
 

 

Symmetry 2012, 4, 219-224; doi:10.3390/sym4010219 
 

symmetry
ISSN 2073-8994 

www.mdpi.com/journal/symmetry 
Article 

Hidden Symmetries in Simple Graphs 

Allen D. Parks 

Electromagnetic and Sensor Systems Department, 18444 Frontage Road Suite 327, Naval Surface 
Warfare Center Dahlgren Division, Dahlgren, VA 22448-5161, USA; E-Mail: allen.parks@navy.mil 

Received: 15 February 2012; in revised form: 23 February 2012 / Accepted: 27 February 2012 /  
Published: 5 March 2012 
 

Abstract: It is shown that each element σ in the normalizer of the automorphism group 
Aut(G) of a simple graph G with labeled vertex set V is an Aut(G) invariant isomorphism 
between G and the graph obtained from G by the σ permutation of V—i.e., σ is a hidden 
permutation symmetry of G. A simple example illustrates the theory and the applied notion 
of system robustness for reconfiguration under symmetry constraint (RUSC) is introduced. 
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1. Introduction 

The concept of hidden symmetries of an object was introduced by Weyl [1]. Underlying this is the 
notion that if X is an H-set, where H is a symmetry group (the group of obvious symmetries) acting on 
X, additional hidden symmetries associated with X may correspond to elements of a larger group which 
also acts upon X and contains H as a subgroup. Sophisticated approaches based upon Weyl’s concept for 
finding hidden symmetries in physical systems have found application in solving and understanding a 
variety of problems of scientific interest (e.g., [2–5]), including numerous applications in computer 
science (see, for example, the survey [6] and the monograph [7]). 

The primary objective of this paper is to show that each element σ in the normalizer of the 
automorphism group Aut(G) of a simple graph G with labeled vertex set V is an Aut(G) invariant 
isomorphism between G and the graph obtained from G by the σ relabeling of V (i.e., σ is a hidden 
permutation symmetry of G). The remainder of this paper is organized as follows: the relevant topics in 
graph theory and group theory are summarized in the next section (for additional depth and clarification 
the reader is invited to consult such standard texts as [8] and [9]). The hidden permutation symmetries 
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of a simple vertex labeled graph G are identified in Section 3. A simple example is presented in 
Section 4 to illustrate the theory. Closing remarks comprise the final section of this paper. 

2. Preliminaries 

A simple graph G is the pair G = (V, E), where V is a finite set of at least two vertices and the edge 
set E is either a set of doubleton subsets of V or the empty set ∅. If {u, v}∈ E, then u and v are 
adjacent in G. The order of a graph G is the cardinality |V| of V, |E| is its size, and G is a (|V|, |E|) graph. 
G is vertex labeled when V = {1,2,3,…,n}. A labeled graph which is relabeled by a permutation σ of it 
vertices is the graph where vertex i is relabeled as σ(i). The complement Gc of G is the graph with 
vertex set V and edge set Ec = {{u, v}, u, v ∈ V: {u, v}∉ E}. Graph G1 = (V1, E1) is isomorphic to 
graph G2 = (V2, E2) if there is a bijection ϕ : V1 → V2 such that {u, v}∈ E1 if and only if {ϕ(u), ϕ(v)}∈ 
E2. Thus, a graph isomorphism preserves adjacency. The bijection ϕ is the isomorphism between G1 
and G2 and the associated graph isomorphism is denoted ϕ : G1 → G2. 

An automorphism of G is an isomorphism of G with itself. The set of all automorphisms of G under 
the operation “composition of functions” forms the automorphism (or symmetry) group Aut(G) of G. 
When G is vertex labeled, then Aut(G) is a subgroup of the symmetric group SV of all permutations of 
V, denoted Aut(G) ⊂ SV. Furthermore, Aut(G) = Aut(Gc) and if G1 and G2 are isomorphic graphs, then 
Aut(G1) is isomorphic to Aut(G2), denoted Aut(G1) ∼ Aut(G2). 

The order of a group X is |X| and the order of x ∈ X is the least positive integer m such that xm = e, 
where e is the identity element in X. If X ⊂ Y and yXy−1 = X for every y ∈ Y, then X is a normal 
subgroup of Y, denoted X ⊲ Y. Here y−1 ∈ Y is the inverse of y. The normalizer N(Aut(G)) of Aut(G) in 
SV is the group defined by 

N(Aut(G)) = {σ ∈ SV : σ Aut(G)σ −1 = Aut(G)} (1) 

and is the largest subgroup in SV for which Aut(G) ⊲ N(Aut(G)). 

3. Hidden Symmetries of G 

The automorphisms of the symmetry group Aut(G) of G are the obvious symmetries of G.  
The objective of this section is to show that each σ ∈ N(Aut(G)) is a hidden permutation symmetry of 
G—i.e., it is an Aut(G) invariant graph isomorphism between G and the graph obtained from G by  
the application of σ to G’s vertex labels (thus, σ ∈ Aut(G) is both a G automorphism and a hidden 
permutation symmetry of G). The next two lemmas are required to prove this. 

Lemma 3.1 Let G = (V, E) be a simple vertex labeled graph. If σ ∈ SV and Gσ is the graph obtained by 
relabeling the vertices of G as prescribed by σ, then σ : G → Gσ is an isomorphism. 

Proof. The relabeling of G’s vertices is specified by the permutation σ : V → V so that the associated 
relabeled edges are the set Eσ = {{σ(i), σ(j)}: {i, j}∈ E}. Now let Vσ = V, define Gσ = (Vσ, Eσ), and 
observe that σ : V → Vσ is a bijection with the property that {i, j} ∈ E if and only if {σ(i), σ(j)} ∈ Eσ. 
Thus, σ : G → Gσ is an isomorphism. 

Lemma 3.2 Let G = (V, E) be a simple vertex labeled graph, σ ∈ SV, and Gσ = (Vσ, Eσ) be the graph 
obtained by the σ relabeling of G’s vertices. If α ∈ Aut(G), then σασ −1∈ Aut(Gσ). 
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Proof. Since σ : G → Gσ is an isomorphism (Lemma 3.1), then so is σ −1: Gσ → G and diagram (2) 
commutes, where “⇢” denotes that the diagram is completed by the map β = σασ −1. But β is an 
isomorphism because it is a composition of the isomorphisms σ, α, and σ −1. Therefore, β = σασ −1∈ 
Aut(Gσ) since it is the isomorphism β : Gσ → Gσ. 

𝑉       →
𝛼      𝑉 

                                                                                                ↓ 𝜎                 ↓ 𝜎                                                           (2) 

𝑉𝜎       ⇢
𝛽      𝑉𝜎 

Theorem 3.3 (Hidden Permutation Symmetries) Let G = (V, E) be a simple vertex labeled graph 
and Gσ be the graph obtained by the σ relabeling of G’s vertices. If σ ∈ N(Aut(G)), then σ : G → Gσ is 
an isomorphism for which Aut(Gσ) = Aut(G). 

Proof. The fact that σ : G → Gσ is an isomorphism is established by Lemma 3.1. Recall from Lemma 
3.2 that—since σ ∈ N(Aut(G)) ⊂ SV—for each α ∈ Aut(G) there is a distinct β = σασ −1 ∈ Aut(Gσ). 
However, because σ ∈ N(Aut(G)), then by definition (1) it is also the case that β ∈ Aut(G) so that Aut(Gσ) 
⊆ Aut(G). Furthermore, β ∈ Aut(G) implies β = σασ −1 for some α ∈ Aut(G) and σ ∈ N(Aut(G)). 
Consequently, β ∈ Aut(Gσ) so that Aut(G) ⊆ Aut(Gσ). Thus, Aut(Gσ) = Aut(G). 

Note that in general Aut(Gσ) ~ Aut(G) when σ ∈ SV. However, when σ ∈ N(Aut(G)) the group 
isomorphism is the identity map. 

Corollary 3.4 σ ∈ N(Aut(G)) is a hidden permutation symmetry for Gc. 

Proof. Since Aut(Gc) = Aut(G), then it must be the case that N(Aut(Gc)) = N(Aut(G)) so that  
σ ∈ N(Aut(G)) if and only if σ ∈ N(Aut(Gc)). It follows from Theorem 3.3 that σ : Gc → Gc

σ is an 
isomorphism for which Aut(Gc

σ) = Aut(Gc). 

4. Example: Hidden Symmetries of a Simple Vertex Labeled (4, 5) Graph 

Let G = (V, E), where V = {1,2,3,4} and E = {{1,2}, {2,3}, {3,4}, {1,4}, {2,4}}. 

4.1. The Automorphism and Normalizer Groups for G 

By inspection it is found that 

Aut(G) = {i,α1,α2,α3} 

where—when expressed in Cayley cycle notation—i = (1)(2)(3)(4), α1 = (13)(2)(4), α2 = (24)(1)(3), 
and α3 = (13)(24) (here, i is clearly the group identity element). The Cayley table for Aut(G) is easily 
determined from these and is given by Table 1. 

Table 1. The Cayley table for Aut(G). 

  i α1 α2 α3 
i i α1 α2 α3 
α1 α1 i α3 α2 
α2 α2 α3 i α1 
α3 α3 α2 α1 i 
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It is interesting to note that up to (group) isomorphism there are only two groups of order four—the 
cyclic group Z4 and the Viergruppe V of Felix Klein. Inspection of Table 1 reveals that Aut(G) ≁ Z4 
because there is no fourth order element in Aut(G). Thus, it must be the case that Aut(G) ∼ V (this is 
further corroborated from the table by the facts that Aut(G) is an abelian group and that every Aut(G) 
element is order two—which are properties of V). 

In order to find N(Aut(G)) it is necessary to apply definition Equation (1) to the elements of SV. 
Trial and error yields 

N(Aut(G)) = {i,α1,α2,α3,σ1,σ2,σ3,σ4} 

where σ1 = (1234), σ2 = (1432), σ3 = (14)(23), and σ4 = (12)(34). The Cayley table for N(Aut(G)) is 
presented as Table 2. As an aside—observe from Table 2 that N(Aut(G)) is a nonabelian group. 
Consequently, N(Aut(G)) must be isomorphic to either the quaternion group Q or the dihedral group 
D4 since these are the only nonabelian groups of order eight. It is also seen from a closer examination 
of Table 2 that N(Aut(G)) is generated by σ1 and α1 which satisfy the relations (σ1)4 = i, (α1)2 = i, and 
α1σ1α1 = σ2 = σ1 −1. Since these are precisely the generators and relations that define D4 then it must 
be the case that N(Aut(G)) ∼ D4. 

Table 2. The Cayley table for N(Aut(G)). 

  i α1 α2 α3 σ1 σ2 σ3 σ4 
i i α1 α2 α3 σ1 σ2 σ3 σ4 
α1 α1 i α3 α2 σ3 σ4 σ1 σ2 
α2 α2 α3 i α1 σ4 σ3 σ2 σ1 
α3 α3 α2 α1 i σ2 σ1 σ4 σ3 
σ1 σ1 σ4 σ3 σ2 α3 i α1 α2 
σ2 σ2 σ3 σ4 σ1 i α3 α2 α1 
σ3 σ3 σ2 σ1 σ4 α2 α1 i α3 
σ4 σ4 σ1 σ2 σ3 α1 α2 α3 i 

4.2. The Hidden Permutation Symmetries of G 

In order to illustrate Theorem 3.3, first note that i, α1, α2, and α3 either fix vertex labels 2 and 4 or 
permutes them, whereas σ1, σ2, σ3, and σ4 relabel 2 and 4 as 1 and 3, or vice versa. Thus—as 
automorphisms—i, α1, α2, and α3 must preserve adjacency by mapping edge {2,4} in G to edge {2,4} 
in the associated relabeled graphs and—as isomorphisms—σ1, σ2, σ3, and σ4 must preserve adjacency 
by mapping edge {2,4} in G to edge {1,3} in the associated relabeled graphs. This is evidenced in 
Table 3 which lists the N(Aut(G)) image of each edge in G in the associated relabeled graph. There the 
bold face first column lists the edges in G and the bold face first row lists the elements of N(Aut(G)). 
The table entries are the N(Aut(G)) images of G edges in the corresponding relabeled graphs. For 
example, the image of edge {2,3} in G under the map α3 is the edge {1,4} in the graph with vertices 
relabeled by α3. It is obvious from this table that σ : G → Gσ, σ ∈ N(Aut(G)), is an isomorphism 
because {i,j} ∈ E if and only if {σ(i),σ(j)} ∈ Eσ (i.e., σ : V → Vσ = V is an edge preserving bijection). 
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Table 3. The N(Aut(G)) images of E. 

  i α1 α2 α3 σ1 σ2 σ3 σ4 
{1,2} {1,2} {2,3} {1,4} {3,4} {2,3} {1,4} {3,4} {1,2} 
{2,3} {2,3} {1,2} {3,4} {1,4} {3,4} {1,2} {2,3} {1,4} 
{3,4} {3,4} {1,4} {2,3} {1,2} {1,4} {2,3} {1,2} {3,4} 
{1,4} {1,4} {3,4} {1,2} {2,3} {1,2} {3,4} {1,4} {2,3} 
{2,4} {2,4} {2,4} {2,4} {2,4} {1,3} {1,3} {1,3} {1,3} 

To see that Aut(G) is the automorphism group for each graph relabeled by σ ∈ {σ1,σ2,σ3,σ4} = 
N(Aut(G)) - Aut(G) (i.e., that each such isomorphism σ : G → Gσ is Aut(G) invariant), observe that the 
automorphisms of Aut(G) are the only bijective vertex maps which preserve adjacency in each Gσ and 
map edge {1,3} in each Gσ to itself. For example, the set of edges in the graph relabeled by σ2 (the 
sixth column in Table 3) is bijectively mapped in an adjacency preserving manner onto itself by α2 ∈ 
Aut(G) according to the mappings given by (3) (the associated vertex maps appear in parentheses). 
Similar results also hold for i, α1, and α3 so that Aut(G) is the automorphism group for this σ2 
relabeled graph, i.e., Aut(G) is invariant under the isomorphism σ2. 

{1,4} ↦ {1,2}… (1 ↦ 1 and 4 ↦ 2) 
{1,2} ↦ {1,4}… (1 ↦ 1 and 2 ↦ 4) 

                                                      {2,3} ↦ {3,4}… (2 ↦ 4 and 3 ↦ 3)                                                 (3) 
{3,4} ↦ {2,3}… (3 ↦ 3 and 4 ↦ 2) 
{1,3} ↦ {1,3}… (1 ↦ 1 and 3 ↦ 3) 

5. Closing Remarks 

Although every permutation relabeling σ of the vertex labels of a simple graph G defines an 
isomorphic copy Gσ of G with an automorphism group that is isomorphic to that of G, only those 
permutations in the normalizer of G’s automorphism group yield Gσ’s with automorphism groups 
identical to that of G. These special permutations define automorphism group invariant isomorphisms  
of G—i.e., they are the hidden (permutation) symmetries of G. Thus, each hidden permutation  
symmetry of G specifies a way in which G can be relabeled without changing its underlying fundamental  
(obvious) symmetry. 

Various real complex systems of recent interest—such as biochemical processes, global trading 
patterns, and scientific collaborations—can be modeled as simple labeled graphs. Many of these systems 
are surprisingly highly symmetric (i.e., they possess large numbers of obvious symmetries). Within the 
context of complex systems the hidden permutation symmetries of the labeled graph representing a 
system identify the system’s robustness for reconfiguration under symmetry constraint (RUSC), i.e., the 
ability to reconfigure the system without changing its fundamental symmetry. 

In order to better understand symmetry and its affect on system properties, effort has been devoted 
in recent years to developing simple measures which quantify system symmetry in terms of the 
automorphism group of the system’s graph model (e.g., [10,11]). The most direct measure of (obvious) 
symmetry in a graph G is the quantity αG = | Aut(G) |. An analogous extension of this to a measure 
which includes the hidden permutation symmetries in G that are not in Aut(G) is the RUSC number. 
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ρG ≡ | N(Aut(G)) | 

This quantity counts the total number of ways G (i.e., the system) can be relabeled (i.e., reconfigured) 
without changing the automorphism group Aut(G) (i.e., the fundamental symmetry of the system). The 
difference δG = ρG − αG and the ratio ηG ≡ δG/ρG also provide additional measures of a system’s RUSC. 

For a system represented by the above (4,5) graph, αG = 4, ρG = 8, δG = 4, and ηG = ½. Thus, there are 
8 system configurations which have identical fundamental symmetries. Four of these reconfigurations are 
defined by permutations in the set N(Aut(G)) -Aut(G) and comprise half of the total number of possible 
reconfigurations. 
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