Hidden Symmetries in Simple Graphs

Allen D. Parks
Electromagnetic and Sensor Systems Department, 18444 Frontage Road Suite 327, Naval Surface Warfare Center Dahlgren Division, Dahlgren, VA 22448-5161, USA; E-Mail: allen.parks@navy.mil Received: 15 February 2012; in revised form: 23 February 2012 / Accepted: 27 February 2012 / Published: 5 March 2012

Abstract

It is shown that each element σ in the normalizer of the automorphism group $\operatorname{Aut}(G)$ of a simple graph G with labeled vertex set V is an $\operatorname{Aut}(G)$ invariant isomorphism between G and the graph obtained from G by the σ permutation of V-i.e., σ is a hidden permutation symmetry of G. A simple example illustrates the theory and the applied notion of system robustness for reconfiguration under symmetry constraint (RUSC) is introduced.

Keywords: graph theory; automorphism group; normalizer; hidden symmetry; symmetry measures

1. Introduction

The concept of hidden symmetries of an object was introduced by Weyl [1]. Underlying this is the notion that if X is an H-set, where H is a symmetry group (the group of obvious symmetries) acting on X, additional hidden symmetries associated with X may correspond to elements of a larger group which also acts upon X and contains H as a subgroup. Sophisticated approaches based upon Weyl's concept for finding hidden symmetries in physical systems have found application in solving and understanding a variety of problems of scientific interest (e.g., [2-5]), including numerous applications in computer science (see, for example, the survey [6] and the monograph [7]).

The primary objective of this paper is to show that each element σ in the normalizer of the automorphism $\operatorname{group} \operatorname{Aut}(G)$ of a simple graph G with labeled vertex set V is an $\operatorname{Aut}(G)$ invariant isomorphism between G and the graph obtained from G by the σ relabeling of V (i.e., σ is a hidden permutation symmetry of G). The remainder of this paper is organized as follows: the relevant topics in graph theory and group theory are summarized in the next section (for additional depth and clarification the reader is invited to consult such standard texts as [8] and [9]). The hidden permutation symmetries
of a simple vertex labeled graph G are identified in Section 3. A simple example is presented in Section 4 to illustrate the theory. Closing remarks comprise the final section of this paper.

2. Preliminaries

A simple graph G is the pair $G=(V, E)$, where V is a finite set of at least two vertices and the edge set E is either a set of doubleton subsets of V or the empty set \varnothing. If $\{u, v\} \in E$, then u and v are adjacent in G. The order of a graph G is the cardinality $|V|$ of $V,|E|$ is its size, and G is a $(|V|,|E|)$ graph. G is vertex labeled when $V=\{1,2,3, \ldots, n\}$. A labeled graph which is relabeled by a permutation σ of it vertices is the graph where vertex i is relabeled as $\sigma(i)$. The complement G^{C} of G is the graph with vertex set V and edge set $E^{c}=\{\{u, v\}, u, v \in V:\{u, v\} \notin E\}$. Graph $G_{1}=\left(V_{1}, E_{1}\right)$ is isomorphic to graph $G_{2}=\left(V_{2}, E_{2}\right)$ if there is a bijection $\varphi: V_{1} \rightarrow V_{2}$ such that $\{u, v\} \in E_{1}$ if and only if $\{\varphi(u), \varphi(v)\} \in$ E_{2}. Thus, a graph isomorphism preserves adjacency. The bijection φ is the isomorphism between G_{1} and G_{2} and the associated graph isomorphism is denoted $\varphi: G_{1} \rightarrow G_{2}$.

An automorphism of G is an isomorphism of G with itself. The set of all automorphisms of G under the operation "composition of functions" forms the automorphism (or symmetry) group $\operatorname{Aut}(G)$ of G. When G is vertex labeled, then $\operatorname{Aut}(G)$ is a subgroup of the symmetric group S_{V} of all permutations of V, denoted $\operatorname{Aut}(G) \subset S_{V}$. Furthermore, $\operatorname{Aut}(G)=\operatorname{Aut}\left(G^{C}\right)$ and if G_{1} and G_{2} are isomorphic graphs, then $\operatorname{Aut}\left(G_{1}\right)$ is isomorphic to $\operatorname{Aut}\left(G_{2}\right)$, denoted $\operatorname{Aut}\left(G_{1}\right) \sim \operatorname{Aut}\left(G_{2}\right)$.

The order of a group X is $|X|$ and the order of $x \in X$ is the least positive integer m such that $x^{m}=e$, where e is the identity element in X. If $X \subset Y$ and $y X y^{-1}=X$ for every $y \in Y$, then X is a normal subgroup of Y, denoted $X \triangleleft Y$. Here $y^{-1} \in Y$ is the inverse of y. The normalizer $N(\operatorname{Aut}(G))$ of $\operatorname{Aut}(G)$ in S_{V} is the group defined by

$$
\begin{equation*}
N(\operatorname{Aut}(G))=\left\{\sigma \in S_{V}: \sigma \operatorname{Aut}(G) \sigma^{-1}=\operatorname{Aut}(G)\right\} \tag{1}
\end{equation*}
$$

and is the largest subgroup in S_{V} for which $\operatorname{Aut}(G) \triangleleft N(\operatorname{Aut}(G))$.

3. Hidden Symmetries of G

The automorphisms of the symmetry $\operatorname{group} \operatorname{Aut}(G)$ of G are the obvious symmetries of G. The objective of this section is to show that each $\sigma \in N(\operatorname{Aut}(G))$ is a hidden permutation symmetry of G-i.e., it is an $\operatorname{Aut}(G)$ invariant graph isomorphism between G and the graph obtained from G by the application of σ to G 's vertex labels (thus, $\sigma \in \operatorname{Aut}(G)$ is both a G automorphism and a hidden permutation symmetry of G). The next two lemmas are required to prove this.

Lemma 3.1 Let $G=(V, E)$ be a simple vertex labeled graph. If $\sigma \in S_{V}$ and G_{σ} is the graph obtained by relabeling the vertices of G as prescribed by σ, then $\sigma: G \rightarrow G_{\sigma}$ is an isomorphism.

Proof. The relabeling of G 's vertices is specified by the permutation $\sigma: V \rightarrow V$ so that the associated relabeled edges are the set $E_{\sigma}=\{\{\sigma(i), \sigma(j)\}:\{i, j\} \in E\}$. Now let $V_{\sigma}=V$, define $G_{\sigma}=\left(V_{\sigma}, E_{\sigma}\right)$, and observe that $\sigma: V \rightarrow V_{\sigma}$ is a bijection with the property that $\{i, j\} \in E$ if and only if $\{\sigma(i), \sigma(j)\} \in E_{\sigma}$. Thus, $\sigma: G \rightarrow G_{\sigma}$ is an isomorphism.

Lemma 3.2 Let $G=(V, E)$ be a simple vertex labeled graph, $\sigma \in S_{V}$, and $G_{\sigma}=\left(V_{\sigma}, E_{\sigma}\right)$ be the graph obtained by the σ relabeling of G 's vertices. If $\alpha \in \operatorname{Aut}(G)$, then $\sigma \alpha \sigma^{-1} \in \operatorname{Aut}\left(G_{\sigma}\right)$.

Proof. Since $\sigma: G \rightarrow G_{\sigma}$ is an isomorphism (Lemma 3.1), then so is $\sigma^{-1}: G_{\sigma} \rightarrow G$ and diagram (2) commutes, where " $\cdots \rightarrow$ " denotes that the diagram is completed by the map $\beta=\sigma \alpha \sigma^{-1}$. But β is an isomorphism because it is a composition of the isomorphisms σ, α, and σ^{-1}. Therefore, $\beta=\sigma \alpha \sigma^{-1} \in$ $\operatorname{Aut}\left(G_{\sigma}\right)$ since it is the isomorphism $\beta: G_{\sigma} \rightarrow G_{\sigma}$.

$$
\begin{array}{lll}
V & \xrightarrow[\rightarrow]{\alpha} & V \\
\downarrow \sigma & & \downarrow \sigma \tag{2}\\
V_{\sigma} & \xrightarrow{\beta} & V_{\sigma}
\end{array}
$$

Theorem 3.3 (Hidden Permutation Symmetries) Let $G=(V, E)$ be a simple vertex labeled graph and G_{σ} be the graph obtained by the σ relabeling of G 's vertices. If $\sigma \in N(\operatorname{Aut}(G))$, then $\sigma: G \rightarrow G_{\sigma}$ is an isomorphism for which $\operatorname{Aut}\left(G_{\sigma}\right)=\operatorname{Aut}(G)$.

Proof. The fact that $\sigma: G \rightarrow G_{\sigma}$ is an isomorphism is established by Lemma 3.1. Recall from Lemma 3.2 that—since $\sigma \in N(\operatorname{Aut}(G)) \subset S_{V}-$ for each $\alpha \in \operatorname{Aut}(G)$ there is a distinct $\beta=\sigma \alpha \sigma^{-1} \in \operatorname{Aut}\left(G_{\sigma}\right)$. However, because $\sigma \in N(\operatorname{Aut}(G))$, then by definition (1) it is also the case that $\beta \in \operatorname{Aut}(G)$ so that $\operatorname{Aut}\left(G_{\sigma}\right)$ $\subseteq \operatorname{Aut}(G)$. Furthermore, $\beta \in \operatorname{Aut}(G)$ implies $\beta=\sigma \alpha \sigma^{-1}$ for some $\alpha \in \operatorname{Aut}(G)$ and $\sigma \in N(\operatorname{Aut}(G))$. Consequently, $\beta \in \operatorname{Aut}\left(G_{\sigma}\right)$ so that $\operatorname{Aut}(G) \subseteq \operatorname{Aut}\left(G_{\sigma}\right)$. Thus, $\operatorname{Aut}\left(G_{\sigma}\right)=\operatorname{Aut}(G)$.

Note that in general $\operatorname{Aut}\left(G_{\sigma}\right) \sim \operatorname{Aut}(G)$ when $\sigma \in S_{V}$. However, when $\sigma \in N(\operatorname{Aut}(G))$ the group isomorphism is the identity map.

Corollary 3.4 $\sigma \in N(\operatorname{Aut}(G))$ is a hidden permutation symmetry for G^{c}.
Proof. Since $\operatorname{Aut}\left(G^{c}\right)=\operatorname{Aut}(G)$, then it must be the case that $N\left(\operatorname{Aut}\left(G^{c}\right)\right)=N(\operatorname{Aut}(G))$ so that $\sigma \in N(\operatorname{Aut}(G))$ if and only if $\sigma \in N\left(\operatorname{Aut}\left(G^{\mathrm{c}}\right)\right)$. It follows from Theorem 3.3 that $\sigma: G^{\mathrm{c}} \rightarrow G^{\mathrm{c}}{ }_{\sigma}$ is an isomorphism for which $\operatorname{Aut}\left(G^{\mathrm{c}}{ }_{\sigma}\right)=\operatorname{Aut}\left(G^{\mathrm{c}}\right)$.

4. Example: Hidden Symmetries of a Simple Vertex Labeled $(4,5)$ Graph

Let $G=(V, E)$, where $V=\{1,2,3,4\}$ and $E=\{\{1,2\},\{2,3\},\{3,4\},\{1,4\},\{2,4\}\}$.

4.1. The Automorphism and Normalizer Groups for G

By inspection it is found that

$$
\operatorname{Aut}(G)=\left\{i, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}
$$

where-when expressed in Cayley cycle notation-i=(1)(2)(3)(4), $\alpha_{1}=(13)(2)(4), \alpha_{2}=(24)(1)(3)$, and $\alpha_{3}=(13)(24)$ (here, i is clearly the group identity element). The Cayley table for $\operatorname{Aut}(G)$ is easily determined from these and is given by Table 1.

Table 1. The Cayley table for $\operatorname{Aut}(G)$.

	\boldsymbol{i}	α_{1}	α_{2}	α_{3}
\mathbf{i}	i	α_{1}	α_{2}	α_{3}
α_{1}	α_{1}	i	α_{3}	α_{2}
α_{2}	α_{2}	α_{3}	i	α_{1}
α_{3}	α_{3}	α_{2}	α_{1}	i

It is interesting to note that up to (group) isomorphism there are only two groups of order four-the cyclic group \mathbf{Z}_{4} and the Viergruppe \mathbf{V} of Felix Klein. Inspection of Table 1 reveals that $\operatorname{Aut}(G) \nsim \mathbf{Z}_{4}$ because there is no fourth order element in $\operatorname{Aut}(G)$. Thus, it must be the case that $\operatorname{Aut}(G) \sim \mathbf{V}$ (this is further corroborated from the table by the facts that $\operatorname{Aut}(G)$ is an abelian group and that every $\operatorname{Aut}(G)$ element is order two-which are properties of \mathbf{V}).

In order to find $N(\operatorname{Aut}(G))$ it is necessary to apply definition Equation (1) to the elements of S_{V}. Trial and error yields

$$
N(\operatorname{Aut}(G))=\left\{i, \alpha_{1}, \alpha_{2}, \alpha_{3}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}
$$

where $\sigma_{1}=(1234), \sigma_{2}=(1432), \sigma_{3}=(14)(23)$, and $\sigma_{4}=(12)(34)$. The Cayley table for $N(\operatorname{Aut}(G))$ is presented as Table 2. As an aside-observe from Table 2 that $N(\operatorname{Aut}(G))$ is a nonabelian group. Consequently, $N(\operatorname{Aut}(G))$ must be isomorphic to either the quaternion group \mathbf{Q} or the dihedral group \mathbf{D}_{4} since these are the only nonabelian groups of order eight. It is also seen from a closer examination of Table 2 that $N(\operatorname{Aut}(G))$ is generated by σ_{1} and α_{1} which satisfy the relations $\left(\sigma_{1}\right)^{4}=i,\left(\alpha_{1}\right)^{2}=i$, and $\alpha_{1} \sigma_{1} \alpha_{1}=\sigma_{2}=\sigma_{1}{ }^{-1}$. Since these are precisely the generators and relations that define \mathbf{D}_{4} then it must be the case that $N(\operatorname{Aut}(G)) \sim \mathbf{D}_{4}$.

Table 2. The Cayley table for $N(\operatorname{Aut}(G))$.

	\boldsymbol{i}	α_{1}	α_{2}	α_{3}	σ_{1}	σ_{2}	σ_{3}	σ_{4}
\boldsymbol{i}	i	α_{1}	α_{2}	α_{3}	σ_{1}	σ_{2}	σ_{3}	σ_{4}
α_{1}	α_{1}	i	α_{3}	α_{2}	σ_{3}	σ_{4}	σ_{1}	σ_{2}
α_{2}	α_{2}	α_{3}	i	α_{1}	σ_{4}	σ_{3}	σ_{2}	σ_{1}
α_{3}	α_{3}	α_{2}	α_{1}	i	σ_{2}	σ_{1}	σ_{4}	σ_{3}
σ_{1}	σ_{1}	σ_{4}	σ_{3}	σ_{2}	α_{3}	i	α_{1}	α_{2}
σ_{2}	σ_{2}	σ_{3}	σ_{4}	σ_{1}	i	α_{3}	α_{2}	α_{1}
σ_{3}	σ_{3}	σ_{2}	σ_{1}	σ_{4}	α_{2}	α_{1}	i	α_{3}
σ_{4}	σ_{4}	σ_{1}	σ_{2}	σ_{3}	α_{1}	α_{2}	α_{3}	i

4.2. The Hidden Permutation Symmetries of G

In order to illustrate Theorem 3.3, first note that $i, \alpha_{1}, \alpha_{2}$, and α_{3} either fix vertex labels 2 and 4 or permutes them, whereas $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and σ_{4} relabel 2 and 4 as 1 and 3 , or vice versa. Thus-as automorphisms-i, α_{1}, α_{2}, and α_{3} must preserve adjacency by mapping edge $\{2,4\}$ in G to edge $\{2,4\}$ in the associated relabeled graphs and-as isomorphisms- $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and σ_{4} must preserve adjacency by mapping edge $\{2,4\}$ in G to edge $\{1,3\}$ in the associated relabeled graphs. This is evidenced in Table 3 which lists the $N(\operatorname{Aut}(G))$ image of each edge in G in the associated relabeled graph. There the bold face first column lists the edges in G and the bold face first row lists the elements of $N(\operatorname{Aut}(G))$. The table entries are the $N(\operatorname{Aut}(G))$ images of G edges in the corresponding relabeled graphs. For example, the image of edge $\{2,3\}$ in G under the map α_{3} is the edge $\{1,4\}$ in the graph with vertices relabeled by α_{3}. It is obvious from this table that $\sigma: G \rightarrow G_{\sigma}, \sigma \in N(\operatorname{Aut}(G))$, is an isomorphism because $\{i, j\} \in E$ if and only if $\{\sigma(i), \sigma(j)\} \in E_{\sigma}$ (i.e., $\sigma: V \rightarrow V_{\sigma}=V$ is an edge preserving bijection).

Table 3. The $N(\operatorname{Aut}(G))$ images of E.

	\boldsymbol{i}	$\boldsymbol{\alpha}_{1}$	$\boldsymbol{\alpha}_{\mathbf{2}}$	$\boldsymbol{\alpha}_{3}$	$\boldsymbol{\sigma}_{1}$	$\boldsymbol{\sigma}_{2}$	$\boldsymbol{\sigma}_{3}$	$\boldsymbol{\sigma}_{4}$
$\{\mathbf{1 , 2 \}}$	$\{1,2\}$	$\{2,3\}$	$\{1,4\}$	$\{3,4\}$	$\{2,3\}$	$\{1,4\}$	$\{3,4\}$	$\{1,2\}$
$\{2,3\}$	$\{2,3\}$	$\{1,2\}$	$\{3,4\}$	$\{1,4\}$	$\{3,4\}$	$\{1,2\}$	$\{2,3\}$	$\{1,4\}$
$\{3,4\}$	$\{3,4\}$	$\{1,4\}$	$\{2,3\}$	$\{1,2\}$	$\{1,4\}$	$\{2,3\}$	$\{1,2\}$	$\{3,4\}$
$\{\mathbf{1 , 4 \}}$	$\{1,4\}$	$\{3,4\}$	$\{1,2\}$	$\{2,3\}$	$\{1,2\}$	$\{3,4\}$	$\{1,4\}$	$\{2,3\}$
$\{2,4\}$	$\{2,4\}$	$\{2,4\}$	$\{2,4\}$	$\{2,4\}$	$\{1,3\}$	$\{1,3\}$	$\{1,3\}$	$\{1,3\}$

To see that $\operatorname{Aut}(G)$ is the automorphism group for each graph relabeled by $\sigma \in\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}=$ $N(\operatorname{Aut}(G))-\operatorname{Aut}(G)$ (i.e., that each such isomorphism $\sigma: G \rightarrow G_{\sigma}$ is $\operatorname{Aut}(G)$ invariant), observe that the automorphisms of $\operatorname{Aut}(G)$ are the only bijective vertex maps which preserve adjacency in each G_{σ} and map edge $\{1,3\}$ in each G_{σ} to itself. For example, the set of edges in the graph relabeled by σ_{2} (the sixth column in Table 3) is bijectively mapped in an adjacency preserving manner onto itself by $\alpha_{2} \in$ $\operatorname{Aut}(G)$ according to the mappings given by (3) (the associated vertex maps appear in parentheses). Similar results also hold for i, α_{1}, and α_{3} so that $\operatorname{Aut}(G)$ is the automorphism group for this σ_{2} relabeled graph, i.e., $\operatorname{Aut}(G)$ is invariant under the isomorphism σ_{2}.

$$
\begin{align*}
& \{1,4\} \mapsto\{1,2\} \ldots(1 \mapsto 1 \text { and } 4 \mapsto 2) \\
& \{1,2\} \mapsto\{1,4\} \ldots(1 \mapsto 1 \text { and } 2 \mapsto 4) \\
& \{2,3\} \mapsto\{3,4\} \ldots(2 \mapsto 4 \text { and } 3 \mapsto 3) \tag{3}\\
& \{3,4\} \mapsto\{2,3\} \ldots(3 \mapsto 3 \text { and } 4 \mapsto 2) \\
& \{1,3\} \mapsto\{1,3\} \ldots(1 \mapsto 1 \text { and } 3 \mapsto 3)
\end{align*}
$$

5. Closing Remarks

Although every permutation relabeling σ of the vertex labels of a simple graph G defines an isomorphic copy G_{σ} of G with an automorphism group that is isomorphic to that of G, only those permutations in the normalizer of G 's automorphism group yield G_{σ} 's with automorphism groups identical to that of G. These special permutations define automorphism group invariant isomorphisms of G-i.e., they are the hidden (permutation) symmetries of G. Thus, each hidden permutation symmetry of G specifies a way in which G can be relabeled without changing its underlying fundamental (obvious) symmetry.

Various real complex systems of recent interest-such as biochemical processes, global trading patterns, and scientific collaborations-can be modeled as simple labeled graphs. Many of these systems are surprisingly highly symmetric (i.e., they possess large numbers of obvious symmetries). Within the context of complex systems the hidden permutation symmetries of the labeled graph representing a system identify the system's robustness for reconfiguration under symmetry constraint (RUSC), i.e., the ability to reconfigure the system without changing its fundamental symmetry.

In order to better understand symmetry and its affect on system properties, effort has been devoted in recent years to developing simple measures which quantify system symmetry in terms of the automorphism group of the system's graph model (e.g., [10,11]). The most direct measure of (obvious) symmetry in a graph G is the quantity $\alpha_{G}=|\operatorname{Aut}(G)|$. An analogous extension of this to a measure which includes the hidden permutation symmetries in G that are not in $\operatorname{Aut}(G)$ is the RUSC number.

$$
\rho_{G} \equiv|N(\operatorname{Aut}(G))|
$$

This quantity counts the total number of ways G (i.e., the system) can be relabeled (i.e., reconfigured) without changing the automorphism group $\operatorname{Aut}(G)$ (i.e., the fundamental symmetry of the system). The difference $\delta_{G}=\rho_{G}-\alpha_{G}$ and the ratio $\eta_{G} \equiv \delta_{G} / \rho_{G}$ also provide additional measures of a system's RUSC.

For a system represented by the above $(4,5)$ graph, $\alpha_{G}=4, \rho_{G}=8, \delta_{G}=4$, and $\eta_{G}=1 / 2$. Thus, there are 8 system configurations which have identical fundamental symmetries. Four of these reconfigurations are defined by permutations in the set $N(\operatorname{Aut}(G))-\operatorname{Aut}(G)$ and comprise half of the total number of possible reconfigurations.

Acknowledgments

This work was supported by a grant from the Naval Surface Warfare Center Dahlgren Division's In-house Laboratory Independent Research Program.

References

1. Weyl, H. Symmetry; Princeton University Press: Princeton, NJ, USA, 1952.
2. Cornwell, J.F. Group Theory in Physics; Academic Press: San Diego, CA, USA, 1997; p. 97.
3. Lulek, B.; Lulek, T. Scaling symmetries for linear polymer chains. Acta Phys. Pol. B 1991, 22, 287-302.
4. Michel, L. Symmetry defects and broken symmetry. Configurations Hidden symmetry. Rev. Mod. Phys. 1980, 52, 617-651.
5. Antonelli, F.; Stewart, I. Symmetry and synchrony in coupled cell networks 1: Fixed-point spaces. Int. J. Bifurc. Chaos 2006, 16, 559-577.
6. Kelarev, A.; Ryan, J.; Yearwood, J. Cayley graphs as classifiers for data mining: The influence of asymmetries. Discret. Math. 2009, 309, 5360-5369.
7. Kelarev, A. Graph Algebras and Automata; Marcel Dekker: New York, NY, USA, 2003.
8. Behzad, M.; Chartrand, G.; Lesniak-Foster, L. Graphs and Digraphs; Wadsworth International Group: Belmont, CA, USA, 1979.
9. Rotman, J. An Introduction to the Theory of Groups; Allyn and Bacon, Inc.: Newton, MA, USA, 1984.
10. Xiao, Y.; Xiong, M.; Wang, W.; Wang, H. Emergence of symmetry in complex networks. Phys. Rev. E 2008, 77, 066108:1-066108:10.
11. Wang, H.; Yan, G.; Xiao, Y. Symmetry in world trade network. J. Syst. Sci. Complex. 2009, 22, 280-290.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
