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Abstract: The well-known duality and Petrie duality operations on maps have natural
analogs for abstract polyhedra. Regular polyhedra that are invariant under both operations
have a high degree of both “external” and “internal” symmetry. The mixing operation
provides a natural way to build the minimal common cover of two polyhedra, and by mixing
a regular polyhedron with its five other images under the duality operations, we are able to
construct the minimal self-dual, self-Petrie cover of a regular polyhedron. Determining the
full structure of these covers is challenging and generally requires that we use some of the
standard algorithms in combinatorial group theory. However, we are able to develop criteria
that sometimes yield the full structure without explicit calculations. Using these criteria and
other interesting methods, we then calculate the size of the self-dual, self-Petrie covers of
several polyhedra, including the regular convex polyhedra.

Keywords: abstract polyhedron; convex polyhedron; duality; map operations; mixing;
Petrie polygon; Petrie dual

1. Introduction

Abstract polyhedra are partially-ordered sets that generalize the face-lattices of convex polyhedra.
They are closely related to maps on surfaces (i.e., 2-cell decompositions of surfaces), and indeed,
every abstract polyhedron has a natural realization as such a map. The regular polyhedra are the most
extensively studied. These are the polyhedra such that the automorphism group acts transitively on the
flags (which consist of a vertex, an edge, and a face that are all mutually incident). There is a natural
way to build a regular polyhedron from a finitely generated group satisfying certain properties, yielding
a bijection between (isomorphism classes of) regular polyhedra and such groups. The ability to view
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a regular polyhedron as either a map on a surface or as a group has fostered the development of a
rich theory.

The well-known duality and Petrie duality operations on maps can be easily applied to polyhedra,
though in some rare cases, the Petrie dual of a polyhedron is not a polyhedron. A regular polyhedron that
is invariant under both operations has a high degree of “external” symmetry in addition to the “internal”
symmetry that regularity measures. In [1], the authors describe a way to build a self-dual, self-Petrie
cover of a regular map. Using a similar construction, we show how to build a self-dual, self-Petrie cover
of a regular polyhedron. Determining the local structure of the cover is simple. However, finding a
presentation for the automorphism group of the cover is generally infeasible. Therefore, our goal is to
develop criteria that give us information about the cover without requiring direct calculation.

We start by giving some background on abstract polyhedra, regularity, and the duality operations in
Section 2. In Section 3, we present the mixing operation for regular polyhedra and show how to use it to
construct self-dual, self-Petrie covers. We then show how to calculate the size of these covers in certain
cases. Finally, in Section 4 we calculate the size of the self-dual, self-Petrie covers of several polyhedra,
including the regular convex polyhedra.

2. Abstract Polyhedra

Let P be a ranked partially ordered set of vertices, edges, and faces, which have rank 0, 1, and 2,
respectively. If F ≤ G or G ≤ F , we say that F and G are incident. A flag of P is a maximal chain, and
two flags are adjacent if they differ in exactly one element. We say that P is an (abstract) polyhedron if
it satisfies the following properties:

1. Each flag of P consists of a vertex, an edge, and a face.
2. Each edge is incident on exactly two vertices and two faces.
3. If F is a vertex and G is a face such that F ≤ G, then there are exactly two edges that are incident

to both F and G.
4. P is strongly flag-connected, meaning that if Φ and Ψ are two flags of P , then there is a sequence

of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ such that for i = 0, . . . , k−1, the flags Φi and Φi+1 are adjacent,
and each Φi contains Φ ∩Ψ.

As a consequence of the second and third properties above, every flag Φ has a unique flag Φi that
differs from Φ only in its element of rank i. We say that Φi is i-adjacent to Φ.

For polyhedra P andQ, an isomorphism from P toQ is an incidence- and rank-preserving bijection,
and an isomorphism from P to itself is an automorphism. We denote the group of all automorphisms
of P by Γ(P). There is a natural action of Γ(P) on the flags of P , and we say that P is regular if this
action is transitive. The faces of a regular polyhedron all have the same number of sides, and the vertices
all have the same valency. In general, we say that a polyhedron is of type {p, q} if every face is a p-gon
and every vertex is q-valent.
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Given a regular polyhedron P , fix a base flag Φ. Then the automorphism group Γ(P) is generated by
involutions ρ0, ρ1, and ρ2, where ρi maps the base flag Φ to Φi. This completely determines the action
of each ρi on all flags, since for any automorphism ϕ and flag Ψ,

(Ψi)ϕ = (Ψϕ)i

If P is of type {p, q}, then these generators satisfy (at least) the relations

(ρ0ρ1)
p = (ρ0ρ2)

2 = (ρ1ρ2)
q = ε

If these are the only defining relations, then we denote P by {p, q}, and Γ(P) is a Coxeter group, denoted
[p, q]. We note that whenever P is the face-lattice of a regular convex polyhedron, then its denotation is
the same as the usual Schläfli symbol for that polyhedron (see [2]).

For I ⊆ {0, 1, 2} and a group Γ = 〈ρ0, ρ1, ρ2〉, we define ΓI := 〈ρi | i ∈ I〉. The strong
flag-connectivity of polyhedra induces the following intersection property in the group:

ΓI ∩ ΓJ = ΓI∩J for I, J ⊆ {0, 1, 2} (1)

In general, if Γ = 〈ρ0, ρ1, ρ2〉 is a group such that each ρi has order 2 and such that (ρ0ρ2)
2 = ε, then

we say that Γ is a string group generated by involutions on 3 generators (or sggi). If Γ also satisfies the
intersection property given above, then we call Γ a string C-group on 3 generators. There is a natural
way of building a regular polyhedronP(Γ) from a string C-group Γ such that Γ(P(Γ)) = Γ [3] (Theorem
2E11). Therefore, we get a one-to-one correspondence between regular polyhedra and string C-groups
on 3 specified generators.

Let P and Q be two polyhedra (not necessarily regular). A function γ : P → Q is called a covering
if it preserves adjacency of flags, incidence, and rank; then γ is necessarily surjective, by the flag-
connectedness of Q. We say that P covers Q if there exists a covering γ : P → Q. If P and Q are both
regular polyhedra, then their automorphism groups are both quotients of

W := [∞,∞] = 〈ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = ε〉

Therefore there are normal subgroups M and K of W such that Γ(P) = W/M and Γ(Q) = W/K.
Then P covers Q if and only if M ≤ K.

2.1. Duality Operations

There are two well-known duality operations on maps on surfaces, described in [1] and earlier articles.
These naturally give rise to corresponding operations on polyhedra. The first is known simply as duality,
and the dual of P (denoted Pδ) is obtained from P by reversing the partial order. If a polyhedron is
isomorphic to its dual, then it is called self-dual.

In order to formulate the second duality operation, we need to define the Petrie polygons of a
polyhedron. Consider a walk along edges of the polyhedron such that at each successive step, we
alternate between taking the first exit on the left and the first exit on the right. When we start with a
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finite polyhedron, such a walk will eventually take us to a vertex we have already visited, leaving in the
same direction as we have before. This closed walk is one of the Petrie polygons of the polyhedron.

We can now describe the second duality operation. Given a polyhedron P , its Petrie dual Pπ consists
of the same vertices and edges as P , but its faces are the Petrie polygons of P . Taking the Petrie dual of a
polyhedron also forces the old faces to be the new Petrie polygons, so that Pππ ' P . If P is isomorphic
to Pπ, then we say that P is self-Petrie.

Since Petrie polygons play a central role in this paper, we expand some of our earlier terminology. If
P is a regular polyhedron, then its Petrie polygons all have the same length, and that length is the order
of ρ0ρ1ρ2 in Γ(P). A regular polyhedron of type {p, q} and with Petrie polygons of length r is also
said to be of type {p, q}r. If P is of type {p, q}r and it covers every other polyhedron of type {p, q}r,
then we call it the universal polyhedron of type {p, q}r and we denote it by {p, q}r. The automorphism
group of {p, q}r is denoted by [p, q]r, and this group is the quotient of [p, q] by the single extra relation
(ρ0ρ1ρ2)

r = ε. We will also extend our notation and use [p, q]r for the group with presentation

〈ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = (ρ0ρ1)
p = (ρ0ρ2)

2 = (ρ1ρ2)
q = (ρ0ρ1ρ2)

r = ε〉

even when there is no universal polyhedron of type {p, q}r.
The operations δ and π form a group of order 6, isomorphic to S3. A regular polyhedron that is

self-dual and self-Petrie is invariant under all 6 operations; such a polyhedron must be of type {n, n}n
for some n ≥ 2. In general, if P is of type {p, q}r, then Pδ is of type {q, p}r, and Pπ is of type {r, q}p.
Furthermore, the dual and the Petrie dual of a universal polyhedron is again universal.

3. Mixing Polyhedra

The mixing construction on polyhedra is analogous to the join of two maps or hypermaps [4]. Using
it, we can find the minimal common cover of two or more polyhedra, which will enable us to describe
the self-dual, self-Petrie covers of regular polyhedra.

We begin by describing the mixing operation on groups (also called the parallel product in [5]). Let
P and Q be regular polyhedra with Γ(P) = 〈ρ0, ρ1, ρ2〉 and Γ(Q) = 〈ρ′0, ρ′1, ρ′2〉. Let αi = (ρi, ρ

′
i) ∈

Γ(P)× Γ(Q) for i ∈ {0, 1, 2}. Then we define the mix of Γ(P) and Γ(Q) to be the group

Γ(P) � Γ(Q) := 〈α0, α1, α2〉

Note that the order of any word αi1 . . . αit is the least common multiple of the orders of ρi1 . . . ρit and
ρ′i1 . . . ρ

′
it . In particular, each αi is an involution, and (α0α2)

2 = ε. Therefore, Γ(P) � Γ(Q) is a string
group generated by involutions. As we shall see, it also satisfies the intersection property (Equation (1)).
Recall that ΓI := 〈ρi | i ∈ I〉.

Proposition 3.1. Let P andQ be regular polyhedra, and let I, J ⊆ {0, 1, 2}. Let Λ = Γ(P), ∆ = Γ(Q),
and Γ = Λ �∆. Then ΓI ∩ ΓJ ⊆ ΛI∩J ×∆I∩J .

Proof. Let g ∈ ΓI ∩ΓJ , and write g = (g1, g2). Then g1 ∈ ΛI ∩ΛJ and g2 ∈ ∆I ∩∆J . Now, since P and
Q are polyhedra, we have that ΛI ∩ΛJ = ΛI∩J and ∆I ∩∆J = ∆I∩J . Therefore, g ∈ ΛI∩J ×∆I∩J .
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Corollary 3.2. Let P and Q be regular polyhedra. Let Λ = Γ(P), ∆ = Γ(Q), and Γ = Λ �∆. Then Γ

satisfies the intersection property (Equation (1)).

Proof. Let Λ = 〈ρ0, ρ1, ρ2〉 and let ∆ = 〈ρ′0, ρ′1, ρ′2〉. Let Γ = 〈α0, α1, α2〉. We need to show that for
subsets I and J of N = {0, 1, 2}, ΓI ∩ ΓJ ≤ ΓI∩J . If I ∩ J = ∅, the claim follows immediately from
Proposition 3.1. If I ⊆ J , the claim also clearly holds. The only remaining case is when I = N \{i} and
J = N \ {j} for i 6= j. We will prove the case I = {0, 1} and J = {1, 2}; the other cases are similar.
Now, from Proposition 3.1, we know that ΓI ∩ΓJ ⊆ 〈ρ1〉×〈ρ′1〉. We want to show that (ρ1, ε) and (ε, ρ′1)

are not in ΓI ∩ ΓJ . We have that ΛI = 〈ρ0, ρ1〉, which is a dihedral group. In particular, all relations of
ΛI have even length. The same is true of ∆I . Therefore, when we reduce a word (ρi1 . . . ρik , ρ

′
i1
. . . ρ′ik)

in ΓI , the length of each component must have the same parity. In particular, we cannot have (ρ1, ε) ∈ ΓI

or (ε, ρ′1) ∈ ΓI . Therefore, ΓI ∩ ΓJ ≤ 〈α1〉, which is what we wanted to show.

Since the group Γ(P) � Γ(Q) satisfies the intersection property, we can build a regular polyhedron
from the group. We call this polyhedron the mix of P and Q, and we denote it P � Q. By construction,
Γ(P � Q) = Γ(P) � Γ(Q).

Note that whether we mix P and Q as regular polyhedra, or take their join as maps, we get the same
structure. Therefore, Corollary 3.2 tells us that when we take the join of two maps that correspond to
polyhedra, we get another map that corresponds to a polyhedron.

There is another way to describe the mix of Γ(P) and Γ(Q) using quotients of the group W , which
was described in Section 2. Let P and Q be regular polyhedra with Γ(P) = W/M and Γ(Q) = W/K.
Then the homomorphism from W to W/M ×W/K, sending a word w to the pair of cosets (wM,wK),
has kernel M ∩K and image W/M �W/K. Thus we see that Γ(P) � Γ(Q) ' W/(M ∩K). Therefore,
P � Q is the minimal regular polyhedron that covers both P and Q.

Now we can describe how to construct the self-dual, self-Petrie cover of a polyhedron. Let
G = 〈δ, π〉, the group of polyhedron operations generated by duality and Petrie duality, and let P be
a regular polyhedron with Γ(P) = W/M . For any ϕ ∈ G, define Pϕ to be the regular poset (usually a
polyhedron) built from the group W/ϕ(M). Now consider

P∗ := P � Pδ � Pπ � Pδπ � Pπδ � Pδπδ

Then Γ(P∗) is the quotient of W by

M ∩ δ(M) ∩ π(M) ∩ δπ(M) ∩ πδ(M) ∩ δπδ(M)

and since this subgroup is fixed by both δ and π, it follows that P∗ is self-dual and self-Petrie. Now, if
Pπ and Pδπ are both polyhedra, then Corollary 3.2 tells us that P∗ is also a polyhedron. In the rare cases
where Pπ is not a polyhedron, we can use the “quotient criterion” [3, Theorem 2E17] to show thatP�Pπ

is nevertheless a polyhedron, since the natural epimorphism from Γ(P) � Γ(Pπ) = 〈α0, α1, α2〉 to Γ(P)

is one-to-one on the subgroup 〈α1, α2〉. In any case, P∗ is the minimal regular, self-dual, self-Petrie
polyhedron that covers P .

If P is a regular polyhedron of type {p, q}r, then P∗ is of type {n, n}n, where n is the least common
multiple of p, q, and r. This gives us a full picture of the local structure of P∗. Determining the global
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structure, such as the size, isomorphism type, and presentation of Γ(P∗), is much more challenging.
With the tools presented so far, the only way we can determine Γ(P∗) is by looking at the intersection
of six subgroups of W , or finding the diagonal subgroup of the direct product of six groups. Neither
alternative is feasible in general.

There is another construction, dual to mixing, that helps us calculate the size of Γ(P)�Γ(Q). If Γ(P)

has presentation 〈ρ0, ρ1, ρ2 | R〉 and Γ(Q) has presentation 〈ρ′0, ρ′1, ρ′2 | S〉, then we define the comix of
Γ(P) and Γ(Q), denoted Γ(P) � Γ(Q), to be the group with presentation

〈ρ0, ρ′0, ρ1, ρ′1, ρ2, ρ′2 | R, S, ρ−10 ρ′0, ρ
−1
1 ρ′1, ρ

−1
2 ρ′2〉

Informally speaking, we can just add the relations from Γ(Q) to those of Γ(P), rewriting them to use
ρi in place of ρ′i. As a result, the order of any word ρi1 . . . ρit in Γ(P) � Γ(Q) divides the order of the
corresponding word in Γ(P) and in Γ(Q).

Like the mix of two groups, the comix has a natural interpretation in terms of quotients of W . In
particular, if Γ(P) = W/M and Γ(Q) = W/K, then Γ(P) � Γ(Q) = W/MK. That is, Γ(P) � Γ(Q)

is the maximal common quotient of Γ(P) and Γ(Q) (with respect to the natural covering maps).

Proposition 3.3. Let P and Q be finite regular polyhedra. Then

|Γ(P) � Γ(Q)| · |Γ(P) � Γ(Q)| = |Γ(P)| · |Γ(Q)|

Furthermore, if Γ(P) � Γ(Q) is trivial, then Γ(P) � Γ(Q) = Γ(P)× Γ(Q).

Proof. Let Γ(P) = W/M and Γ(Q) = W/K. Then Γ(P) � Γ(Q) = W/(M ∩K) and Γ(P) � Γ(Q) =

W/MK. Let f : Γ(P) � Γ(Q) → Γ(P) and g : Γ(Q) → Γ(P) � Γ(Q) be the natural epimorphisms.
Then ker f 'M/(M ∩K) and ker g 'MK/K 'M/(M ∩K). Therefore, we have that

|Γ(P) � Γ(Q)| = |Γ(P)|| ker f |
= |Γ(P)|| ker g|
= |Γ(P)||Γ(Q)|/|Γ(P) � Γ(Q)|

and the result follows.

Using Proposition 3.3, it is often possible to determine the size of Γ(P) � Γ(Q) by hand or with the
help of a computer algebra system. However, since finding the comix of two groups usually requires that
we know their presentations, the result is somewhat less useful for determining the size of Γ(P∗), which
is the mix of six groups. In a few nice cases, though, we can determine the size or structure of Γ(P∗)
without any difficult calculations. We present a few such results here.

Theorem 3.4. Let P be a self-Petrie polyhedron of type {p, q}p. Suppose p is odd and that p and q are
coprime. Then

Γ(P∗) = Γ(P)× Γ(Pδ)× Γ(Pδπ)

Proof. First, we note that Pδ is of type {q, p}p. In Γ(P) � Γ(Pδ), the order of ρ0ρ1 divides p and q,
and since p and q are coprime, we get ρ0ρ1 = ε; that is, ρ0 = ρ1. Similarly, ρ1ρ2 = ε, and so ρ1 = ρ2.
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Now, the order of ρ0ρ1ρ2 divides p. On the other hand, ρ0ρ1ρ2 = ρ30 = ρ0, and so the order divides 2 as
well. Therefore, we must have that ρ0ρ1ρ2 = ε. This forces all of the generators to be trivial, and thus
Γ(P) � Γ(Pδ) is trivial and Γ(P) � Γ(Pδ) = Γ(P)× Γ(Pδ).

Now, P � Pδ is of type {pq, pq}p, and Pδπ is of type {p, p}q. Then in their comix, we get that ρ0ρ1ρ2
has order dividing p and q, and thus it is trivial. Thus ρ0 = ρ1ρ2, and so (ρ1ρ2)

2 = ε. On the other
hand, we also have that (ρ1ρ2)

p = ε in the comix, and since p is odd, this means that ρ1ρ2 is trivial. So
ρ0 is trivial, and ρ1 = ρ2. Similarly, ρ2 = ρ0ρ1, and thus (ρ0ρ1)

2 = ε. But again, we also have that
(ρ0ρ1)

p = ε, and thus ρ0ρ1 = ε. So ρ0 = ρ1 = ρ2 = ε and we see that the comix is trivial. Therefore, the
mix is the direct product Γ(P)× Γ(Pδ)× Γ(Pδπ).

Finally, we note that since P is self-Petrie, we have Pπ = P , Pπδ = Pδ, and Pπδπ = Pδπ. Therefore,
the self-dual, self-Petrie cover of P consists of just the three distinct polyhedra we have mixed.

Corollary 3.5. Let P be a regular polyhedron of type {p, q}r. Suppose p and r are odd and both coprime
to q. Let Q = P � Pπ. Then

Γ(P∗) = Γ(Q)× Γ(Qδ)× Γ(Qδπ)

Proof. We start by noting that any self-dual, self-Petrie polyhedron that covers P must also cover Q;
therefore, P∗ = Q∗. Now, the polyhedron Q is a self-Petrie polyhedron of type {`, q}`, where ` is the
least common multiple of p and r. Since p and r are both odd and coprime to q, ` is also odd and coprime
to q. Then we can apply Theorem 3.4 and the result follows.

The condition in Theorem 3.4 that p is odd is essential. When p is even, we cannot tell from the type
alone whether Γ(P)�Γ(Pδ) has order 1 or 2. However, if P is the universal polyhedron of type {p, q}p,
then we can still determine |Γ(P∗)|.

Theorem 3.6. Let P = {p, q}p, the universal polyhedron of type {p, q}p. Suppose p is even and that p
and q are coprime. Then

|Γ(P∗)| = |Γ(P)|3/8

Proof. Since p and q are coprime, a presentation for Γ(P) � Γ(Pδ) is given by

〈ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = ρ0ρ1 = (ρ0ρ2)
2 = ρ1ρ2 = (ρ0ρ1ρ2)

p = ε〉

and direct calculation shows that this is a group of order 2. Then by Proposition 3.3, |Γ(P) � Γ(Pδ)| =
|Γ(P)|2/2.

Now we consider (Γ(P) � Γ(Pδ)) � Γ(Pδπ). In this group, the order of ρ0ρ1ρ2 divides both p and q,
and thus ρ0ρ1ρ2 = ε. Therefore, ρ0ρ1 = ρ2, which forces ρ0ρ1 to have order dividing 2, and similarly
ρ0 = ρ1ρ2, which forces ρ1ρ2 to have order dividing 2. Therefore, the comix is a (not necessarily proper)
quotient of the group [2, 2]1, a group of order 4. Now, since Γ(Pδπ) = [p, p]q and p is even, we see that
Γ(Pδπ) covers [2, 2]1. We similarly see that Γ(P) covers [2, 1]1 and that Γ(Pδ) covers [1, 2]1, and thus
Γ(P) � Γ(Pδ) covers [2, 1]1 � [1, 2]1, which is equal to [2, 2]1. Thus we see that the group [2, 2]1 is the
maximal group covered by both Γ(P) � Γ(Pδ) and Γ(Pδπ), and therefore it is their comix. Therefore,

|Γ(P) � Γ(Pδ) � Γ(Pδπ)| = |Γ(P) � Γ(Pδ)| · |Γ(Pδπ)|
4

=
|Γ(P)|3

8
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We note here that the arguments used can be generalized to give bounds on |Γ(P∗)| even when we
cannot calculate the exact value. In the next section, however, we will only consider cases where we can
calculate |Γ(P∗)| exactly.

4. The Covers of Universal Polyhedra

In this section, we will consider several of the finite polyhedra P = {p, q}r and calculate |Γ(P∗)|.
The results are summarized in Table 1. In most cases, the sizes are easily calculated by applying
Corollary 3.5 to P or one of its images under the duality operations. A few others can be found
by applying Theorem 3.6 or by calculating the size directly using GAP [6]. We cover the remaining
cases here.

Table 1. Self-dual, self-Petrie covers of finite polyhedra {p, q}r.

P |Γ(P)| |Γ(P∗)| Method

{2, 2k + 1}4k+2 4(2k + 1) 8(2k + 1)3 Hand
{2, 4k}4k 16k 32k3 Hand
{2, 4k + 2}4k+2 8(2k + 1) 8(2k + 1)3 Hand
{3, 3}4 24 (24)3 Thm. 3.4
{3, 4}6 48 (48)3/8 GAP
{3, 5}5 60 (60)3 Thm. 3.4
{3, 5}10 120 (120)3 GAP
{3, 6}6 108 (108)3/216 GAP
{3, 7}8 336 (336)6/8 Cor. 3.5
{3, 7}9 504 (504)6 Cor. 3.5
{3, 7}13 1, 092 (1, 092)6 Cor. 3.5
{3, 7}15 12, 180 (12, 180)6 Cor. 3.5
{3, 7}16 21, 504 (21, 504)6/8 Cor. 3.5
{3, 8}8 672 (672)3/8 Thm. 3.6
{3, 8}11 12, 144 (12, 144)6/8 Cor. 3.5
{3, 9}9 3, 420 (3, 420)3 GAP
{3, 9}10 20, 520 (20, 520)6/216 Cor. 3.5
{4, 4}4k 64k2 64k6 Hand
{4, 4}4k+2 16(2k + 1)2 32(2k + 1)6 Hand
{4, 5}5 160 (160)3 Thm. 3.4
{4, 5}9 6, 840 (6, 840)6/8 Cor. 3.5

We start with P = {2, 2s}. The order of ρ0ρ1ρ2 in Γ(P) is 2s, and therefore P = {2, 2s}2s, which
has an automorphism group of order 8s. If s = 1, then P is already self-dual and self-Petrie. In any
case, there are only 3 distinct images of P under the duality operations, and thus

P∗ = P � Pδ � Pπ

Now, P � Pδ is a self-dual regular polyhedron of type {2s, 2s}2s. We note that for any s, the group
Γ(P) � Γ(Pδ) is equal to [2, 2]2s. In fact, this group is equal to [2, 2]2, the group of order 8 generated
by 3 commuting involutions (i.e., the direct product of three cyclic groups of order 2). Then by
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Proposition 3.3, we see that |Γ(P) � Γ(Pδ)| = 8s2. In order to determine whether P � Pδ is self-Petrie,
we would like to determine the group Γ(P) � Γ(Pδ). A computation with GAP [6] suggests that the
group is always the quotient of [2s, 2s]2s by the extra relation (ρ1ρ0ρ1ρ2)

2 = ε. Since this extra relation
also holds in Γ(P) and Γ(Pδ), this quotient must cover Γ(P) � Γ(Pδ). Therefore, to prove that this is in
fact the mix, it suffices to show that this group has order 8s2.

Start by considering the Cayley graph G of

〈ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = (ρ0ρ2)
2 = (ρ1ρ0ρ1ρ2)

2 = ε〉

. Starting at a vertex and building out from it, we see that the Cayley graph of this group is the uniform
tiling 4.8.8 of the plane by squares and octagons. Figure 1 gives a local picture of G.

Figure 1. Local picture of the Cayley graph G.
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Now, let us see what happens when we introduce the remaining relations (ρ0ρ1)
2s = ε and (ρ1ρ2)

2s = ε.
We note that the components of G induced by edges labeled 0 and 1 are vertical zigzags, while the
components ofG induced by edges labeled 1 and 2 are horizontal zigzags. Therefore, adding the relation
(ρ0ρ1)

2s = ε forces an identification between points that are s tiles away vertically, and adding the
relation (ρ1ρ2)

2s = ε forces an identification between points that are s tiles away horizontally. Therefore,
the Cayley graph of Γ(P � Pδ) consists of an s× s grid of tiles, with opposite sides identified. Each tile
has 8 vertices, so there are a total of 8s2 vertices, which shows that the given group has 8s2 elements.
Therefore the given group is indeed the mix.

Now we consider (Γ(P) � Γ(Pδ)) � Γ(Pπ), which is the quotient of [2s, 2s]2 by the extra relation
(ρ1ρ0ρ1ρ2)

2 = ε. Put another way, we get the quotient of Γ(P) �Γ(Pδ) by the extra relation (ρ0ρ1ρ2)
2 = ε.
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Using the Cayley graph from before, we see that the relation (ρ0ρ1ρ2)
2 = ε forces us to identify each

tile with the tiles that touch it at a corner. When s is odd, this forces every tile to be identified, leaving
us with a Cayley graph with 8 vertices. When s is even, we instead get 2 distinct tiles, and the Cayley
graph has 16 vertices. Therefore, |Γ(P) � Γ(Pδ) � Γ(Pδπ)| = 8s3 if s is odd, and 4s3 if s is even. In
other words, if s = 2k + 1, then |Γ(P∗)| = 8(2k + 1)3, and if s = 2k, then |Γ(P∗)| = 32k3.

Now suppose that P = {2, 2k + 1}. This polyhedron is covered by Q = {2, 4k + 2} (which is equal
to {2, 4k + 2}4k+2, as we observed earlier); therefore, Q �Qδ covers P � Pδ. Calculating the size of the
mix, we find that |Γ(Q) � Γ(Qδ)| = |Γ(P) � Γ(Pδ|, and thus these two groups must be equal. From this
it easily follows that Q∗ = P∗, and thus |Γ(P∗)| = 8(2k + 1)3.

Next we consider the polyhedra {4, 4}2s, which are the torus maps {4, 4}(s,s) with 16s2 flags [7].
First, suppose that s = 2k, so that P = {4, 4}4k. Then Γ(P) � Γ(Pπ) = [4, 4]4, which has order 64.
Therefore, by Proposition 3.3,

|Γ(P) � Γ(Pπ)| = |Γ(P)||Γ(Pπ)|/64 = 64k4

Now, P � Pπ is of type {4k, 4}4k, and Pπδ is the universal polyhedron of type {4, 4k}4. Thus (Γ(P) �
Γ(Pπ)) � Γ(Pπδ) is [4, 4]4 or a proper quotient. Since Γ(P) covers [4, 4]4, so does Γ(P) � Γ(Pπ). Then
since Γ(Pπδ) also covers [4, 4]4, so does (Γ(P) � Γ(Pπ)) � Γ(Pπδ), and thus the comix is the whole
group [4, 4]4. Thus we see that

|Γ(P) � Γ(Pπ) � Γ(Pπδ)| = |Γ(P) � Γ(Pπ)| · |Γ(Pπδ)|/64 = 64k6

Now suppose that s = 2k + 1, so that P = {4, 4}4k+2. Then Γ(P) � Γ(Pπ) = [2, 4]2, which has size
8. Therefore,

|Γ(P) � Γ(Pπ)| = |Γ(P)| · |Γ(Pπ)|/8 = 32(2k + 1)4

Now, P �Pπ is of type {8k+ 4, 4}8k+4 and Pπδ is the universal polyhedron {4, 4k+ 2}4. Thus (Γ(P) �
Γ(Pπ)) � Γ(Pπδ) is [4, 2]4 or a proper quotient. Clearly, Γ(Pπδ) covers [4, 2]4. Furthermore, Γ(P)

covers [4, 4]2 and Γ(Pπ) covers [2, 4]4; therefore, their mix covers [4, 4]2 � [2, 4]4, which covers [4, 2]4.
Therefore, the comix is the whole group [4, 2]4 of order 16, and we see that

|Γ(P) � Γ(Pπ) � Γ(Pπδ)| = |Γ(P) � Γ(Pπ)| · |Γ(Pπδ)|/16 = 32(2k + 1)6

It would be natural here to consider the torus maps {3, 6}2s = {3, 6}(s,0). However, in this case there
are 6 distinct polyhedra under the duality operations, and the problem seems to be intractable.

Finally, we note that the self-dual, self-Petrie covers of {3, 3}4 and {3, 4}6 have groups of the same
order. In fact, since {3, 4}6 covers {3, 4}3, these two polyhedra have the same self-dual, self-Petrie cover.
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