum for the Hamiltonian. Using Equations (25) and (26), we observe that

J+ J− = Â+ (x, χ(i∂φ + s)) Â− (x, χ(i∂φ + s)) (34)
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From the reciprocal of the mapping Equation (13), we obtain Â+ (x, χ(i∂φ + s)) Â− (z, χ(i∂φ + s)) 7→
A+(x, a1)A−(x, a1) = H−(x, a1). Consequently, the spectrum of the operator J+J− gives the spectrum
of the Hamiltonian. To find the concrete values for the energy, we need to know the action of individual
operators J+ and J−respectively on a set of eigenvectors of the operator J3. In this general case, J+, J−
and J3 commute with the Casimir operator given by

C = J−J+ +G(J3) = J+J− +G(J3 − 1) (35)

with the function G (defined up to an additive constant) such that

F (J3) = G(J3)−G(J3 − 1) (36)

It can be explicitly checked that C does indeed commute with J+, J− and J3 [41]. In a basis in which
J3 and C are diagonal, J± play the role of raising and lowering operators, respectively. Operating on an
arbitrary eigenstate | q〉 we have

J3| q〉= q| q〉
J−| q〉= a(q) | q − 1〉
J+| q〉= a?(q + 1) | q + 1〉 (37)

where we have used J+ = (J−)†.
Keeping in mind that H−(x, a1) 7→ J+J−, and observing that J+J−|q〉 = |a(q)|2|q〉, we see that

in order to find the energies of the system one must find the coefficients a(q). If we apply the third
commutation relation of Equation (23) to | q〉, we obtain using Equation (36)

| a(q)|2 − | a(q + 1)|2 = G(q)−G(q − 1) (38)

Next, we will determine the allowed values of q and the corresponding values a(q). Let us say
q = qmin corresponds to the lowest state in a given representation of the algebra. This implies that
J−| qmin〉 = a (qmin) | q − 1〉 = 0, which means a(qmin) = 0. From Equation (38) we get

a(qmin + 1)2 = G(qmin − 1)−G(qmin) (39)

Iterating this procedure we can generate a general formula for a(q)

a(qmin + n)2 = G(qmin − 1)−G(qmin + n− 1) n = 1, 2, · · · (40)

Substituting qmin + n = q leads to

a(q)2 = G(q − n− 1)−G(q − 1) n = 1, 2, · · · (41)
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The profile of G(q) determines the dimension of the representation. For example, let us consider the two
cases presented in Figure 1.

Figure 1. Generic behaviors of G(q). Case (a) corresponds to a finite, and (b) to an infinite
representation of the potential algebra.

q q    =  q     + n
. . .

G(q)

(a) (b)

min minmax
q

min
 q     + n

min

. . .

G(q)

One obtains the finite dimensional representations of Figure 1a, by starting from a point on the
G(q) vs. q graph corresponding to q = qmin, and moving in integer steps parallel to the q-axis to the
point corresponding to q = qmax. At the end points, a(qmin) = a(qmax + 1) = 0, and we get a finite
representation. If G(q) is decreasing monotonically, as in Figure 1b, there exists only one end point
at q = qmin. Starting from qmin the value of q can be increased in integer steps up to infinity. In this
case we have an infinite dimensional representation. As in the finite case, qmin labels the representation.
The difference is that here qmin takes continuous values. Similar arguments apply for a monotonically
increasing functionG(q). Having the representation of the algebra associated with a characteristic model,
we obtain, using Equation (41), the complete spectrum of the system.

For example, let us consider the scaling change of parameters a1 = ra0. Consider the simple
choice f(a0) = −r1a0, where r1 is a constant. This choice generates self-similar potentials studied in
references [25,26,44]. In this case, combining Equation (18) with Equation (28) yields:

[J3, J±] = ± J± ; [J+, J−] = −r1 exp(−sJ3) (42)

which is a deformation of the standard so(2, 1) Lie algebra.
For this case, from Equations (42) and (36) one gets

G(q) =
r1

es − 1
e−sq = − r1

1− r
r−q ; r = es (43)

Note that for scaling problems [25], one requires 0 < r < 1, which leads to s < 0. From the
monotonically decreasing profile of the function G(q), it follows that the unitary representations of
this algebra are infinite dimensional. If we label the lowest weight state of the operator J3 by qmin, then
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a(qmin) = 0. Without loss of generality we can choose the coefficients a(q) to be real. Then one obtains
from (38) for an arbitrary q = qmin + n, n = 0, 1, 2, . . .

a2(q) = G(q − n− 1)−G(q − 1) = r1
rn − 1

r − 1
r1−h (44)

The spectrum of the Hamiltonian H−(x, a1) is given by

H−|q〉 = a2(q)|q〉 = r1
rn − 1

r − 1
r1−q|q〉 (45)

Therefore, the eigenenergies are

En(q) = r1α(q)
rn − 1

r − 1
; α(q) ≡ r1−q (46)

in agreement with the known results [25].

5. How Do We Find Additive Shape Invariant Superpotentials?

Since we have demonstrated the value of shape-invariant superpotentials, the question now
becomes how to find such superpotentials. This question is equivalent to asking how to solve the
difference-differential Equation (9) to find the list of desired superpotentials W . For this section, we will
restrict ourselves to considering cases of translational shape invariance. Before we embark on solving
this equation, let us first note that quantum mechanical potentials generally have terms of two very
different orders: One “large” and another “small”. For example, the classical and quantum potentials
for the radial oscillator system are 1

4
ωr2 + L2

r2
and 1

4
ωr2 + `(`+1)~2

r2
respectively. To make the transition

from the quantum to the classical system, one takes the limit lim{`→∞ , ~→0} with the constraint that
` · ~ → L. Thus, the quantum Hamiltonian can be written as 1

4
ωr2 + L2

r2
+ ~L

r2
. This shows that in

quantum mechanics, the potential generally has one small term that depends on ~ [43]. In SUSYQM,
since the potential is given by W 2(x, a) − ~dW (x,a)

dx
, the derivative term always brings in a factor of ~,

even if the superpotential is independent of ~. In the following analysis, as we determine how to solve
Equation (9) to find shape invariant superpotentials, we will consider the cases of ~-independent and
~-dependent superpotentials separately.

5.1. Known ~-Independent Shape Invariant Superpotentials

We begin our discussion of known shape invariant systems by considering only superpotentials that
do not depend explicitly on ~, which we call “conventional” superpotentials. In Table 1 we list the known
“conventional” superpotentials that meet this criterion.

Previous work [45–47] has proven that this list of conventional shape-invariant superpotentials is
complete. We now show a new proof of this completeness which has the advantage of being significantly
more straightforward and elegant than it predecessors.
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Table 1. The complete family of ~-independent additive shape-invariant superpotentials.

Name Superpotential
Harmonic Oscillator 1

2
ωx

Coulomb e2

2(`+1)
− `+1

r

3-D oscillator 1
2
ωr − `+1

r

Morse A−Be−x

Rosen-Morse I −A cotx− B
A

Rosen-Morse II A tanhx+ B
A

Eckart −A cothx+ B
A

Scarf I A tanx−Bsecx

Scarf II A tanhx+Bsechx

Gen. Pöschl-Teller A cothx−Bcosechx

5.2. New Proof of Completeness of the Conventional Shape-Invariant Superpotentials

Because of additive shape invariance, the dependence of W on a and ~ is through the linear
combination a + ~; therefore, the derivatives of W with respect to a and ~ are related by:
∂W (x,a+~)

∂~ = ∂W (x,a+~)
∂a

. Since Equation (7) must hold for an arbitrary value of ~, if we assume that
W does not depend explicitly on ~, we can expand in powers of ~, and the coefficient of each power
must separately vanish. Expanding the right hand side in powers of ~ yields

O(~) ⇒ W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da
= 0 (47)

O(~2) ⇒ ∂

∂a

(
W

∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da

)
= 0 (48)

O(~n) ⇒ ∂n

∂an−1∂x
W (x, a) = 0 , n ≥ 3 (49)

Thus, all conventional additive shape invariant superpotentials are solutions of the above set of non-linear
partial differential equations [46,47]. Although this represents an infinite set, note that if equations of
O(~) and O(~3) are satisfied, all others automatically follow. Therefore, we proceed to find all possible
solutions to the two partial differential equations:

W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da
= 0 (50)

and

∂3

∂a2∂x
W (x, a) = 0 (51)

In doing so, we derive a new proof that the superpotentials shown in Table 1 are the only
possible solutions.

The general solution to Equation (51) is

W (x, a) = a ·X1(x) +X2(x) + u(a) (52)
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Therefore, to generate all shape invariant superpotentials, we need to determine all possible combinations
of u(a), X1(x), and X2(x) that satisfy Equation (50). We will ignore the case when both X1(x), and
X2(x) are constants, as this corresponds to a flat potential with no x-dependence. We will also ignore
the case in which X1(x), and X2(x) are linearly dependent on each other; i.e., X2(x) = αX1(x) + β. In
this case, W (x) = aX1(x) +αX1(x) +β+u(a) = (a+α)X1(x) +β+u(a). If we redefine ã ≡ a+α,
this case becomes equivalent to a superpotential with a shifted parameter and constant X2 which will
be considered shortly. We can therefore assume that X1 and X2 are linearly independent of each other
without loss of generality. Note that from here onward, we will use lower case Greek letters to denote
constants that are independent of both a and x.

To determine W (x, a), we first focus on determining u(a). To do so, we take two derivatives of (50)
with respect to a. This leads to the following differential equation:

3ẆẄ +W
...
W + Ẅ ′ +

1

2

...
g = 0

where dots and primes represent derivatives taken with respect to a and x respectively. Since
∂3

∂a2∂x
W (x, a) = 0, this simplifies to:

3ẆẄ +W
...
W +

1

2

...
g = 0 (53)

Inserting the form of the general solution (52) into (53) yields

X1 (3ü+ a
...
u) +X2

...
u = H(a) (54)

where H(a) = −
(
3u̇ü+ u

...
u + 1

2

...
g
)

is a function of a, and is independent of x. Since X1 and

X2 are linearly independent, we find that there are only three possible ways for the left-hand-side of
Equation (54) to be independent of x:

• Case 1: X1 is a constant and
...
u = 0;

• Case 2: X2 is a constant and 3ü+ a
...
u = 0;

• Case 3: Neither X1 nor X2 are not constants, but 3ü+ a
...
u = 0 and

...
u = 0.

For each of these cases we can determine the form of u(a). Then we can determine X1(x) and X2(x)

for these three cases. This we do by taking two derivatives of (50), this time one with respect to a and
another with respect to x. This yields:

2ẆẆ ′ +W ′Ẅ − Ẇ ′′ = 0 (55)

Inserting the form of the general solution (52) into (55) yields

2 (X1 + u̇)X ′1 + (aX ′1 +X ′2) ü−X ′′1 = 0 (56)

Now, we will analyze each of the three cases in detail.
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5.2.1. Case 1: X1 Is a Constant and
...
u = 0

Let X1 = α. Since X2 cannot be a constant as well, Equation (54) requires
...
u = 0. This leads to

u(a) = γa2 + µa+ ν for some arbitrary constants α, γ, µ, and ν. Inserting X1 and u into Equation (52)
yields W (x, a) = X2(x) + γa2 + ηa+ ν, where η = α + µ.

We now find X2 by inserting the above W into Equation (50). This yields(
X2 + γa2 + ηa+ ν

)
(2aγ + η)− dX2

dx
= −1

2

dg

da

or equivalently,

2a3γ2 + 3a2ηγ + a
(
2X2γ + 2νγ + η2

)
+X2η + ην −X ′2 = h(a) (57)

where h(a) = −1
2
dg
da

.
Since X2(x) is independent of a, and the left side of (57) is a sum of four linearly independent

functions of a (a0, a1, a2, and a3), and the term h(a) on the right-hand-side is independent of x, the
coefficient of each power of a must separately be independent of x. The linear term in a therefore
requires that 2X2γ + 2νγ + η2 be independent of x. Since a constant X2 leads to a trivial solution, we
must have γ = 0. The remaining x-dependent terms on the left side of (57),X2η−X ′2 must be a constant:

ηX2 −X ′2 = β (58)

The solution depends on the value of the constants η and β.

• Case 1A: η = 0, β = 0. In this case, X ′2 = 0, which is a trivial solution;

• Case 1B: η = 0, β 6= 0. In this case, X2 = −βx + ξ, so W = −βx + ξ + ν. Defining β = −1
2
ω

yields the harmonic oscillator superpotential;

• Case 1C: η 6= 0. The solution is then X2(x) = −β
η

+ 1
η
eη(x−x0), u = µa+ ν, X1 = α . Therefore,

W =
(
ν − β

η
+ ηa

)
+ 1

η
eη(x−x0). For η = −1, this yields W = A−Be−x, where A ≡ ν + β − a

and B ≡ ex0 . This is the Morse superpotential. Note that A decreases as a increases, and hence
signals a finite number of eigenstates [48].

5.2.2. Case 2: X2 Is Constant

In this case, let X2 = α; then Equation (54) requires 3ü + a
...
u = 0. This yields u(a) = µa + ν + γ

a
.

We now insert this form of u and X2 = α into (56) to get an ordinary differential equation in x for X1:

2
(
X1 + µ− γ

a2

)
X ′1 + 2X ′1

γ

a2
−X ′′1 = 0

or equivalently,

2X1X
′
1 + 2µX ′1 −X ′′1 = 0

Integrating it once, we get

X2
1 + 2µX1 −X ′1 = β (59)
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This equation can be simplified by setting X̃1 = X1 + µ. This leads to

X̃1
2 − X̃1

′
=
(
β + µ2

)
≡ θ (60)

The solutions for X̃1 depend on the constant θ.

• Case 2A: θ = 0, In this case, X̃1 = − 1
x−x0 . The whole superpotential is then given by

W (x, a) = a

(
− 1

x− x0
− µ

)
+ α +

(
µa+ ν +

γ

a

)
= − a

x− x0
+ (α + ν) +

γ

a
(61)

Setting α + ν = 0 and x0 = 0, and identifying x ≡ r, a ≡ ` + 1 and γ = e2/2, we get
W (r, `) = e2

2(`+1)
− `+1

r
: the superpotential for Coulomb [49];

• Case 2B: θ > 0. In this case, we have either X̃1 = −
√
θ coth(

√
θx − η) (Eckart) or

X̃1 = −
√
θ tanh(

√
θx − η) (Rosen-Morse II). In the first case, the superpotential is given by

W (x, a) = a
(
−
√
θ coth(

√
θx)− µ

)
+ α +

(
µa+ ν + γ

a

)
≡ −A coth(

√
θx) + B

a
, where we

have set γ = B, (α + ν) = 0, θ = 1 and η = 0. This is the well known Eckart potential.
Similarly, the other solution with tanhx generates Rosen-Morse II;

• Case 2C: θ < 0. In this case, we obtain X̃1 = −
√
|θ| cot(

√
|θ|x− η). An analysis similar to the

previous case generates the superpotential for Rosen-Morse I.

5.2.3. Case 3: X1 and X2 Are not Constant, but 3ü+ a
...
u = 0 and

...
u = 0

In this case, since
...
u = 0, and 3ü + a

...
u = 0, we have ü = 0. Therefore u(a) = µa + ν. In this case,

Equation (56) yields

2 (X1 + µ)X ′1 −X ′′1 = 0

Integrating,

X2
1 + 2µX1 −X ′1 = β (62)

Thus, again we have

X̃1
2 − X̃1

′
=
(
β + µ2

)
≡ θ (63)

Note that this is the same differential equation as (60) and will therefore give the same solutions for
X1 as Case 2. However, in this case, u = µa+ ν (this is equivalent to choosing γ = 0 in Case 2) and X2

is not constant. Instead, in each case we must plug our solutions for u(a) and X1(x) into Equation (50),
which yields

(aX1 +X2 + µa+ ν) (X1 + µ)− aX ′1 −X ′2 = h(a)

This equation is again simplified by setting X̃1 = X1 + µ, which yields(
aX̃1 +X2 + ν

)
X̃1 − aX̃1

′ −X ′2 = h(a)
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Since X̃1 and X2 are independent of a, the terms linear in a and the terms independent of a on the left
side of this equation must each separately be independent of x. Therefore,(

X̃1

)2
− X̃1

′
= θ, and (64)

X2X̃1 + νX̃1 −X ′2 = ξ (65)

For different values of θ, we get different superpotentials:

• Case 3A: θ = 0. We again get X̃1 = − 1
x
, where with an appropriate choice for the origin we have

set x0 = 0. Equation (65) for X2 becomes

(X2 + ν) + xX ′2 = −ξx (66)

Its solution is X2 = −1
2
ξ x+ σ

x
− ν. With the identification x→ r, ξ → −ω, a− σ → `+ 1, we

get W (r, `) = 1
2
ω r − `+1

r
, the superpotential for the 3D-harmonic oscillator;

• Case 3B: θ > 0. As seen before, θ > 0 implies that X̃1 = −
√
θ coth(

√
θx − η) or X̃1 =

−
√
θ tanh(

√
θx − η). By translation and scaling of x, we can simplify the first solution to

X̃1 = − cothx. Substituting X̃1 in Equation (65), we get

− cothx X̃2 − X̃2
′
= ξ (67)

where we have set X̃2 = X2 + ν. The solution to the homogeneous equation is X̃2 = σ
sinhx

, and
the particular solution is ξ cothx. Hence X2 = σ

sinhx
+ ξ cothx − ν. Thus, the superpotential is

given by W (a, x) = (ξ − a) cothx + σ
sinhx

, the General Pöschl-Teller potential given in Table 1.
The second solution generates the Scarf II potential;

• Case 3C: θ < 0. A similar analysis for this case leads to Scarf I as the corresponding shape
invariant superpotential.

Thus, we have generated all the superpotentials of Table 1 and shown that these are the only possible
~ -independent solutions to the additive shape invariant condition.

5.3. ~-Dependent Superpotentials

In the previous section we generated the complete list of additive shape-invariant superpotentials
that do not depend explicitly on ~. However, a new class of superpotentials was discovered by
Quesne [50,51]. It has been shown [46] that these “extended” superpotentials obey the shape
invariance condition in the form of Equation (7) only when W is allowed to depend explicitly on ~.
While this dependence is frequently ignored by the conventional notation that sets ~ = 1, we will
show that this constraint results in important consequences for the energy spectrum of the resulting
potentials. In each case, the new potential is isospectral with a potential that arises from one of the
“conventional” superpotentials listed in Table 1. Authors of [52–54] have added an infinite number of
potentials that belong in this class, and extended shape invariant potentials continue to be objects of
intense research [55,56].



Symmetry 2012, 4 468

We now extend our formalism to include “extended” superpotentials that contain ~ explicitly. To do
so, we expand the superpotentials in powers of ~. Hence, we define

W (x, a, ~) =
∞∑
n=0

~nWn(x, a) (68)

We will now substitute Equation (68) into the shape invariance condition given in Equation (7), for which
we compute ∂W

∂x

∣∣
a=a0

and W 2 (x, a0, ~). We obtain

∂W

∂x

∣∣∣∣
a=a0

=
∞∑
n=0

~n
∂Wn(x, a0)

∂x

and

W 2 (x, a0, ~) =
∞∑
l=0

∞∑
k=0

~k+lWkWl

Since a1 = a0 + ~, W (x, a1, ~) = W (x, a0 + ~, ~) . Expanding in powers of ~,

W (x, a1, ~) =
∞∑
m=0

m∑
k=0

~m

k!

∂kWm−k

∂ak
; and W 2 (x, a1, ~) =

∞∑
n=0

n∑
s=0

s∑
k=0

~n

(n− s)!
∂n−2 (WkWs−k)

∂an−2

Similarly,

∂W

∂x

∣∣∣∣
a=a1

=
∞∑
m=0

m∑
k=0

~m

k!

∂k+1Wm−k

∂ak∂x

We substitute these into Equation (7) and stipulate that the equation hold for any value of ~. After some
significant algebraic manupulation we find that the following equation must be true separately for each
positive integer value of n:

n∑
k=0

WkWn−k +
∂Wn−1

∂x
−

n∑
s=0

s∑
k=0

1

(n− s)!
∂n−s

∂an−s
WkWs−k

+
n∑
k=1

1

(k − 1)!

∂k

∂ak−1 ∂x
Wn−k −

(
1

n!

∂ng

∂an

)
= 0 (69)

For n = 1, we obtain

2
∂W0

∂x
− ∂

∂a

(
W 2

0 + g
)

= 0 (70)

This equation is identical to Equation (50) for ~-independent W ’s. We have already found a set
of solutions for Equation (70) that includes all known ~-independent superpotentials. The extended
cases [50,51] are solutions to (69) as well, as shown in [46]. Note that Equation (69) provides a
consistency condition for all ~-dependent potentials; however, these are not easy to solve to determine
new potentials.
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Additionally, Equation (70) provides a constraint for the possible energy spectra of the extended
potentials. from Equation (70), the function g(a) is given by

∂g

∂a
= 2

∂W0

∂x
− ∂W 2

0

∂a
(71)

g(a) =

∫
da

[
2

(
∂W0

∂x

)
−W 2

0

]
(72)

Thus, the function g(a), and hence the energy of the system, is given entirely in terms of the
~-independent part of the superpotential. Hence, the eigenvalues are not affected by the ~-dependent
extension of the superpotential.

Thus far, each of the known extended potentials contains a solution from Table 1 as the
~-independent term of the superpotential W0. Therefore, each of the expanded potentials is isospectral
with its corresponding conventional potential. Future possibilities for finding new shape-invariant
superpotentials fall into one of two categories:

1. Further extended superpotentials may be found based on the conventional superpotentials. In this
case, the potentials derived from the extended superpotential will be isospectral with the potentials
derived from the corresponding conventional superpotential;

2. While W0 is required to satisfy Equation (70), which is equivalent to Equation (50) for
~-independent W ’s, W0 is not required to satisfy Equation (48). Rather, the additional constraints
for an extended W are supplied by Equation (69). It therefore may be possible to find an
~-dependent superpotential whose ~-independent term W0 is not equivalent to a conventional
superpotential. Intriguingly, it therefore may still be possible to discover shape-invariant systems
with new energy spectra.

6. Summary and Conclusions

While supersymmetric quantum mechanics began as a simplified model to account for dynamical
symmetry breaking, the application of this formalism to quantum mechanics has become an important
field in its own right. In this manuscript we have reviewed research on supersymmetric quantum
mechanics with a particular emphasis on the property of shape invariance. As we have shown, shape
invariance is a sufficient condition for exact solvability of quantum mechanical problems; i.e., given a
superpotential with shape invariance, all its eigenvalues and eigenfunctions can be
determined analytically.

However, in its traditional form, the shape invariance condition Equation (7) is a
difference-differential equation and is difficult to solve. It has recently been established that for
additive shape-invariant superpotentials that do not explicitly depend on ~, this condition can be written
as a set of local partial differential equations [45–47]. The solution to these equations showed that
the list of such superpotentials was indeed complete. In this manuscript, we have presented a more
straightforward proof of this result.

Since 2008, new sets of additive shape invariant potentials have been discovered [50–54]. We have
reviewed the development of these “extended” shape-invariant systems and have provided an infinite
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set of partial differential equations that all extended potentials (where superpotentials are inherently
functions of ~) must obey [46,47]. We have also discussed the constraints placed on the energy spectra
of these extended potentials as well as possibilities for finding additional as-yet-undiscovered cases of
additive shape invariance.

It may also be possible to extend this method to other forms of shape invariance such as multiplicative
or cyclic. For these, the potentials are generally not available in terms of known functions, except in very
special cases (N = 2 for cyclic and limiting cases for multiplicative). It remains to be shown whether the
shape invariance condition for these classes can be transformed from a difference-differential equation
into a set of partial differential equations and be subjected to similar analysis.
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