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Abstract: Using an x-y-z coordinate system, the equations of the superspheres have been 

extended to describe intermediate shapes between a sphere and various convex polyhedra. 

Near-polyhedral shapes composed of {100}, {111} and {110} surfaces with round edges are 

treated in the present study, where {100}, {111} and {110} are the Miller indices of crystals 

with cubic structures. The three parameters p, a and b are included to describe the {100}-

{111}-{110} near-polyhedral shapes, where p describes the degree to which the shape is a 

polyhedron and a and b determine the ratios of the {100}, {111} and {110} surfaces. 
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1. Introduction 

Small crystalline precipitates often form in alloys and have near-polyhedral shapes with round 

edges. Figure 1 is a transmission electron micrograph showing an example of this where the dark 

regions, which have shapes between a circle and a square, are Co-Cr alloy particles precipitated in a 

Cu matrix [1,2]. Why such precipitate shapes form has been explained by the anisotropies of physical 

properties of metals and alloys originating from the crystal structures [2,3]. Both the Co-Cr alloy 

particles and Cu matrix have cubic structures. The three-dimensional shapes of the particles shown in 

Figure 1 are intermediate between a sphere and a cube composed of crystallographic planes {100} as 

indicated by the Miller indices. 

Even if the alloy system such as the Co-Cr alloy particles in the Cu matrix is fixed, the precipitate 

shapes change as a function of the precipitate size [1,2]. In the case of the Co-Cr alloy precipitates, the 

spherical to cubical shape transition occurs as the precipitate size increases [2,3]. The size dependence 

OPEN ACCESS



Symmetry 2012, 4 337 

 

 

of the precipitate’s equilibrium shape determines the shape transitions [2,3]. When we discuss such 

physical phenomenon, it is convenient to use simple equations that can approximate the precipitate 

shapes [2–5]. In the present study, we discuss a simple equation that gives shapes intermediate 

between a sphere and various polyhedra.  

Figure 1. Transmission electron micrograph showing the Co-Cr alloy precipitates in a Cu 

matrix [1,2]. 

 

2. Cubic Superspheres 

The solid figure described by 

x / R
p  y / R

p  z / R
p  1 (R  0, p  2)  (1) 

expresses a sphere with radius R when p = 2 and a cube with edges 2R as p → ∞ [2–4]. It is reported  

in [6] that the 19th century French mathematician Gabriel Lamé first presented this equation. 

Intermediate shapes between these two limits can be represented by choosing the appropriate value  

of p > 2. In [2–4], such shapes are called superspheres, and Figure 2 shows the shapes given by (1) for 

(a) p = 2, (b) p = 4 and (c) p = 20. The parameter R determines the size and p determines the 

polyhedrality, i.e., the degree to which the supersphere is polyhedron. If |x| > |y| and |x| > |z|,  

|x/R|p + |y/R|p + |z/R|p = 1 as p → ∞ means |x/R| = 1. This describes the limit for (1) as p → ∞ which 

gives a cube surrounded by three sets of parallel planes, x = ± R, y = ± R and z = ± R. 

Figure 2. Shapes of the cubic superspheres given by (1); (a) p = 2; (b) p = 4 and (c) p = 20. 
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3. {111} Regular-Octahedral and {110} Rhombic-Dodecahedral Superspheres 

Equation (1) can be rewritten as  

hcube x, y, z  
1/ p

 R  where hcube x, y,z  x
p  y

p  z
p

 (2) 

This expression has been extended to describe other convex polyhedra [7]. Although the original 

superspheres discussed in [2–4] are intermediate shapes between a sphere and a cube, now the 

superspheres can refer to shapes intermediate between various convex polyhedra and a sphere [8].  

Superspheres have been used to discuss the shapes of small crystalline particles and  

precipitates [2,3,5,8,9]. The planes of crystal facets are indicated by their Miller indices. We use this 

notation in the present study. The cube given by (2) as p → ∞ is the {100} cube composed of six 

{100} faces. Assuming crystals with cubic structures, the regular octahedron is the {111}  

octahedron and the rhombic dodecahedron is the {110} dodecahedron [7]. 

The {111} octahedral superspheres are given by the following equation: 

hocta x, y, z  
1/ p

 R  (3a) 

where  

hocta x, y,z  x  y  z
p  x  y  z

p  x  y  z
p  x  y  z

p
. (3b) 

The shapes given by (3) are shown in Figure 3.  

Figure 3. Shapes of the {111} regular-octahedral superspheres given by (3); (a) p = 4 and 

(b) p = 40. 

 

On the other hand, the {110} dodecahedral superspheres are given by  

hdodeca x, y, z  
1/ p

 R
 (4a) 

where 

hdodeca x, y,z  x  y
p  x  y

p  y  z
p  y  z

p  x  z
p  x  z

p
.  (4b) 

The shapes given by (4) are shown in Figure 4. Equations (2–4) expressed by the spherical 

coordinate system are shown in [7]. 
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Figure 4. Shapes of the {110} rhombic-dodecahedral superspheres given by (4); (a) p = 6 

and (b) p = 40. 

 

4. {100}-{111}-{110} Polyhedral Superspheres 

Combined superspheres can be expressed by combining the equations of each supersphere. 

Combining (2), (3) and (4), we get 

hcube x, y, z  1

ap
hocta x, y, z  1

bp
hdodeca x, y, z 





1/ p

 R.  (5) 

The parameters a > 0 and b > 0 are those for determining the ratios of the {100}, {110} and {111} 

surfaces. The shapes of the supersphere given by (5) are shown in Figure 5 when a  3 , b  2  for 

two values of p.  

Figure 5. Shapes of the {100}-{111}-{110} polyhedral superspheres given by (5);  

(a) p = 20 and (b) p = 100. 

 

The a and b dependences of the shapes given by (5) are understood by examining the polyhedral 

shapes as p → ∞. Among the three polyhedra given by [hcube (x,y,z)]1/p = R, [hocta (x,y,z)]1/p = aR and 

[hdodeca (x,y,z)]1/p = bR, the innermost surfaces of the polyhedra are retained to form the combined 

polyhedron. Figure 6 shows the effect of a and b on the shapes given by (5) as p → ∞.The shape is 

determined by their location in the quadrilateral surrounded by the points P (a,b) = (3,2), Q (2,2),  

R (1,1) and S (3/2,1). Various shapes in and around the quadrilateral are shown by the insets in  

Figure 6 can be summarized as follows: 
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1. Three basic polyhedra 

(a) {100} cube at point P. 

(b) {111} octahedron at point R. 

(c) {110} dodecahedron at point S. 

2. Combination of two basic polyhedra 

(a) {100}-{111} polyhedra changing from the {100} cube to the {111} octahedron along the line 

from P to R via Q, by truncating the eight vertices of the cube (The shape at point Q is  

{100}-{111} cuboctahedron).  

(b) {111}-{110} polyhedra changing from the {111} octahedron to the {110} dodecahedron 

along the line from R to S, by chamfering the 12 edges of the octahedron.  

(c) {110}-{100} polyhedra changing from the {110} dodecahedron to the {100} cube along the 

line from S to P, by truncating six of the 14 vertices of the dodecahedron.  

3. Combinations of all three basic polyhedra 

(a) {100}-{111}-{110} polyhedra with mutually non-connected {110} surfaces in Region 1 (R-1). 

(b) {100}-{111}-{110} polyhedra with mutually connected {110} surfaces in Region 2 (R-2). 

Figure 6. Diagram showing the variation in the shapes of the {100}-{111}-{110} 

polyhedral superspheres given by (5) as p → ∞. 

 

The boundary between Regions 1 and 2, expressed by the line from P to R, is written as:  

b  a 1 / 2  (6) 

Figure 6 is essentially the same as Figure 3 in [7,8] where the parameters α = 1/a and β = 1/b are 

used instead of a and b. In the appendix, the volume and surface area of the polyhedra shown in  

Figure 6 are written as a function of a and b. The use of the parameters a and b gives a more intuitive 

diagram (Figure 6), compared with the diagram given by α and β.  
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5. Discussion 

5.1. Shape Transitions of Superspheres from a Sphere to Various Polyhedra 

Shape transitions of superspheres from a sphere to a polyhedron are characterized by the change in 

the normalized surface area N = S/V2/3, where S is the surface area and V the volume of the 

supersphere. For a sphere, N = 62/3 π1/3 ≈ 4.84. Figure 7 shows the variations in N as a function of p for 

the following the superspheres as indicated by the insets: 

(i) the {100} cube type given by (2),  

(ii) the {111} regular-octahedral type given by (3),  

(iii) the {110} rhombic-dodecahedral type given by (4) and  

(iv) the {100}-{111}-{110} polyhedral type given by (5) with a  3  and b  2 .  

Figure 7. Dependence of the normalized surface area N =S/V2/3 on p, where S is the surface 

area and V the volume for various superspheres: (i) the {100} cube type given by (2);  

(ii) the {111} octahedral type given by (3); (iii) the {110} dodecahedral type given by (4) 

and (iv) the {100}-{111}-{110} polyhedral type given by (5) with a  3  and b  2 . 

 

The broken lines at the right show the values of N for the polyhedra as p → ∞.  

As shown in Figure 7, the change in N with increasing p becomes smaller as the number of faces of 

polyhedra increases from the {100} cube with 6 to the {100}-{111}-{110} polyhedron with 26. 

Among the various polyhedra shown in Figure 3, the polyhedron given by a  3  and b  2  in 

Region 1 with N = S/V2/3 ≈ 5.05 has the minimum total surface area S  for the same V [8,10]. The a and 

b dependence of N can be calculated easily using the results shown in the appendix.  

5.2. Shape of Small Metal Particles 

The shapes of small metal particles observed in previous studies have been discussed previously 

using the superspherical approximation [8]. Menon and Martin reported the production of ultrafine Ni 

particles by vapor condensation in an inert gas plasma reactor [11]. They have also reported the 

crystallographic characterization of these particles by transmission electron microscopy [11]. Near-
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polyhedral shapes of nanoparticles have been observed to discuss their properties [12–15]. The 

superspherical approximation is a useful geometrical tool to describe the near-polyhedral shapes. 
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Appendix 

The volume and surface area of the polyhedra shown in Figure 3. 
The volume V  and the {100}, {111}  and {110}  surface area, S100, S111 and S110 of the polyhedra 

shown in Figure 6 are written as a function of a and b. In Region 1, these are given by 

V  4
a3

3
 a 1 3  a  b 2 6  a  2b 







R3  (A1) 

  
S

100
 12 a 1 2  2 a  b 2



 R2  (A2) 

  
S

111
 4 3 3- a 2 - 3 2 - b 2



 R2  (A3) 

and 

S110  24 2 a  b  2  b R2  (A4) 

In Region 2, these are 

V  2 b3 
1

3
3b  2a 3  4 b 1 3





R3  (A5) 

S100  24 b 1 2 R2  (A6) 

S111  4 3 3b  2a 2 R2  (A7) 

and 

  
S

110
 6 2 b2  3b  2a 2

 4 b  1 2



 R2  (A8) 

when a = 1 and b = 1, the shape given by (5) as p → ∞ is the {111} regular-octahedron as shown by 

Figure 6. Since the {111} regular-octahedron belongs to both Regions 1 and 2, from both (A1) to (A4) 

and (A5) to (A8), we get V = (4/3)R3, S100 = 0, S111 = 4√3R2 and S110 = 0 as it should be. 
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