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Abstract: In this paper we review recent results on the preliminary applications of the
new-found extended global SO(3) × SO(3) × U(1) symmetry of the Hubbard model on
a bipartite lattice. Our results refer to the particular case of the bipartite square lattice.
Specifically, we review a general description for such a model with nearest-neighbor transfer
integral t and on-site repulsion U on a square lattice with N2

a � 1 sites consistent with its
extended global symmetry. It refers to three types of elementary objects whose occupancy
configurations generate the state representations of the model extended global symmetry.
Such objects emerge from a suitable electron-rotated-electron unitary transformation. An
application to the spin spectrum of the parent compound La2CuO4 is shortly reviewed.
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1. Introduction

The Hubbard model on a bipartite lattice is the simplest realistic toy model for description of the
electronic correlation effects in general many-electron problems with short-range interaction on such a
lattice. The model involves two effective parameters: the in-plane nearest-neighbor transfer integral t
and the effective on-site repulsion U . Despite that it is among the mostly studied models in condensed
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matter and ultra-cold atom physics, except for the one-dimensional (1D) bipartite lattice [1–3] there is
no exact solution and few controlled approximations exist for finite U/4t values.

An exact result for the Hubbard model on any bipartite lattice is that in addition to the spin SU(2)

symmetry it has a second global SU(2) symmetry [4], called by some authors and in this paper η-spin
symmetry [5]. A trivial result is that at vanishing onsite interaction U = 0 the global symmetry
of the Hubbard model on a bipartite lattice at vanishing chemical potential and magnetic field is
O(4) = SO(4) × Z2. Here the factor Z2 refers to the particle-hole transformation on a single spin
under which the model Hamiltonian is not invariant for U 6= 0 and SO(4) = [SU(2) × SU(2)]/Z2

contains the two SU(2) symmetries. Yang and Zhang considered the most natural possibility that the
SO(4) symmetry inherited from the U = 0 Hamiltonian O(4) = SO(4)× Z2 symmetry was the model
global symmetry for U 6= 0 [5].

However, a recent study of the problem by the authors and collaborator reported in Reference [6]
reveals an exact extra hidden global U(1) symmetry emerging for U 6= 0 in addition to SO(4). It is
related to the U 6= 0 local SU(2)× SU(2)×U(1) gauge symmetry of the Hubbard model on a bipartite
lattice with vanishing transfer integral [7]. Such a local SU(2)×SU(2)×U(1) gauge symmetry becomes
for finite U and t a group of permissible unitary transformations. It is such that the corresponding local
U(1) canonical transformation is not the ordinary U(1) gauge subgroup of electromagnetism. Instead it
is a “nonlinear” transformation [7].

Consistently, for U 6= 0 the related new found global symmetry of the model on any bipartite lattice is
larger than SO(4) and given by [SU(2)×SU(2)×U(1)]/Z2

2 = [SO(4)×U(1)]/Z2 = SO(3)×SO(3)×
U(1). The factor 1/Z2 (and 1/Z2

2 ) in SO(4) = [SU(2)×SU(2)]/Z2 (and in [SU(2)×SU(2)×U(1)]/Z2
2 )

imposes that [Sη +Ss] is an integer number (and both [Ss +Sc] and [Sη +Sc] are integer numbers). Here
Sη, Ss, and Sc are the η-spin, the spin, and one-half the eigenvalue 2Sc of the generator of the new global
U(1) symmetry, respectively. The latter is found in Reference [6] to be the number of rotated-electron
singly occupied sites. This refers to any of the infinite electron-rotated-electron unitary transformations
of Reference [8], such that rotated-electron single and double occupancy are good quantum numbers
for U/4t 6= 0. 2Sc is then the number of rotated-electron singly occupied sites. Within the present
notation, Sx3η = −[ND

a −N ]/2 and Sx3s = −[N↑ −N↓]/2 are the η-spin projection and spin projection,
respectively, and ND

a � 1 denotes the number of lattice sites. For the bipartite 1D and square lattices
considered in this paper the labeling index D in ND

a ≡ [Na]
D reads D = 1 and D = 2, accounting for

the Na � 1 and N2
a = Na ×Na � 1 lattice sites, respectively. The square and 1D lattices have spacing

a and length edge and chain length L = Na a, respectively.
An important point is that although addition of chemical-potential and magnetic-field operator terms

to the Hubbard model on a bipartite lattice Hamiltonian lowers its symmetry, such terms commute with
it. Therefore, the global symmetry being SO(3) × SO(3) × U(1) implies that the set of independent
rotated-electron occupancy configurations that generate the model energy and momentum eigenstates
generate state representations of that global symmetry for all values of the electronic density n and
spin density m. It then follows that the total number of such independent representations must
equal the Hilbert-space dimension, 4N

D
a . The results of Reference [6] confirm that for the model

on a bipartite lattice in its full Hilbert space the number of independent representations of the group
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SO(3) × SO(3) × U(1) is indeed 4N
D
a . In contrast, the number of independent representations of the

group SO(4) is found to be smaller than the Hilbert-space dimension 4N
D
a .

In this paper we review an application of the extended global SO(3) × SO(3) × U(1) symmetry
of the Hubbard model on a square lattice. It refers to a rotated-electron related operator description
in terms of spin-1/2 spinons, η-spin-1/2 η-spinons, and spin-less and η-spin-less c fermions [9,10].
Such an operator description involves an electron-rotated-electron unitary transformation of the type
considered in Reference [8]. A property specific to the specific transformation associated with the
operator description reviewed in this paper is that the U > 0 energy eigenstates can be generated
from suitable chosen U/4t → ∞ energy eigenstates upon application onto the latter states of the
corresponding electron-rotated-electron unitary operator. The related set of state representations of
the group SO(3) × SO(3) × U(1) that emerge from our description are energy eigenstates yet are
generated by exactly the same electron-rotated-electron unitary transformation from corresponding
U/4t→∞ states.

Their rotated electron occupancy configurations are simpler to describe in terms of the
above-mentioned three types of elementary objects directly related to the rotated electrons whose
numbers and designations are: Ms = 2Sc spin-1/2 spinons,Mη = [ND

a −2Sc] η-spin-1/2 η-spinons, and
Nc = 2Sc spin-less and η-spin-less charge c fermions. The latter live on a lattice with ND

a = [Nc +Nh
c ]

sites identical to the original lattice. Here Nh
c = [ND

a − 2Sc] gives the number of c fermion holes. The
relation of such objects to the rotated electrons is as follows. The Ms = 2Sc spin-1/2 spinons describe
the spin degrees of freedom of the 2Sc rotated electrons that singly occupy sites. The charge degrees of
freedom of such rotated electrons are described by the Nc = 2Sc c fermions. The Mη = [ND

a − 2Sc]

η-spin-1/2 η-spinons describe the η-spin degrees of freedom of the [ND
a −2Sc] sites doubly occupied and

unoccupied by rotated electrons. Specifically, the η-spinons of η-spin projection−1/2 and +1/2 refer to
the sites doubly occupied and unoccupied, respectively, by rotated electrons. The remaining degrees of
freedom of such rotated-electron occupancy configurations are described by the Nh

c = [ND
a − 2Sc] c

fermion holes. The expression of the rotated-electron operators in terms of these three elementary
objects is for U > 0 identical to that of the electron operators for large U values in terms of the three
objects obtained from the exact transformation for separation of spin-1/2 fermions without constraints
considered in Reference [11].

Interestingly, η-spinon (and spinons) that are not invariant under the electron-rotated-electron unitary
transformation considered in this paper have η-spin 1/2 (and spin 1/2) but are anti-bound within
η-spin-neutral (and bound within spin-neutral) 2ν-η-spinon (and 2ν-spinon) composite ην fermions (and
sν fermions). Here ν = 1, 2, . . . is the number of anti-bound η-spinon (and bound spinon) pairs. In this
paper we follow the notation of Reference [9] and call such spinons and η-spinons, confined spinons
and confined η-spinons, respectively. We emphasize though that by “confinement” is meant here that the
spinons and η-spinons are bound and anti-bound within such composite sν and ην fermions, respectively,
alike for instance protons and neutrons are bound within the nucleus. Whether the potential associated
with such a behavior is in some limit confining remains an interesting open question. The reason for
the notation of Reference [9] is that the term confined can be used both for spinons and η-spinons. A
possible alternative notation would be bound spinons and anti-bound η-spinons, which would be different
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for spinons and η-spinons. We thus stress that within our notation the term confined is not equivalent to
the high-energy physics concept of confinement.

Moreover, again we follow the notation of Reference [9] and call deconfined spinons and deconfined
η-spinons those that are invariant under the electron-rotated-electron unitary transformation. Here
deconfined means just that such objects are not bounded and anti-bounded within sν fermions and ην
fermions, respectively. In case that future research reveals that the potential behind the energetic relations
of sν fermions and ην fermions discussed below in Section 4.3 is at least in some limit confining, any
possible relation to the concept of deconfined quantum criticality of Reference [12] should be clarified.

The paper is organized as follows. A uniquely defined rotated-electron description for the Hubbrad
model on the square lattice and its relation to the global SO(3)×SO(3)×U(1) symmetry are the subjects
of Section II. In Section III the c fermion, η-spin-1/2 η-spinon, and spin-1/2 spinon and corresponding c,
η-spin, and spin effective lattices are reviewed. The vacua of the theory, the transformation laws under the
electron-rotated-electron unitary transformation of such objects, and the subspaces they refer to are issues
also addressed in that section. The composite αν bond particles and αν fermions, corresponding αν
effective lattices, ground-state occupancy configurations, and a complete set of momentum eigenstates
are the problems studied in Section IV. The c and s1 fermion square-lattice quantum liquid and
corresponding one- and two-electron subspace are the subjects discussed in Section V. Moreover, in that
section a preliminary application of the present operator description to the inelastic neutron scattering
of the Mott–Hubbard insulator parent compound La2CuO4 (LCO) [13] is presented. Our description
leads to simple expressions that agree both with the LCO inelastic neutron scattering and the results of
Reference [14], which involved the summation of an infinite number of diagrams. Finally, the concluding
remarks are presented in Section VI.

2. The Model, a Suitable Rotated-Electron Description, and Relation to the Global
SO(3)× SO(3)× U(1) Symmetry

The Hubbard model on a square (or 1D) lattice with a very large number ND
a � 1 of sites reads,

Ĥ = t T̂ + U [ND
a − Q̂]/2

T̂ = −
∑
〈~rj~rj′ 〉

∑
σ

[c†~rj ,σ c~rj′ ,σ + h.c.]

Q̂ =

ND
a∑

j=1

∑
σ=↑,↓

n̂~rj ,σ (1− n̂~rj ,−σ)

(1)

Periodic boundary conditions and torus periodic boundary conditions are considered for the 1D lattice
for which D = 1 and the square lattice for which D = 2, respectively. Moreover, in Equation (1) t is
the nearest-neighbor transfer integral, T̂ is the kinetic-energy operator in units of t, and Q̂ is the operator
that counts the number of electron singly occupied sites. Hence the operator D̂ = [N̂ − Q̂]/2 counts the
number of electron doubly occupied sites. Moreover, n̂~rj ,σ = c†~rj ,σc~rj ,σ where −σ =↑ (and −σ =↓) for

σ =↓ (and σ =↑), N̂ =
∑

σ N̂σ, and N̂σ =
∑ND

a
j=1 n̂~rj ,σ. We focus our attention onto ground states with

hole concentration x = [ND
a −N ]/ND

a ≥ 0 and spin density m = [N↑ −N↓]/ND
a = 0 and their excited

states. Such an hole-concentration range corresponds to electronic densities n = N/ND
a ∈ (0, 1). We
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are particularly interested in the LWS subspace spanned by the lowest-weight states (LWSs) of both the
η-spin and spin algebras. Such energy eigenstates refer to values of Sα and Sx3α such that Sα = −Sx3α
for α = η, s.

The kinetic-energy operator T̂ can be expressed in terms of the operators,

T̂0 = −
∑
〈~rj~rj′ 〉

∑
σ

[n̂~rj ,−σ c
†
~rj ,σ

c~rj′ ,σ n̂~rj′ ,−σ + (1− n̂~rj ,−σ) c†~rj ,σ c~rj′ ,σ (1− n̂~rj′ ,−σ) + h.c.]

T̂+1 = −
∑
〈~rj~rj′ 〉

∑
σ

n̂~rj ,−σ c
†
~rj ,σ

c~rj′ ,σ (1− n̂~rj′ ,−σ)

T̂−1 = −
∑
〈~rj~rj′ 〉

∑
σ

(1− n̂~rj ,−σ) c†~rj ,σ c~rj′ ,σ n̂~rj′ ,−σ

(2)

as T̂ = T̂0 + T̂+1 + T̂−1. These three kinetic operators play an important role in the physics. The operator
T̂0 does not change electron double occupancy whereas the operators T̂+1 and T̂−1 change it by +1 and
−1, respectively.

The studies of Reference [6] consider unitary operators V̂ = V̂ (U/4t) and corresponding
rotated-electron operators,

c̃†~rj ,σ = V̂ † c†~rj ,σ V̂ ; c̃~rj ,σ = V̂ † c~rj ,σ V̂ ; ñ~rj ,σ = c̃†~rj ,σ c̃~rj ,σ (3)

Those are such that rotated-electron single and double occupancy are good quantum numbers for
U/4t > 0. The global U(1) symmetry generator 2S̃c of eigenvalue 2Sc reads [6],

2S̃c =

ND
a∑

j=1

s̃~rj ,c ; s̃~rj ,c =
∑
σ=↑,↓

ñ~rj ,σ (1− ñ~rj ,−σ) (4)

It follows that 2S̃c = V̂ † 2Ŝc V̂ where 2Ŝc = Q̂ and the operator Q̂ is given in Equation (1). As mentioned
in the previous section, 2Sc is the number of rotated-electron singly occupied sites. Most choices of the
unitary operators V̂ correspond to choices of U/4t → ∞ sets {|Ψ∞〉} of 4N

D
a energy eigenstates such

that the states |ΨU/4t〉 = V̂ †|Ψ∞〉 are not energy and momentum eigenstates for finite U/4t values yet
belong to a subspace with fixed and well-defined values of Sc, Sη, and Ss.

Let {|ΨU/4t〉} be a complete set of 4N
D
a energy, momentum, η-spin, η-spin projection, spin, and

spin-projection eigenstates for U/4t > 0. In the limit U/4t → ∞ such states correspond to one
of the many choices of sets {|Ψ∞〉} of 4N

D
a U/4t-infinite energy eigenstates. Both the sets of states

{|ΨU/4t〉} and {|Ψ∞〉}, respectively, are complete and the model Hilbert space is the same for all
U/4t > 0 values considered here. Hence it follows from basic quantum mechanics Hilbert-space
and operator properties that for this choice there exists exactly one unitary operator V̂ = V̂ (U/4t)

such that |ΨU/4t〉 = V̂ †|Ψ∞〉. Here we consider such a unitary operator and corresponding generator
S̃c = V̂ † Ŝc V̂ given in Equation (4) and rotated-electron operators provided in Equation (3). The states
|ΨU/4t〉 = V̂ †|Ψ∞〉 (one for each value of U/4t > 0) that are generated from the same initial state |Ψ∞〉
belong to the same V tower.

A complete set {|ΦU/4t〉} of related momentum eigenstates |ΦU/4t〉 = V̂ †|Φ∞〉 is introduced in
Reference [9]. Such states are generated by occupancy configurations of the quantum objects of the
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general description considered in this paper. The unitary operator V̂ † appearing in the general expression
of such states is what also appears in the general expression |ΨU/4t〉 = V̂ †|Ψ∞〉 of the above energy and
momentum eigenstates. However the states |ΦU/4t〉 are not in general energy eigenstates of the Hubbard
model on the square lattice. The interest of the states |ΦU/4t〉 = V̂ †|Φ∞〉 is that those contained in the
one- and two-electron subspace defined below are both momentum and energy eigenstates of that model.
Fortunately, the present general description is physically most useful and important for the Hubbard
model on the square lattice in that subspace, which refers to the square-lattice quantum liquid further
investigated in Reference [10].

Alike in Reference [6], we associate with any operator Ô an operator Õ = V̂ † Ô V̂ that has the same
expression in terms of rotated-electron creation and annihilation operators as Ô in terms of electron
creation and annihilation operators, respectively. Our convention is that marks placed over letters being
a caret or a tilde denote operators. (An exception are the electron operators of Equation (3), which we
denote by c†~rj ,σ and c~rj ,σ rather than by ĉ†~rj ,σ and ĉ~rj ,σ, respectively.) Any operator Ô can then be written
in terms of rotated-electron creation and annihilation operators as,

Ô = V̂ Õ V̂ † = Õ + [Õ, Ŝ ] +
1

2
[[Õ, Ŝ ], Ŝ ] + ... = Õ + [Õ, S̃ ] +

1

2
[[Õ, S̃ ], S̃ ] + ...

Ŝ = − t

U

[
T̂+1 − T̂−1

]
+O(t2/U2) ; S̃ = − t

U

[
T̃+1 − T̃−1

]
+O(t2/U2)

(5)

The operator Ŝ appearing in this equation is related to the unitary operator as V̂ † = eŜ and V̂ = e−Ŝ .
Although the general expression of Ŝ remains unknown, an exact result is that it involves only the
kinetic operators T̂0, T̂+1, and T̂−1 of Equation (2) and numerical U/4t dependent coefficients [8,9]. For
U/4t > 0 that expression can be expanded in a series of t/U . The corresponding first-order term has
the universal form given in Equation (5). To arrive to the expression of Ô in terms of the operator S̃
also given in Equation (5), the property that the operator V̂ commutes with itself is used. It implies that
V̂ = e−Ŝ = Ṽ = e−S̃ and Ŝ = S̃. Hence both the operators V̂ and Ŝ have the same expression in terms
of electron and rotated-electron creation and annihilation operators. This justifies why the expansion
S̃ = −(t/U) [T̃+1 − T̃−1] + O(t2/U2) given in that equation for the operator S̃ has the same form as
that of Ŝ.

The higher-order terms of the operator S̃ expression can be written as a product of operator factors.
Their expressions involve the rotated kinetic operators T̃0, T̃+1, and T̃−1. The full expression of the
operator Ŝ = S̃ can for U/4t > 0 be written as Ŝ = −Ŝ(∞)−δŜ = −S̃(∞)−δS̃. Here Ŝ(∞) = S̃(∞)

corresponds to the operator S(l) at l =∞ defined in Equation (61) of Reference [8]. Moreover, δŜ = δS̃

has the general form provided in Equation (64) of that paper. The unitary operator V̂ = e−Ŝ = e−S̃

considered here corresponds to exactly one choice of the coefficients D(k)(m) of that equation. Here
the index k = 1, 2, . . . refers to the number of rotated-electron doubly occupied sites. The problem of
finding the explicit form of the operators V̂ = Ṽ and Ŝ = S̃ is equivalent to finding all coefficients
D(k)(m) associated with the electron-rotated-electron unitary transformation as defined above.

For finite U/4t values the Hamiltonian Ĥ of Equation (1) does not commute with the unitary operator
V̂ = e−Ŝ . Hence when expressed in terms of the rotated-electron creation and annihilation operators of
Equation (3) it has an infinite number of terms. According to Equation (5) it reads,

Ĥ = V̂ H̃ V̂ † = H̃ + [H̃, S̃ ] +
1

2
[[H̃, S̃ ], S̃ ] + ... (6)
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The commutator [H̃, S̃ ] does not vanish except for U/4t→∞ so that Ĥ 6= H̃ for finite values of U/4t.
Fortunately, there is strong evidence that for approximately U/4t > 1, out of the infinite terms on the
right-hand-side of Equation (6) only the first few Hamiltonian terms play an active role in the physics
of the Hubbard model on the square lattice in the one- and two-electron subspace [10]. This follows
in part from in that subspace the rotated-electron configurations expressed in Reference [9] in terms
of related c and s1 fermion operators referring to energy eigenstates. For instance, the spin spectrum
used below in Section 5.4 was derived in Reference [10] under the assumption that for approximately
U/4t > 1 only the first few Hamiltonian terms on the right-hand side of Equation (6) play an active role
in the model physics. For U/4t = 1.525 the validity of that assumption is consistent with the very good
agreement with both results obtained by the standard formalism of many-body physics for the model
spin spectrum [14] and the inelastic neutron scattering of LCO reported in that Section. Note, however,
that this property is expected to hold provided that the unitary transformation used to generate the rotated
electrons from the electrons is that considered above.

Alike the operator S̃, the Hamiltonian expression in terms of rotated-electron operators Equation (6)
can be expanded in a series of t/U . Its terms generated up to fourth order in t/U are within a unitary
transformation the equivalent to the t−J model with ring exchange and various correlated hoppings [15].
Furthermore, at half filling the terms of the Hamiltonian Equation (6) expansion in t/U with odd
powers in t vanish due to the particle-hole symmetry and the resulting invariance of the spectrum under
t→ − t. In turn, for finite hole concentration x > 0 the expansion in powers of t/U of the Hamiltonian
Equation (6) involves terms with odd powers in t, absent at x = 0. This is consistent with the effects of
increasing U/4t being often different at x = 0 and for x > 0 [16].

It is shown in Reference [8] that all infinite electron-rotated-electron unitary transformations are
well defined except at U = 0. This applies to the specific choice of electron-rotated-electron unitary
transformation associated with the operational description reviewed in this paper. Given the unitarity
character of that transformation, it may be used in two different physical problems, which however
are mathematically and technically fully equivalent. These two physical problems are considered in
Reference [8] and References [9,10], respectively. Specifically, in Reference [8] it is considered that the
rotated creation and annihilation operators of Equation (3) refer to electrons. Within that choice, except
for U/4t →∞ the Hamiltonian on the right-hand side of Equation (6) is not the Hubbard Hamiltonian.
Instead it is an Hamiltonian for which electron double occupancy and single occupancy are good
quantum numbers. In turn, within the alternative physical problem studied here and in References [9,10],
the rotated creation and annihilation operators of Equation (3) refer to rotated electrons, which except for
U/4t → ∞ are objects different from electrons. In this case, provided that both the on-site interaction
U 6= 0 is finite and one accounts for all higher-order terms on the right-hand-side of Equation (6),
the corresponding expression refers to the Hubbard model in terms of rotated-electron creation and
annihilation operators. Hence within the operational description reviewed in this paper the general
expression given in Equation (6) is not a mapping of the Hubbard model onto some generalized t − J
model. Indeed the electron-rotated-electron unitary transformation considered here has been constructed
to inherently rotated-electron double occupancy and singly occupancy being good quantum numbers for
the Hubbard model with U 6= 0. Hence unlike in the derivation of t − J models of References [17,18],
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the range of applicability of the Hubbard model expression given in Equation (6) refers to all finite U 6= 0

values.
In Reference [6] it is found that, in contrast to the Hamiltonian, the three components of the

momentum operator ~̂P , three generators of the spin SU(2) symmetry, and three generators of the η-spin
SU(2) symmetry commute with the electron-rotated-electron unitary operator V̂ = Ṽ . This also holds
for the specific choice of that operator associated with the rotated-electron description considered in this
paper. Hence the above operators have the same expression in terms of electron and rotated-electron
creation and annihilation operators, so that the momentum operator reads,

~̂P =
∑
σ=↑,↓

∑
~k

~k c†~k,σ c~k,σ =
∑
σ=↑,↓

∑
~k

~k c̃†~k,σ c̃~k,σ (7)

Furthermore, the above-mentioned six generators are given by,

Ŝx3η =

ND
a∑

j=1

ŝx3~rj ,η =

ND
a∑

j=1

s̃x3~rj ,η ; Ŝ†η =

ND
a∑

j=1

ŝ+~rj ,η =

ND
a∑

j=1

s̃+~rj ,η ; Ŝη =

ND
a∑

j=1

ŝ−~rj ,η =

ND
a∑

j=1

s̃−~rj ,η

Ŝx3s =

ND
a∑

j=1

ŝx3~rj ,s =

ND
a∑

j=1

s̃x3~rj ,s ; Ŝ†s =

ND
a∑

j=1

ŝ+~rj ,s =

ND
a∑

j=1

s̃+~rj ,s ; Ŝs =

ND
a∑

j=1

ŝ−~rj ,s =

ND
a∑

j=1

s̃−~rj ,s

(8)

However, except for U/4t→∞ the local rotated-electron operators,

s̃x3~rj ,η = −1

2
[1− ñ~rj ,↑ − ñ~rj ,↓] ; s̃+~rj ,η = ei~π·~rj c̃†~rj ,↓ c̃

†
~rj ,↑ ; s̃−~rj ,η = e−i~π·~rj c̃~rj ,↑ c̃~rj ,↓

s̃x3~rj ,s = −1

2
[ñ~rj ,↑ − ñ~rj ,↓] ; s̃+~rj ,s = c̃†~rj ,↓ c̃~rj ,↑ ; s̃−~rj ,s = c̃†~rj ,↑ c̃~rj ,↓ , j = 1, 2, ..., ND

a

(9)

and corresponding local electron operators,

ŝx3~rj ,η = −1

2
[1− n̂~rj ,↑ − n̂~rj ,↓] ; ŝ+~rj ,η = ei~π·~rj ĉ†~rj ,↓ ĉ

†
~rj ,↑ ; ŝ−~rj ,η = e−i~π·~rj ĉ~rj ,↑ ĉ~rj ,↓

ŝx3~rj ,s = −1

2
[n̂~rj ,↑ − n̂~rj ,↓] ; ŝ+~rj ,s = ĉ†~rj ,↓ ĉ~rj ,↑ ; ŝ−~rj ,s = ĉ†~rj ,↑ ĉ~rj ,↓ , j = 1, 2, ..., ND

a

(10)

appearing in the expressions given in Equation (8) of such six generators are different operators. We
emphasize though that in the U/4t → ∞ limit such two sets of six local operators become the same
operators and in addition are the six out of seven generators of the local SU(2)× SU(2)× U(1) gauge
symmetry reported in Reference [7]. The vector ~π appearing in Equations (9) and (10) has Cartesian
components ~π = [π, π] (and component π) for the model on the square (and 1D) lattice.

In contrast, the generator 2S̃c of the charge independent U(1) symmetry given in Equation (4) does
not commute with the unitary operator V̂ . This is behind the hidden character of such a symmetry. On the
contrary of the Hamiltonian, that generator has a complicated expression in terms of electron creation
and annihilation operators and a simple expression given in that equation in terms of rotated-electron
creation and annihilation operators. The operator of Equation (4) plus the six operators provided in
Equation (8) are the seven generators of the group [SO(4) × U(1)]/Z2 = SO(3) × SO(3) × U(1)

associated with the global symmetry of the Hamiltonian Equation (1).
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3. Three Elementary Quantum Objects and Corresponding c, η-Spin, and Spin Effective Lattices

Within the operational description reviewed this paper, three rotated-electron related elementary
objects naturally emerge from the local operators that in the U/4t → ∞ limit generate the local
SU(2)×SU(2)×U(1) gauge symmetry of Reference [7]. Summation over theNa sites of such operators
gives for U/4t > 0 the generators of the corresponding model extended global [SU(2) × SU(2) ×
U(1)]/Z2

2 = SO(3) × SO(3) × U(1) symmetry. Such elementary objects are mapped from the rotated
electrons by an exact local transformation that does not introduce constraints. Given their direct relation
to the generators of the model extended symmetry, their occupancy configurations naturally generate
representations of the global symmetry algebra.

In the U/4t→∞ limit and except for unimportant phase factors, the c fermion creation operators and
the spinon and η-spinon operators introduced below become the quasicharge annihilation operators and
the local spin and pseudospin operators, respectively, of Reference [11]. The representation associated
with the latter operators refers to all dimensions and lattices. For instance, in Reference [11] it is used
in the study of the Hubbard model on the square lattice. The unitarity and remaining properties of
the electron-rotated-electron transformation considered in this paper assures that the corresponding c

fermion, spinon, and η-spinon operator representation introduced in the following for U/4t > 0 applies
as well to the Hubbard model on the square lattice.

3.1. Elementary Quantum Objects and Their Operators

The local c fermion annihilation operator f~rj ,c and corresponding creation operator f †~rj ,c = (f~rj ,c)
† are

constructed in terms of the rotated-electron operators of Equation (3). Within the LWS representation
the latter operator reads,

f †~rj ,c = (f~rj ,c)
† = c̃†~rj ,↑ (1− ñ~rj ,↓)− e−i~π·~rj c̃~rj ,↑ ñ~rj ,↓ ; f †~qj ,c =

1√
ND
a

ND
a∑

j′=1

e+i~qj ·~rj′ f †~rj′ ,c (11)

In Equation (11) we have introduced as well the corresponding c fermion momentum-dependent
operators and ei~π·~rj is ±1 depending on which sub-lattice site ~rj is on. (For the 1D lattice that phase
factor can be written as (−1)j .) The c momentum band is studied in Reference [10] and has the same
shape and momentum area as the electronic first-Brillouin zone.

The three spin local rotated operators s̃l~rj ,s and the three η-spin local rotated operators s̃l~rj ,η such that
l = ±, x3, given in Equation (9) are associated with the spinons and η-spinons, respectively, as defined
in this paper. Consistently with the f †~rj ,c expression given in Equation (11), the local rotated operator
s̃~rj ,c and such spin and η-spin local rotated operators may be rewritten as,

s̃~rj ,c = n~rj ,c = f †~rj ,c f~rj ,c ; s̃l~rj ,s = n~rj ,c q̃
l
~rj

; s̃l~rj ,η = (1− n~rj ,c) q̃l~rj , l = ±, x3 (12)

Here q̃±~rj = q̃x1~rj ± i q̃x2~rj where x1, x2, x3 denotes the Cartesian coordinates of the rotated quasi-spin
operators q̃xi~rj with i = 1, 2, 3. The former rotated quasi-spin operators q̃l~rj = s̃l~rj ,s + s̃l~rj ,η such that
l = ±, x3 have for U/4t > 0 the following expression in terms of rotated-electron operators,

q̃−~rj = (c̃†~rj ,↑ + e−i~π·~rj c̃~rj ,↑) c̃~rj ,↓ ; q̃+~rj = (q−~rj)
† ; q̃x3~rj = ñ~rj ,↓ −

1

2
(13)
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Since the electron-rotated-electron transformation generated by the operator V̂ is unitary, the
operators c̃†~rj ,σ and c̃~rj ,σ of Equation (3) have the same anticommutation relations as c†~rj ,σ and c~rj ,σ,
respectively. Straightforward manipulations based on Equations (11)–(13) then lead to the following
algebra for the c fermion operators,

{f †~rj ,c , f~rj′ ,c} = δj,j′ ; {f †~rj ,c , f
†
~rj′ ,c
} = {f~rj ,c , f~rj′ ,c} = 0 (14)

and c fermion operators and rotated quasi-spin operators,

[f †~rj ,c , q
l
~rj′

] = [f~rj ,c , q
l
~rj′

] = 0 (15)

In turn, the rotated quasi-spin operators qx1~rj , qx2~rj , and qx3~rj and the related operators q±~rj = qx1~rj ± i q
x2
~rj

obey
the following algebra,

[q
xp
~rj
, q
xp′

~rj′
] = i δj,j′

∑
p′′

εpp′p′′ q
xp′′

~rj
; p, p′, p′′ = 1, 2, 3 (16)

{q+~rj , q
−
~rj
} = 1 , {q±~rj , q

±
~rj
} = 0; (17)

[q+~rj , q
−
~rj′

] = δj,j′ q
x3
~rj

; [q±~rj , q
±
~rj′

] = 0 (18)

Hence the operators q±~rj anticommute on the same site and commute on different sites. The same applies
to three spinon operators sl~rj and three η-spinon operators pl~rj , respectively, whose expressions are given
in Equation (12).

The relations provided in Equations (14)–(18) confirm that the c fermions associated with the hidden
global U(1) symmetry are η-spinless and spinless fermionic objects. They are consistent as well with the
spinons and η-spinons being spin-1/2 and η-spin-1/2 objects, respectively, whose local operators obey
the usual corresponding SU(2) algebras.

On inverting the relations given in Equations (11) and (13), the rotated-electron creation and/or
annihilation operators of Equation (3) are written in terms of the operators of the c fermions and rotated
quasi-spin operators. For the LWS subspace considered here this leads to,

c̃†~rj ,↑ =

(
1

2
− q̃x3~rj

)
f †~rj ,c − e

−i~π·~rj
(

1

2
+ q̃x3~rj

)
f~rj ,c

c̃†~rj ,↓ = q̃+~rj f
†
~rj ,c

+ e−i~π·~rj q̃+~rj f~rj ,c

c̃~rj ,↑ =

(
1

2
− q̃x3~rj

)
f~rj ,c − ei~π·~rj

(
1

2
+ q̃x3~rj

)
f †~rj ,c

c̃~rj ,↓ = q̃−~rj f~rj ,c + ei~π·~rj q̃−~rj f
†
~rj ,c

(19)

The relations given in Equations (11)–(13) and (19) between the c fermion, spinon, and η-spinon
operators and the rotated-electron operators differ from those of References [9,10] by unimportant
phase factors. For U/4t → ∞ the rotated electrons become electrons. In that limit and as mentioned
above, except for unimportant phase factors the c fermion creation operators become the quasicharge
annihilation operators of Reference [11] and the spinon and η-spinon operators become the local
spin and pseudospin operators, respectively, of that reference. Consistently, in that limit and again
unimportant phase factors Equations (11)–(19) are equivalent to Equations (1)–(3) of Reference [11]
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with the rotated-electron operators replaced by the corresponding electron operators and the c fermion
creation operator f †~rj ,c replaced by the quasicharge annihilation operator ĉr.

Alike the transformation considered in Reference [11], that considered here does not introduce
Hilbert-space constraints. Hence suitable occupancy configurations of c fermions, spinons, and
η-spinons generate a complete set of finite-U/4t states of the form |ΦU/4t〉 = V̂ †|Φ∞〉. Those are both
state representations of the model global SO(3)×SO(3)×U(1) symmetry and momentum eigenstates.
In general the energy and momentum eigenstates |ΨU/4t〉 = V̂ †|Ψ∞〉 of the Hubbard model on the square
lattice are a superposition of a sub-set of states |ΦU/4t〉 with the same momentum eigenvalue.

3.2. Interplay of the Global Symmetry with the Transformation Laws Under the Operator V̂ : Three
Basic Effective Lattices and the Theory Vacua

It follows from the results of Reference [6] that the η-spin SU(2) and spin SU(2) state representations
correspond to the η-spin and spin degrees of freedom of independent rotated-electron occupancy
configurations of [ND

a − 2Sc] sites and 2Sc sites, respectively, of the original lattice. This applies to
any choice of electron-rotated-electron unitary transformation and thus applies as well to that associated
with the present description. In turn, the state representations associated with the new-found hidden U(1)

symmetry of the global SO(3)× SO(3)× U(1) = [SU(2)× SU(2)× U(1)]/Z2
2 symmetry refer to the

relative positions in the original lattice of the sites involved in each of these two types of configurations.
In the present ND

a � 1 limit it is useful to consider the following numbers,

ND
aη = ND

a − 2Sc ; ND
as = 2Sc (20)

such thatND
a = ND

aη +ND
as . Here the integer numbersND

aη andND
as are the number of sites of the original

lattice singly occupied by rotated electrons and unoccupied plus doubly occupied by rotated electrons,
respectively. Below such numbers are found to play the role of number of sites of a η-spin and spin
effective lattice, respectively. For the D = 2 square lattice the number N2

a = Na × Na is chosen so
that the number Na of sites in a row or column is an integer. However, the designations ND

aη and ND
as

do not imply that the corresponding numbers Naη and Nas are integers. In general they are not integers.
For finite values of x and (1 − x) and ND

a → ∞ we use for the numbers Naη and Nas of sites in a
row and column of the η-spin and spin effective square lattices, respectively, the corresponding closest
integer numbers.

Importantly, the numbers given in Equation (20) are fully controlled by the eigenvalue 2Sc of the
generator Equation (4) of the hidden global U(1) symmetry. This confirms the important role played
by such a symmetry in the present general description. The degrees of freedom of the rotated-electron
occupancy configurations of each of the sets of ND

aη = [ND
a − 2Sc] and ND

as = 2Sc sites of the original
lattice that generate the Sη, Sx3η , Ss, Sx3s , Sc, and momentum eigenstates studied in Reference [9], which
refer to state representations of the model global SO(3) × SO(3) × U(1) symmetry, naturally separate
as follows:

(i) The occupancy configurations of the c fermions associated with the operators f †~rj ,c = (f~rj ,c)
† of

Equation (11) where j = 1, ..., ND
a correspond to the state representations of the hidden global

U(1) symmetry found in Reference [6]. Such c fermions live on the c effective lattice. It is identical
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to the original lattice. Its occupancies are related to those of the rotated electrons: The number of c
fermion occupied and unoccupied sites is given by Nc = ND

as = 2Sc and Nh
c = ND

aη = [ND
a −2Sc],

respectively. Indeed, the c fermions occupy the sites singly occupied by the rotated electrons.
In turn, the rotated-electron doubly-occupied and unoccupied sites are those unoccupied by the
c fermions. Hence the c fermion occupancy configurations describe the relative positions in the
original lattice of the ND

aη = [ND
a − 2Sc] sites of the η-spin effective lattice and ND

as = 2Sc sites of
the spin effective lattice.

(ii) The remaining degrees of freedom of rotated-electron occupancies of the sets ofND
aη = [ND

a −2Sc]

and ND
as = 2Sc original-lattice sites correspond to the occupancy configurations associated with

the η-spin SU(2) symmetry and spin SU(2) symmetry state representations, respectively. The
occupancy configurations of the set of ND

aη = [ND
a − 2Sc] sites of the η-spin effective lattice and

set of ND
as = 2Sc sites of the spin effective lattice are independent. The former configurations

refer to the operators pl~rj of Equation (12), which act only onto the ND
aη = [ND

a − 2Sc] sites of the
η-spin effective lattice. The latter configurations correspond to the operators sl~rj given in the same
equation, which act onto the ND

as = 2Sc sites of the spin effective lattice. This is assured by the
operators (1− n~rj ,c) and n~rj ,c in their expressions provided in that equation, which play the role of
projectors onto the η-spin and spin effective lattice, respectively.

For U/4t > 0 the degrees of freedom of each rotated-electron singly occupied site then separate into
a spin-less c fermion carrying the electronic charge and a spin-down or spin-up spinon. Furthermore,
the degrees of freedom of each rotated-electron doubly-occupied or unoccupied site separate into a
η-spin-less c fermion hole and a η-spin-down or η-spin-up η-spinon, respectively. The η-spin-down
or η-spin-up η-spinon refers to the η-spin degrees of freedom of a rotated-electron doubly-occupied or
unoccupied site, respectively, of the original lattice.

Hence a key feature of the operational description reviewed in this paper is that for U/4t > 0 its
quantum objects correspond to rotated-electron configurations whose numbers of spin-down and spin-up
single occupied sites, double occupied sites, and unoccupied sites are good quantum numbers. This is
in contrast to descriptions in terms of electron configurations, whose numbers of spin-down and spin-up
single occupied sites, double occupied sites, and unoccupied sites are good quantum numbers only for
U/4t� 1 [19].

The transformation laws under the electron-rotated-electron unitary transformation of the η-spinons
(and spinons) play a major role in the description of the η-spin (and spin) SU(2) state representations
in terms of the occupancy configurations of the ND

aη = [ND
a − 2Sc] sites of the η-spin effective lattice

(and set of ND
as = 2Sc sites of the spin effective lattice). Indeed, a well-defined number of η-spinons

(and spinons) remain invariant under that unitary transformation. Those are called deconfined ±1/2

η-spinons (and deconfined ±1/2 spinons). As further discussed below, they play the role of unoccupied
sites of the η-spin (and spin) effective lattice. The values of the numbers Mde

η,±1/2 of deconfined ±1/2

η-spinons and Mde
s,±1/2 of deconfined ±1/2 spinons are fully controlled by the η-spin Sη and η-spin

projection Sx3η = −x
2
ND
a and spin Ss and spin projection Sx3s = −m

2
ND
a , respectively, of the state under

consideration as follows,

Mde
α = [Mde

α,−1/2 +Mde
α,+1/2] = 2Sα ; Mde

α,±1/2 = [Sα ∓ Sx3α ] ; α = η , s (21)
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The invariance of such deconfined η-spinons (and deconfined spinons) stems from the off diagonal
generators of the η-spin (and spin) algebra, which flip their η-spin (and spin), commuting with the
unitary operator V̂ . This justifies why such generators have for U/4t > 0 the same expressions in terms
of electron and rotated-electron operators, as given in Equation (8).

It follows that the number of sites of the η-spin (α = η) and spin (α = s) effective lattice can be
written as,

ND
aα = [2Sα +M co

α ] = [Mde
α +M co

α ] = Mα ; α = η , s (22)

As justified below, here M co
α is the confined η-spinon (α = η) or confined spinon (α = s) even number.

The η-spin or spin degrees of freedom of the occupancy configurations in a set of 2Sα = Mde
α sites out of

the whole set of ND
aα sites have for U/4t > 0 the same form in terms of electrons and rotated electrons.

In turn, for finite values of U/4t and spin density −(1− x) < m < (1− x) the corresponding c fermion
occupancy configurations that store the information on the relative positions in the original lattice of the
ND
as sites of the spin effective lattice and ND

aη = [ND
a − ND

as ] sites of the η-spin effective lattice are not
invariant under the electron-rotated-electron unitary transformation.

Such an invariance of the η-spin degrees of freedom of the above occupancy configurations implies
that in each state representation there are exactly 2Sη = [Mde

η,−1/2 + Mde
η,+1/2] = Mde

η sites such that
Mde

η,−1/2 sites are doubly occupied and Mde
η,+1/2 sites are unoccupied both by electrons and rotated

electrons. Furthermore, the invariance of the spin degrees of freedom of the sites singly occupied by
rotated electrons implies that there are exactly 2Ss = [Mde

s,−1/2 + Mde
s,+1/2] = Mde

s sites of the original
lattice such that Mde

s,−1/2 sites are singly occupied both for spin-down electrons and spin-down rotated
electrons and Mde

s,+1/2 sites are singly occupied both for spin-up electrons and spin-up rotated electrons.
The state representation is in general a superposition of such occupancy configurations whose positions
of the [2Sη + 2Ss] = [Mde

η +Mde
s ] sites are different.

In turn, out of the set of [M co
η + M co

s ] sites of the original lattice left over, a set of M co
η /2 sites are

unoccupied by rotated electrons, a set of M co
η /2 sites are doubly occupied by rotated electrons, a set

of M co
s /2 sites are singly occupied by spin-up rotated electrons, and a set of M co

s /2 sites are singly
occupied by spin-down rotated electrons. However, in terms of electrons that set of [M co

η +M co
s ] sites of

the original lattice has for finite U/4t values very involved occupancies. Indeed for electrons and except
for U/4t→∞ singly and doubly occupancy are not good quantum numbers and thus are not conserved.
The important point brought about by the present description is that due to the transformation laws under
the electron-rotated-electron unitary transformation this refers only to a sub-set of [M co

η +M co
s ] sites out

of the ND
a sites of the original lattice. Indeed for the remaining [2Sη + 2Ss] = [Mde

η +Mde
s ] sites singly

and doubly occupancy are good quantum numbers both for electrons and rotated electrons.
The site numbers M co

η ≥ 0 and M co
s ≥ 0 are good quantum numbers given by,

M co
η = [ND

aη − 2Sη] = [ND
a − 2Sc − 2Sη] ; M co

s = [ND
as − 2Ss] = [2Sc − 2Ss] (23)

Hence their values are fully determined by those of the eigenvalue 2Sc of the hidden global U(1)

symmetry generator and η-spin Sη or spin Ss, respectively. This reveals that M co
η and M co

s are not
independent quantum numbers.

The physics behind the hidden U(1) symmetry found in Reference [6] includes that brought about
by the rotated-electron occupancy configurations of the set of [M co

η + M co
s ] sites of Equation (23). The
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use of the corresponding model global SO(3) × SO(3) × U(1) symmetry reveals that the numbers
M co

α = 0, 2, 4, . . . are always even integers. Moreover, the application onto Sα = 0 states of the
off-diagonal generators of the η-spin (α = η) or spin (α = s) algebra provided in Equation (8)
gives zero. For such states ND

aα = M co
α . In turn, application of these generators onto Sα > 0 states

flips the η-spin (α = η) or spin (α = s) of a deconfined η-spinon (α = η) or deconfined spinon
(α = s) but leaves invariant the rotated-electron occupancy configurations of the above considered set
of M co

α sites. It follows that such set of M co
η (and M co

s ) sites refers to η-spin-singlet (and spin-singlet)
configurations involving M co

η /2 (and M co
s /2) −1/2 η-spinons (and −1/2 spinons) and an equal number

of +1/2 η-spinons (and +1/2 spinons).
It follows from the above discussions that the total numbers of η-spinons (α = η) and spinons

(α = s) read,

Mα = ND
aα = [Mde

α +M co
α ] = [Mde

α,−1/2 +Mde
α,+1/2 +M co

α ]

Mα,±1/2 = [Mde
α,±1/2 +M co

α /2] ; α = η , s

Mη = ND
aη = [ND

a − 2Sc] ; Ms = ND
as = 2Sc

(24)

The η-spinon and spinon operator algebra refers to well-defined subspaces spanned by states whose
number of each of these basic objects is conserved and given in Equations (21), (23), and (24). Hence in
such subspaces the number 2Sc of rotated-electron singly occupied sites and the numbersND

aη andND
as of

sites of the η-spin and spin effective lattices, respectively, are fixed. For hole concentrations 0 ≤ x < 1

and maximum spin density m = (1 − x) (or m = −(1 − x)) reached at some critical magnetic field
Hc aligned parallel to the square-lattice plane for D = 2 and pointing along the chain for D = 1 the
c fermion operators are invariant under the electron-rotated-electron unitary transformation. There is a
corresponding fully polarized vacuum |0ηs〉 that remains invariant under such a transformation. It reads,

|0ηs〉 = |0η;ND
aη〉 × |0s;N

D
as〉 × |GSc; 2Sc〉 (25)

Here the η-spin SU(2) vacuum |0η;ND
aη〉 associated with ND

aη deconfined +1/2 η-spinons, the spin
SU(2) vacuum |0s;ND

as〉 with ND
as deconfined +1/2 spinons, and the c U(1) vacuum |GSc; 2Sc〉 with

Nc = 2Sc c fermions remain invariant under the electron-rotated-electron unitary transformation. The
latter vacuum may be expressed as

∏
~q f
†
~q,c|GSc; 0〉. Here the vacuum |GSc; 0〉 corresponds to the electron

and rotated-electron vacuum. Its form is that given in Equation (25) withND
aη = ND

a andND
as = 2Sc = 0.

For U/4t > 0 only for a m = (1 − x) fully polarized state are the occupancy configurations of the
state |GSc; 2Sc〉 and the correspondingNc = 2Sc c fermions invariant under the electron-rotated-electron
unitary transformation. For the corresponding vacuum |0η;ND

aη〉 (and |0s;ND
as〉), the Mη = Mde

η,+1/2

deconfined +1/2 η-spinons refer to ND
aη = Mde

η,+1/2 sites of the original lattice unoccupied by rotated
electrons (and theMs = Mde

s,+1/2 deconfined +1/2 spinons to the spins ofND
as = Mde

s,+1/2 spin-up rotated
electrons that singly occupy sites of such a lattice). At maximum spin densitym = (1−x) the c fermions
are the non-interacting spinless fermions that describe the charge degrees of freedom of the electrons of
the fully polarized ground state. At that spin density there are no electron doubly occupied sites and the
quantum problem is non-interacting for U/4t > 0.

Below we confirm that within the present description, out of the ND
aα = Mα = [Mde

α + M co
α ] =

[2Sα + M co
α ] sites of the η-spin (α = η) and spin (α = s) effective lattice, the 2Sα = Mde

α sites whose
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occupancies η-spin (α = η) and spin (α = s) degrees of freedom are invariant under electron-rotated-
electron unitary transformation play the role of unoccupied sites. In turn, the remaining M co

α sites play
the role of occupied sites. This is a natural consequence of the η-spin SU(2) vacuum |0η;ND

aη〉 (and spin
SU(2) vacuum |0s;ND

as〉) being for all U/4t and m values invariant under the electron-rotated-electron
unitary transformation. Indeed that vacuum is such that ND

aη = 2Sη = Mde
η (and ND

as = 2Ss = Mde
s ), so

that M co
η = 0 (and M co

s = 0.)

3.3. Important Energy Scales

For processes associated with one- and two-electron excitations the large-U/4t energy scale U is for
finite U/4t values and x 6= 0 replaced by twice the absolute value of chemical potential, 2|µ|. This is
because for x ∈ (0, 1) (and x ∈ (−1, 0)) and finite U/4t values the minimum energy for creation onto the
ground state of a rotated-electron doubly occupied site (and unoccupied site) is given by 2|µ|. In turn, at
x = 0 the chemical potential µ belongs to the range µ ∈ (−µ0, µ0) whose energy width 2µ0 ≡ limx→0 2µ

equals the Mott–Hubbard gap. We use the convention that for x 6= 0 the chemical potential µ sign is
that of the hole concentration x ∈ (−1, 1). For spin densities m 6= 0 we consider that the corresponding
magnetic field points in directions such that H > 0 for spin density m > 0 and H < 0 for m < 0. The
minimum magnitude of the energy ∆Drot for creation of a number Drot = Mη,−1/2 = Mde

η,−1/2 +M co
η /2

of rotated-electron doubly occupied sites onto a m = 0 and x = 0 ground state and a m = 0 and x > 0

ground state is,

min ∆Drot =
[
(µ0 + µ)Mde

η,−1/2 + µ0M co
η

]
, at x = 0 and µ ∈ (−µ0, µ0)

= 2µ [Mde
η,−1/2 +M co

η /2] , for x > 0
(26)

respectively. Similar expressions apply to the minimum magnitude of the energy ∆Dhrot
for creation of

a number Dh
rot = Mη,+1/2 = Mde

η,+1/2 + M co
η /2 of rotated-electron unoccupied sites onto a m = 0 and

x = 0 ground state and a m = 0 and x < 0 ground state, respectively, provided that µ is replaced by −µ
and Mde

η,−1/2 by Mde
η,+1/2. Hence for µ ∈ (−µ0, µ0) the minimum energy for creation onto the m = 0 and

x = 0 ground state of one rotated-electron doubly occupied site and rotated-electron unoccupied site is
(µ0 + µ) and (µ0 − µ), respectively. For the chemical potential in the middle of the Mott–Hubbard gap
so that µ = 0 at x = 0 the minimum energy of either process is given by µ0.

For the model on the 1D (and square) lattice at m = 0 the important x = 0 energy scale 2µ0

appearing in Equation (26), which is the Mott–Hubbard gap, has the following exact (and approximate)
limiting behaviors,

2µ0 ≈ U

π2

(
[8π]2t

U

)D/2
e−2π(

t
U )

1/D

, U/4t� 1 ; 2µ0 ≈ [U − 4Dt] , U/4t� 1 , D = 1, 2 (27)

These half-filling results are consistent with the properties of the x = 0 and m = 0 absolute ground
state [10]. In turn, for 0 < x < 1 and m = 0 the chemical potential reads µ ≈ U/2 for U/4t → ∞ and
for finite U/4t values is an increasing function of the hole concentration x such that,

µ0 ≤ µ(x) ≤ µ1 ; 0 < x < 1 , m = 0 (28)

Here µ1 ≡ limx→1 µ. The related energy scale 2µ1 reads,

2µ1 = U + 4Dt ; D = 1, 2 (29)
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The expression given in Equation (29) is exact both for the Hubbard model on a 1D and square lattice.
It can be explicitly derived for both lattices. It refers to the non-interacting limit of vanishing electronic
density. For the model on the square lattice the limiting behaviors reported in Equation (27) read 2µ0 ≈
64 t e−2π

√
t/U and 2µ0 ≈ U for U/4t � 1 and U/4t � 1, respectively. They are those of the related

zero-temperature gap of Equation (13) of Reference [20], which although showing up in the spin degrees
of freedom equals half the charge Mott–Hubbard gap [10].

3.4. Spacing and Occupied and Unoccupied Sites of the η-Spin and Spin Effective Lattices

One may consider a configuration in which a original-lattice compact square domain of ND
as = 2Sc =

[2Ss + M co
s ] = Nc sites whose edge contains Nas sites is singly occupied by rotated electrons, and the

complementary two-dimensional (2D) compact domain of N2
aη = [N2

a − 2Sc] = [2Sη + M co
η ] = Nh

c

sites refers to rotated-electron unoccupied or doubly occupied sites. Obviously, in 2D there are many
other shapes for compact domains of N2

aη = [N2
a − 2Sc] = [2Sη + M co

η ] = Nh
c sites. The square

shape will be justified below. In this configuration and considering processes of energy lower than
2|µ|, either the Pauli principle or the onsite repulsion prevents the rotated electrons to move (except
for those on the lines referring to the square edges separating the two 2D domains). Although in this
configuration there is no direct interaction between the rotated electrons, through an intermediate state
with energy 2|µ| neighboring rotated electrons can see each other’s spins, and rotated electrons with
different spins can change position. Alike for 1D, the situation with the rotated-electron unoccupied and
doubly occupied sites is similar for a original-lattice compact square domain of N2

aη = [N2
a − 2Sc] =

[2Sη +M co
η ] = Nh

c sites. Unfortunately and unlike for 1D, for a finite system the corresponding spinon
and η-spinon distributions may change if the square-shape compact domain of rotated-electron singly
occupied sites is “diluted” by rotated-electron unoccupied and doubly occupied sites. Indeed, for a 2D
system there is no order equivalent to the 1D uniquely defined chain order.

However, within the N2
a → ∞ limit that the present description refers to the dominant c fermion

occupancy configurations refer to an average uniform distribution of the c effective lattice occupied sites.
In contrast to a finite system, configurations where for instance the c fermion occupied and unoccupied
sites refer to two compact domains have vanishing weight as N2

a → ∞. Specifically, the c fermion
positions of such a uniform configuration correspond to the average positions of the c fermions in an
energy eigenstate. Indeed, the c fermion momentum occupancy configurations of such a state are a
superposition of all compatible real-space c effective lattice occupancy configurations. Fortunately, for
the average configuration in which the rotated-electron singly occupied sites are uniformly “diluted” by
rotated-electron unoccupied and doubly occupied sites the spinon and η-spinon distributions of the above
original-lattice square-shape compact domain of N2

as = 2Sc = [2Ss + M co
s ] = Nc sites do not change.

They may be described by corresponding occupancy configurations of an effective square lattice with
N2
as = 2Sc = [2Ss +M co

s ] = Nc sites and edge length L whose average spacing is for x 6= 0 larger than
that of the original lattice. The same arguments apply to the η-spinon distributions. This reveals that
for the Hubbard model on the square lattice with N2

a → ∞ sites the concepts of a spin effective square
lattice and η-spin square effective lattice apply provided that n = (1− x) and x are finite, respectively.
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That the above considered initial reference original-lattice compact domain of N2
as = 2Sc = [2Ss +

M co
s ] = Nc (and N2

aη = [N2
a − 2Sc] = [2Sη + M co

η ] = Nh
c ) sites has a square shape follows from only

that compact domain shape transforming into a corresponding uniform “diluted” domain fully contained
in the original square lattice. Any other initial reference compact-domain shape would transform into
a uniform “diluted” domain that is not fully contained in the original square lattice and thus is neither
physically nor mathematically acceptable. Here we are considering that the 2D crystal has a square
shape whose edge is L = aNa. If the square-lattice crystal has any other shape the compact domain
should have a similar shape with an area reduced by a factor of 2Sc/N

2
a for the spin effective lattice (and

of [N2
a − 2Sc]/N

2
a for the η-spin effective lattice). Only then it transforms into a corresponding uniform

“diluted” domain fully contained in the crystal. The final result is though the same, the obtained effective
lattice being a square lattice whose spacing is given by,

aα =
L

Naα

=
Na

Naα

a ; α = η , s (30)

where Naα = (ND
aα)1/D.

This spinon and η-spinon distributions “average invariance” under “site dilution” emerging for the
square lattice in the ND

a → ∞ limit is behind the description of such distributions in terms of the
occupancy configurations of independent η-spin and spin effective square lattices, respectively, and the
direct propagation of c fermions in terms of occupancy configurations in an independent c effective
lattice. While for 0 < x < 1 and 0 < m < n the former two lattices have both for 1D and 2D a number
of sites smaller than ND

a , the c effective lattice is identical to the original lattice.
Within the ND

a � 1 limit of the present description the concept of a spin (and η-spin) effective lattice
is well defined for finite values of the electronic density n = (1 − x) (and hole concentration x). The
reasoning for the validity of the use of the corresponding effective lattices occupancy configurations may
be summarized by the two following statements:

(1) The representation associated with the present description contains full information about the
relative positions of the sites of the η-spin and spin effective lattices in the original lattice. For
each energy-eigenstate rotated-electron real-space occupancy configuration, that information is
stored in the corresponding occupancy configurations of the c fermions in their c effective lattice.
The latter lattice is identical to the original lattice. Such configurations correspond to the state
representations of the U(1) symmetry in the subspaces spanned by states with fixed values of Sc,
Sη, and Ss. Indeed, the sites of the η-spin (and spin) effective lattice have in the original lattice
the same real-space coordinates as the sites of the c effective lattice unoccupied (and occupied)
by c fermions.

(2) Within the ND
a � 1 limit that the rotated-electron related operational description refers to,

provided that the electronic density n = (1−x) (and hole concentration x) is finite, the dominant
c effective lattice occupancy configurations of an energy eigenstate of the Hubbard model on
the square lattice refer to a nearly uniform distribution of the c fermions occupied sites (and
unoccupied sites). Hence due to the spinon and η spinon distribution “average order” emerging
for the model on the square lattice in the ND

a → ∞ limit, the spin and η-spin effective lattices
may be represented by square lattices. Moreover, the chain order invariance occurring for the
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1D model both for the finite system and in that limit justifies why such effective lattices are 1D
lattices. For both models the corresponding spin effective lattice spacing as and η-spin effective
lattice spacing aη refers to the average spacing between the c effective lattice occupied sites and
between such a lattice unoccupied sites, respectively, given in Equation (30). Such spin and
η-spin effective lattices obey the physical requirement condition that in the x → 0 and x → ±1

limit, respectively, equal the original lattice. Note that in the x → 0 (and x → ±1) limit one
has that ND

as = ND
a and the η-spin effective lattice does not exist (and ND

aη = ND
a and the spin

effective lattice does not exist.)

The validity for ND
a � 1 of the concept of a spin effective square lattice as constructed in this paper

is confirmed by the behavior of the expectation value δd = 〈Ψ|δd̂|Ψ〉 of any energy eigenstate |Ψ〉.
Here δd̂ is the operator associated with the distance in real space of any of the ND

as sites of the spin
effective lattice from the rotated-electron singly occupied site of the original lattice closest to it. The
state |Ψ〉 belongs to a subspace with fixed number of rotated-electron singly occupied sites. The point
is that δd = 〈Ψ|δd̂|Ψ〉 vanishes in the ND

a → ∞ limit. We recall that the ND
as = 2Sc sites of the

spin effective lattice occupancies describe the spin degrees of freedom of the Nc = 2Sc rotated-electron
singly occupied sites of the original lattice. The same applies to the η-spin effective lattice.

Consistently with the expression aα = L/Naα = [Na/Naα ] a of Equation (30) where α = η, s, the
η-spin (and spin) effective lattice has both for 1D and 2D the same length and edge length L, respectively,
as the original lattice. Furthermore, the requirement that for the 2D case when going through the
whole crystal of square shape along the ox1 or ox2 directions a η-spinon (and spinon) passes an overall
distance L is met by an effective η-spin (and spin) square lattice. Since the number of sites sum-rule
[ND

aη + ND
as ] = ND

a holds, the η-spin and spin effective lattices have in general a number of sites ND
aη

and ND
as , respectively, smaller than that of the original lattice, ND

a . It follows that their lattice spacings
Equation (30) are larger than that of the original lattice.

4. The Composite αν Fermions

The global SO(3)× SO(3)× U(1) symmetry of the model on any bipartite lattice implies that some
features of the corresponding state representations are common to all such lattices. Our extension of
the 1D model M co

s = [2Sc − 2Ss]-site spin-neutral and M co
η = [ND

a − 2Sc − 2Sη]-site η-spin-neutral
rotated-electron occupancy configurations in terms of those of composite sν fermions and ην fermions,
respectively, to the model on the square lattice accounts for the basic differences between the physics of
the two models.

4.1. The M co
η -η-Spinon and M co

s -Spinon Configuration Partitions

Within the rotated-electron occupancy configurations that generate the exact energy eigenstates
|ΨU/4t〉 = V̂ †|Ψ∞〉 considered above, there are [M co

η +M co
s ] sites out of theND

a sites of the original lattice
whose rotated-electron occupancy configurations are not invariant under the electron-rotated-electron
unitary transformation. The η-spin (and spin) degrees of freedom of M co

η (and M co
s ) of such

sites refer to η-spin-neutral (and spin-neutral) configurations involving M co
η /2 +1/2 η-spinons (and

M co
s /2 + 1/2 spinons) and an equal number M co

η /2 of −1/2 η-spinons (and M co
s /2 of −1/2 spinons).
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This holds as well for the related momentum eigenstates |ΦU/4t〉 = V̂ †|Φ∞〉 considered in
Reference [9]. For the model on the square lattice, the latter states refer in general to a partition
different from that of the energy eigenstates |ΨU/4t〉 = V̂ †|Ψ∞〉 of the η-spin-neutral (and spin-neutral)
configurations of such M co

η (and M co
s ) η-spinons (and spinons), in terms of smaller configurations.

Specifically, for a given momentum eigenstate there is for each branch involving ν = 1, 2, ... pairs
of η-spinons (and spinons) a well-defined number Nην of η-spin-neutral 2ν-η-spinon composite ην
fermions (and Nsν of spin-neutral 2ν-spinon composite sν fermions). The set of such composite objects
describes the η-spinon (and spinon) occupancy configurations of exactly M co

η (and M co
s ) sites of the

original lattice. Hence the following two sum rules hold for all momentum eigenstates,

M co
α = [Mα − 2Sα] = 2

∞∑
ν=1

ν Nαν ; α = η , s (31)

Such sum rules refer to subspaces spanned by states with fixed values of Sc, Sη, and Ss.
One η-spin neutral 2ν-η-spinon composite ην fermion describes the η-spin degrees of freedom of

a η-spin-singlet occupancy configuration involving ν ≤ M co
η /2 sites of the original lattice unoccupied

by rotated electrons and an equal number of sites doubly occupied by rotated electrons. The remaining
degrees of freedom of such a rotated-electron occupancy configuration are described by 2ν unoccupied
sites of the c effective lattice whose spatial coordinates are those of the corresponding 2ν sites of the
original lattice.

Similarly, one spin neutral 2ν-spinon composite sν fermion describes the spin degrees of freedom of
a spin-singlet occupancy configuration involving ν ≤M co

s /2 sites of the original lattice singly occupied
by spin-up rotated electrons and an equal number of sites singly occupied by spin-down rotated electrons.
The remaining degrees of freedom of that rotated-electron occupancy configuration are described by 2ν

occupied sites of the c effective lattice whose spatial coordinates are those of the corresponding 2ν sites
of the original lattice.

For each ην fermion branch (and sν fermion branch), one may consider a ην effective lattice (and sν
effective lattice). It refers to occupancy configurations of η-spin-neutral (and spin-neutral) bonds of 2ν

confined η-spinons (and spinons). Hence each “occupied site” of such an effective lattice corresponds
to 2ν sites of the η-spin (and spin) effective lattice. In turn, the Mde

η = 2Sη (and Mde
s = 2Ss) η-spin

(and spin) effective lattice sites referring to the deconfined η-spinons (and deconfined spinons) and some
of such a lattice sites referring to 2ν ′-η-spinon composite ην ′ fermions (and 2ν ′-spinon composite sν ′

fermions) of ν ′ > ν branches are found below to play the role of “unoccupied sites” of such a ην effective
lattice (and sν effective lattice). The conjugate of the αν effective lattice site space variables are the αν
band discrete momentum values. Their number equals that of the αν effective lattice sites. (For 1D, such
a momentum values are good quantum numbers.)

Within chromodynamics the quarks have color but all quark-composite physical particles are
color-neutral [21]. Here the η-spinon (and spinons) that are not invariant under the electron-rotated-
electron unitary transformation have η-spin 1/2 (and spin 1/2) but are confined within η-spin-neutral
(and spin-neutral) 2ν-η-spinon (and 2ν-spinon) composite ην fermions (and sν fermions). The exact
and detailed internal 2ν-spinon configuration and 2ν-η-spinon configuration of a composite sν fermion
and ην fermion, respectively, is in general an involved unsolved problem. (In 1D the exact BA solution
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takes implicitly into account such internal configurations.) Fortunately, however, the problem simplifies
for the model in the one- and two-electron subspace reviewed below for which the only composite
object that plays an active role is the two-spinon s1 fermion. Its internal structure is an issue studied
in Reference [9]. Such a two-spinon object is related to the resonating-valence-bond pictures for
spin-singlet occupancy configurations of ground states [22,23].

In the following we consider all multi-η-spinon and multi-spinon composite objects. Full information
on the 2ν-η-spinon (α = η) or 2ν-spinon (α = s) configurations associated with the internal degrees
of freedom of the composite αν fermions is not needed for the goals of this paper. Indeed, within the
present ND

a � 1 limit the problem of the internal degrees of freedom of the composite αν fermions and
αν bond particles separates from that of their positions in the corresponding effective lattices. The partial
information on the internal degrees of freedom of the composite αν fermions needed for the studies
reported in this paper is accessed in the following by suitable use of their transformation laws under
the electron-rotated-electron unitary transformation. In turn, the deconfined η-spinons and deconfined
spinons are invariant under that transformation. Thus they are non-interacting deconfined objects that
are not part of composite ην fermions and composite sν fermions, respectively.

4.2. The αν Fermion Operators

For the αν effective lattice, one local αν fermion “occupied site” refers to 2ν sites of the η-spin
(α = η) or spin (α = s) effective lattice. Alike for the corresponding latter lattice, the 2Sα sites occupied
by deconfined η-spinons (α = η) or deconfined spinons (α = s) are among those playing the role of
the αν effective lattice “unoccupied sites”. Unlike for the former lattice, it is found below that a number
2(ν ′ − ν) of sites of each αν ′ fermion with a number ν ′ > ν of confined η-spinons (α = η) or confined
spinons (α = s) play as well the role of αν effective lattice “unoccupied sites”.

The conjugate variables of the αν effective lattice real-space coordinates are the discrete momentum
values of the αν band. As shown in Reference [9], for the 1D model such discrete momentum values
are the quantum numbers of the exact BA solution. For the Hubbard model on the square lattice the s1
band momentum discrete values of state representations belonging to the one- and two-electron subspace
reviewed below are good quantum numbers as well.

As reported in Reference [10] for the s1 fermion operators, the αν fermion operators can be generated
from the operators of corresponding hard-core αν bond-particle operators as follows,

f †~rj ,αν = eiφj,αν g†~rj ,αν ; φj,αν =
∑
j′ 6=j

f †~rj′ ,ανf~rj′ ,αν φj
′,j,αν ; φj′,j,αν = arctan

(
xj′2 − xj2
xj′1 − xj1

)

f †~qj ,αν =
1√
ND
aαν

ND
aαν∑
j′=1

e+i~qj ·~rj′ f †~rj′ ,αν

(32)

Such expressions are valid provided that (1 − x) > 0 for the αν = s1 branch and Sα/ND
a > 0 for

the remaining αν 6= s1 branches. Explicit expressions for the operators f †~rj ,s1 and g†~rj ,s1 are given
in Reference [9]. The quantity φj,αν appearing in Equation (32) is the Jordan–Wigner phase [10,24]
operator, the indices j′ and j refer to sites of the αν effective lattice, and f †~qj ,αν are the corresponding
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momentum-dependent αν fermion operators. The number ND
aαν of discrete momentum values of the αν

momentum band equals that of sites of the αν effective lattice. Its expression is derived below.
The η-spin-neutral 2ν-η-spinon composite ην bond-particle operators and spin-neutral 2ν-spinon

composite sν bond-particle operators denoted in Equation (32) by g†~rj ,αν where α = η, s are constructed
to inherently upon acting onto their αν effective lattice anticommuting on the same site and commuting
on different sites. Hence they are hard-core like and can be transformed into fermionic operators, as given
in that equation. For ν > 1 the algebra behind their construction in terms of the elementary η-spinon or
spinon operators of Equations (12) and (13) is much more cumbersome than that of the two-spinon s1
bond particles studied in Reference [9]. Fortunately, the only property needed for the goals of this paper
is that upon acting onto their αν effective lattice they are hard-core like.

The expressions given in Equation (32) apply to αν 6= s1 branches provided that Sα/ND
a > 0. One

can also handle the problem when Sα = 0 andNαν/N
D
a � 1 for a given αν 6= s1 branch. Then provided

that Nαν′ = 0 for all remaining αν ′ branches with a number of η-spinon or spinon pairs ν ′ > ν one finds
below that ND

aαν = Nαν . The momentum of the operators f †~qj ,αν is in that limiting case given by ~qj ≈ 0.
For the states that span the corresponding Sα = 0 andNαν/N

D
a � 1 subspace all sites of the αν effective

lattice are occupied and the αν momentum band is full. If Nαν is finite one has ND
aαν = Nαν discrete

momentum values ~qj ≈ 0 compactly distributed around zero momentum. Their Cartesian components
momentum spacing is 2π/L. A case of interest is when Sα = 0 and Nαν = 1. Then the αν effective
lattice has a single site and the corresponding αν band a single discrete momentum value, ~q = 0. In that
case φαν = φj,αν = 0. Hence f †~r,αν = g†~r,αν and f †~q,αν = f †~r,αν where ~q = 0.

The operators f †~qj ,αν act onto subspaces with fixed values for the set of numbers Sα, Nαν , and {Nαν′}
for ν ′ > ν branches. (Below it is shown that this is equivalent to fixed values for the set of numbers Sc
and {Nαν′} for all ν ′ = 1, 2, . . . including ν.) Such subspaces are spanned by mutually neutral states.
Those are states with fixed values for the numbers of αν fermions and αν fermion holes. Hence such
states can be transformed into each other by αν band particle-hole processes. Creation of one αν fermion
is a process that involves the transition between two states belonging to different such subspaces. It is a
well-defined process whose generator is the product of two operators. The first operator may add sites
to or remove sites from the αν effective lattice. Alternatively, it may introduce corresponding changes
in the αν momentum band. The second operator is the creation operator f †~r,αν or f †~q,αν appropriate to the
excited-state subspace.

Provided that (1−x) is finite for s1 fermions [10] and Sα/ND
a > 0 asND

a →∞ for αν 6= s1 fermions,
the phases φj,αν given in Equation (32) are associated with an effective vector potential [24,25],

~Aαν(~rj) = Φ0

∑
j′ 6=j

n~rj′ ,αν
~ex3 × (~rj′ − ~rj)

(~rj′ − ~rj)2
; n~rj ,αν = f †~rj ,αν f~rj ,αν

~Bαν(~rj) = ~∇~rj × ~Aαν(~rj) = Φ0

∑
j′ 6=j

n~rj′ ,αν δ(~rj′ − ~rj)~ex3
(33)

For the model on the square lattice the vector ~ex3 appearing here is the unit vector perpendicular to the
plane. (Often we use units such that the fictitious magnetic flux quantum is given by Φ0 = 1.)

The components of the microscopic momenta of the αν fermions are eigenvalues of the two (and
one for 1D) αν translation generators q̂αν x1 and q̂αν x2 in the presence of the fictitious magnetic field
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~Bαν(~rj). That seems to imply that for the model on the square lattice the components qx1 and qx2 of the
microscopic momenta ~q = [qx1, qx2] refer to operators that do not commute. However, in the subspaces
where the operators f †~qj ,αν act onto such are commuting operators. Indeed, those subspaces are spanned
by neutral states [25]. Since [q̂αν x1 , q̂αν x2 ] = 0 in such subspaces, for the model on the square lattice
the αν fermions carry a microscopic momentum ~q = [qx1, qx2] where the components qx1 and qx2 are
well-defined simultaneously.

4.3. Ranges of the c and αν Fermion Energies, Their Transformation Laws, and the
Ground-State Occupancies

Since the microscopic momenta of the c fermions are good quantum numbers both for the Hubbard
model on the square and 1D lattices, one may define an energy dispersion εc(~q) [10]. For the 1D model
also the αν energy dispersions εαν(q) are well defined. In turn, for the model on the square lattice an
energy dispersion εαν(~q) is for αν 6= s1 branches well defined for the momentum values for which such
objects are invariant under the electron-rotated-electron unitary transformation. For general αν fermion
momentum values there is not in general a dispersion εαν = εαν(~q) defining a one-to-one correspondence
between the energy εαν and momentum ~q. However, the range of the αν fermion energy εαν remains
well defined. A s1 fermion energy dispersion εs1 = εs1(~q) is well defined for the square-lattice quantum
liquid [10]. Indeed for the Hubbard model in the one- and two-electron subspace the s1 band momentum
values become good quantum numbers [9].

The quantum-object occupancy configurations of the ground state are found below. They are
consistent with the energies for creation onto such states of our description quantum objects. For
instance, the elementary energies εs,−1/2 = 2µBH and εη,−1/2 = 2µ correspond to creation onto am ≥ 0

and x > 0 ground state of a deconfined −1/2 spinon and a deconfined −1/2 η-spinon, respectively.
Here µB is the Bohr magneton and as above H and µ are the magnetic field and the chemical potential,
respectively. The energy εs,−1/2 = 2µBH (and εη,−1/2 = 2µ) refers to an elementary spin-flip (and
η-spin-flip) process. It transforms a deconfined +1/2 spinon (and deconfined +1/2 η-spinon) into a
deconfined −1/2 spinon (and deconfined −1/2 η-spinon). Such elementary energies control the range
of several physically important energy scales. Within the LWS representation, a deconfined +1/2 spinon
(and deconfined +1/2 η-spinon) has vanishing energy so that εs,+1/2 = 0 (and εη,+1/2 = 0). It follows
that the energy of a pair of deconfined spinons (and deconfined η-spinons) with opposite projections is
2µBH (and 2µ). Indeed due to the invariance of such objects under the electron-rotated-electron unitary
transformation, they are not energy entangled and the total energy is the sum of their individual energies.

In the following we confirm that ground states have no ην fermions and no sν fermions with ν > 1

spinon pairs. The corresponding energies εην and εsν , respectively, considered below refer to creation
onto the ground state of one of such objects. We start by providing a set of useful properties. We
emphasize that some of these properties are not valid for descriptions generated by rotated-electron
operators associated with the general unitary operators V̂ considered in Reference [6]. The following
properties rather refer to the specific operator description associated with the rotated-electron operators
c̃†~rj ,σ = V̂ † c†~rj ,σ V̂ of Equation (3) as defined above.
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Some of the following results are obtained from extension to the model on the square lattice of exact
results extracted from the 1D model BA solution. However such an extension accounts for the different
physics of such models. Both for the model on the square and 1D lattice, the range of the energy εαν
for addition onto the ground state of one αν fermion derived below is that consistent with the interplay
of the transformation laws of the αν fermions under the electron-rotated-electron unitary transformation
with the model global SO(3)× SO(3)× U(1) symmetry.

The ην Fermion Energy Range

Alike for 1D, for the model on the square lattice one ην fermion is a η-spin-neutral anti-bounding
configuration of a number ν = 1, 2, ... of confined −1/2 η-spinons and an equal number of confined
+1/2 η-spinons. Symmetry implies that for U/4t > 0 there is no energy overlap between the εην ranges
corresponding to different ν = 1, 2, ... branches. Fermions belonging to neighboring ην and ην + 1

branches differ in the number of η-spinon pairs by one. The requirement for the above lack of energy
overlap is then that the energy bandwidth of the εην range is smaller than or equal to 2|µ|. For all x
values, the energy scale 2|µ| = [εη,−1/2 + εη,+1/2] where µ = µ0 at x = 0 refers to the energy of a pair
of deconfined η-spinons of opposite η-spin projection. Such properties imply the following range for the
energy εην ,

2ν|µ| ≤ εην < 2(ν + iην)|µ| ; 0 ≤ iην ≤ 1 (34)

where µ = µ0 at x = 0. Deconfined η-spinons are invariant under the electron-rotated-electron unitary
transformation. Consistently and as justified below, they are non-interacting and their energies are
additive. For all x values 2ν|µ| is the energy of ν deconfined −1/2 η-spinons and ν deconfined +1/2

η-spinons. For instance, for x > 0 the energy 2νµ is as well that for creation of a number ν = 1, 2, . . .
of deconfined −1/2 η-spinons onto a Sη = ν ground state with 2ν deconfined +1/2 η-spinons. Such
a creation refers to ν η-spin-flip processes (transformation of ν rotated-electron unoccupied sites into ν
rotated-electron doubly occupied sites.) For m = 0 and x > 0 the number iην decreases continuously
for increasing values of U/4t. It has the limiting behaviors iην → 1 for U/4t → 0 and iην → 0 for
U/4t→∞. Hence the εην range vanishes for U/4t→∞. The latter behavior is associated with the full
degeneracy of the η-spin configurations reached as U/4t→∞. In turn, at m = 0 and x = 0 the number
iην vanishes and εην = 2νµ0 for the whole finite interaction range U/4t > 0. As discussed below, this
behavior follows from the invariance under the electron-rotated-electron unitary transformation of a ην
fermion created onto a x = 0 and m = 0 ground state.

For the 1D Hubbard model one can define momentum dependent ην fermion energy bands [26]. The
η1 and η2 fermion bands are plotted in Figures 1 and 2, respectively, in units of t for electronic densities
n = (1 − x) = 1/2, 5/6, spin density m = 0, and different U/t values. In the figures the lower energy
level of the bands was shifted to zero. According to the above analysis, for U/t→ 0 and U/t→∞ the
energy bandwidth of all ην bands should read 2|µ| and 0, respectively. For electronic densities 1/2 and
5/6 and U/t→ 0 one has that twice the chemical-potential absolute value reads 2|µ| = 2

√
2 t ≈ 2.828 t

and 2|µ| = 4 t cos(5π/12) ≈ 1.035 t, respectively. Consistently, notice that in the U/t → 0 limit
the energy bandwidths of the η1 and η2 fermion bands plotted in the figures are 2

√
2 t ≈ 2.828 t and

4 t cos(5π/12) ≈ 1.035 t for electronic densities 1/2 and 5/6, respectively, Furthermore, in the limit
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U/t → ∞ the energy bandwidths of the η1 and η2 fermion bands indeed vanish. The parameter iην
appearing in Equation (34), which controls such energy bandwidths, has the same limiting behaviors
iην → 1 for U/t→ 0 and iην → 0 for U/t→∞ for all remaining ην bands corresponding to a number
ν = 1, 2, 3, . . . of confined η-spinon pairs.

Figure 1. The η1 fermion band for the 1D Hubbard model in units of t plotted for electronic
densities n = (1 − x) = 1/2, 5/6, spin density m = 0, and a set of U/t values. The band
U/t→∞ limit corresponds to the horizontal line chosen as zero-energy level. [26]
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Figure 2. The same as in Figure 1 for the η2 fermion band. [26]
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The sν Fermion Energy Range

A sν fermion is a spin-neutral bounding configuration of a number ν = 1, 2, . . . of confined
−1/2 spinons and an equal number of confined +1/2 spinons. Again, symmetry implies that for
U/4t > 0 there is no energy overlap between the εsν ranges of different ν = 1, 2, . . . branches. For
sν branches with a number of spinon pairs ν > 1 such an energy range bandwidth is for the present
bounding configurations and for the same reasoning as for the ην fermion smaller than or equal to
2µB |H|. For all m values, 2µB |H| = [εs,−1/2 + εs,+1/2] equals the energy of a pair of deconfined
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spinons of opposite spin projection. Hence the range of the energy εsν for addition onto the ground state
of one sν fermion with ν > 1 spinon pairs is,

2(ν − isν)µB |H| ≤ εsν ≤ 2νµB |H| ; ν > 1 , 0 ≤ isν ≤ 1 (35)

Deconfined spinons are invariant under the electron-rotated-electron unitary transformation. Thus
their energies are additive. It follows that for all m values 2νµB |H| is the energy of ν deconfined
−1/2 spinons and ν deconfined +1/2 spinons. For example, for m > 0 the energy 2νµBH is that for
creation of a number ν = 1, 2, . . . of deconfined −1/2 spinons onto a Ss = ν ground state with 2ν

deconfined +1/2 spinons. Such a creation refers to ν spin-flip processes. The number isν decreases
continuously for increasing values of U/4t. For any fixed m value it has the limiting behaviors isν → 1

for U/4t → 0 and isν → i∞sν for U/4t → ∞ where 0 ≤ i∞sν < 1. Since for a non fully polarized state
2νµBH → 0 as U/4t → ∞, the energy bandwidth of the εsν range vanishes for U/4t → ∞. Such
a behavior is associated with the full degeneracy of the spin configurations reached for U/4t → ∞.
Figures similar to those of Figures 1 and 2 for the η1 and η2 fermion bands, respectively, confirm such a
isν behavior for the sν bands associated with ν > 1 confined spinon pairs, but with the U/4t→ 0 energy
bandwidth 2|µ| replaced by 2µB |H| and the electronic densities n = (1 − x) < 1 replaced by spin
densities m > 0. Note that at m = 0 and thus H = 0 one has that εsν = 0 for the whole finite interaction
range U/4t > 0. This behavior follows from the invariance under the electron-rotated-electron unitary
transformation of a sν fermion with ν > 1 spinon pairs created onto a m = 0 ground state.

In turn, it is found below that for a m = 0 and x ≥ 0 ground state all sites of the s1 effective lattice
are occupied. Hence the corresponding s1 momentum band is full. The range of the energy −εs1 for
removal from that state of one s1 fermion then is,

0 ≤ −εs1 ≤ max {Ws1, |∆|} (36)

Here |∆| vanishes for 1D. The s1 fermion energy band is plotted in units of t in Figure 3 for the 1D
Hubbard model at electronic densities n = (1 − x) = 1/2 and n = 5/6, spin density m = 0, and a set
of U/t values. For the Hubbard model on the square lattice, |∆| denotes the s1 fermion pairing energy
per spinon considered in Reference [10]. There is strong evidence of the occurrence in the half-filling
Hubbard model on the square lattice of strong short-range antiferromagnetic correlations for T > 0

and below a crossover temperature called Tx in Reference [20]. This is consistent with then the system
being driven into a phase with short-range spin order. Within the representation of Reference [9], the
occurrence of long-range antiferromagnetic order requires that T = 0, N2

aη = 0, and N2
as = N2

a . This is
then consistent with the short-range spin order occurring for m = 0, 0 < x� 1, and 0 ≤ T < Tx being
similar to that occurring for m = 0, x = 0, and 0 < T < Tx. The latter order was studied previously in
Reference [20] for 0 < T � Tx. For small finite hole concentrations 0 < x� 1 the s1 fermion pairing
energy 2|∆| is identified with 2∆0 ≈ 2kB Tx. In turn, for U/4t > 0 and x = 0 its magnitude 2|∆| = µ0

is larger than for x → 0 and the s1 fermion spinon pairing refers to an antiferromagnetic long-range
order [10].
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Figure 3. The s1 fermion band for the 1D Hubbard model in units of t plotted for electronic
densities n = (1 − x) = 1/2, 5/6, spin density m = 0, and a set of U/t values. The
ground-state energy level was chosen to correspond to zero energy and overlaps and overlaps
the energy band at the s1 Fermi points q = ±qFs1 = ±kF = ±[π/2]n = ±[π/2] (1 − x).
For 1D there is no spin short-range spin order, so that 2|∆| = 0. [26]
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The temperature Tx of Reference [20] is plotted in Figure 3 of that reference. Its U/4t dependence
is qualitatively correct. Tx vanishes both in the limits U/4t → 0 and U/4t → ∞. It goes through
a maximum magnitude at an intermediate value 5/4 < U/4t < 3/2. Nevertheless, the interpolation
function used to produce it, provided in Ref. 74 of such a paper, is poor for intermediate values of U/4t.
That used in the studies of Reference [10] is such that 2∆0 ≈ 2kB Tx vanishes both in the U/4t → 0

and U/4t → ∞ limits and goes through a maximum value max {2∆0} ≈ 2t/π at U/4t ≈ 1.3. At
fixed U/4t values, 2|∆| decreases for increasing x as 2|∆| ≈ 2∆0(1 − x/x∗) and vanishes for x > x∗.
Here x∗ ∈ (0.23, 0.28) for U/4t ∈ (1.3, 1.6) is a critical hole concentration below which the s1 fermion
pairing refers to a spin short-range order [10].

On the other hand, at m = 0 the energy scale Ws1 is the s1 fermion energy nodal bandwidth defined
in Reference [10]. Its maximum magnitude is reached at U/4t = 0. For U/4t > 0 it decreases
monotonously for increasing values of U/4t, vanishing for U/4t → ∞. That Ws1 → 0 for U/4t → ∞
is associated with the full degeneracy of the spin configurations reached in that limit. In it the spectrum
of the two-spinon composite s1 fermions becomes dispersionless for the square-lattice quantum liquid
of Reference [10].

The c Fermion Energy Range

The energy εc for addition onto the ground state of one c fermion of a given momentum and the energy
−εc for removal from that state of such a c fermion have the following ranges,

0 ≤ εc ≤ W h
c = [4Dt−W p

c ] ; 0 ≤ −εc ≤ W p
c , D = 1, 2 (37)
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respectively. Here W h
c = [4Dt−W p

c ] ∈ (0, 4Dt) increases monotonously for increasing values of hole
concentration x ∈ (0, 1). The energy bandwidth W p

c depends little on U/4t. For U/4t > 0 it has the
following limiting behaviors,

W p
c = 4Dt , x = 0

W p
c = 0 ; x = 1

(38)

The behaviors reported here for εc are justified in Reference [10]. The c fermion energy band is plotted
in units of t in Figure 4 for the 1D Hubbard model at electronic densities n = (1− x) = 1/2, 5/6, spin
density m = 0, and a set of U/t values. Note that for 1D (and the square lattice) its energy bandwidth is
4t (and 8t) for all density values and the whole U/4t range.

Figure 4. The c fermion band for the 1D Hubbard model in units of t plotted for electronic
densities n = (1 − x) = 1/2, 5/6, spin density m = 0, and a set of U/t values. The
ground-state energy level was chosen to correspond to zero energy. It is marked by a
horizontal line which overlaps the c band at the c Fermi points q = ±qFc = ±2kF =

π n = π (1− x). [26]
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Transformation Laws of αν Fermions and c Fermions under the Electron-Rotated-Electron
Unitary Transformation

The minimum magnitude of the energy ∆Drot for creation of a number Drot = Mη,−1/2 of
rotated-electron doubly occupied sites onto a m = 0 and x ≥ 0 ground state given in Equation (26)
may be expressed in terms of both the numbers of deconfined η-spinons and ην fermions as follows,

min ∆Drot = (µ0 + µ)Mde
η,−1/2 +

∞∑
ν=1

2νµ0Nην at x = 0 and µ ∈ (−µ0, µ0)

= 2µMde
η,−1/2 +

∞∑
ν=1

2νµNην for x > 0

(39)
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Here µ0 ≡ limx→0 µ is the energy scale whose limiting behaviors are given in Equation (27).
Consistently, the following η-spinon and ην fermion energy magnitudes hold,

εη,±1/2 = (µ0 ∓ µ) ; εην = 2νµ0 at x = 0 and µ ∈ (−µ0, µ0)

εη,−1/2 = 2µ ; εη,+1/2 = 0 ; min εην = 2νµ for x > 0

εη,−1/2 = 0 ; εη,+1/2 = 2|µ| ; min εην = 2ν|µ| for x < 0

(40)

The corresponding energy magnitudes concerning creation of deconfined spinons and sν fermions with
ν > 1 spinon pairs onto x ≥ 0 ground states with arbitrary values of m read,

εs,±1/2 = εsν = 0 at m = 0 and µBH = 0 ,

εs,−1/2 = 2µBH ; εs,+1/2 = 0 ; max εsν = 2νµBH for ν > 1 and m > 0

εs,−1/2 = 0 ; εs,+1/2 = 2µB |H| ; max εsν = 2νµB |H| for ν > 1 and m < 0

(41)

Hence for all hole concentrations x and all spin densities m the inequalities εην ≥ ν[εη,−1/2 + εη,+1/2] =

2ν|µ| where µ = µ0 at x = 0 and εsν ≤ ν[εs,−1/2 +εs,+1/2] = 2νµB |H|, respectively, hold. Furthermore,
[εη,−1/2 + εη,+1/2] = 2|µ| where again µ = µ0 at x = 0 and [εs,−1/2 + εs,+1/2] = 2µB |H|.

The deconfined η-spinon and deconfined spinon energies provided in Equations (40) and (41),
respectively, refer to a choice of the zero-energy level such that the ground-state energy vanishes. In
the absence of the corresponding chemical-potential and magnetic-field terms, the deconfined η-spinon
and deconfined spinon energies vanish. For that choice of zero-energy level, the absolute energies of
the c fermions and αν fermions are consistently shifted. Such a deconfined η-spinon and deconfined
spinon vanishing energy refers to all energy eigenstates. Also the vanishing momenta of the ±1/2

spinons and +1/2 η-spinons and the momentum ~π of the −1/2 η-spinons remain unchanged for all
energy eigenstates. As a result, such objects do not undergo inelastic scattering processes, since they
do not interchange energy and momentum. In addition, they do not undergo zero-momentum forward
scattering. In 1D this leads to a corresponding lack of phase shifts [9,26]. This invariance of their energy
and momentum values is behind their non-interacting character.

A related important property is that ην fermions of any ν = 1, 2, . . . branch and sν fermions with
ν > 1 spinon pairs whose energy obeys the following relations,

εην = ν[εη,−1/2 + εη,+1/2] = 2ν|µ| , ν = 1, 2, ... for x 6= 0

= ν[εη,−1/2 + εη,+1/2] = 2νµ0 , ν = 1, 2, ... at x = 0

εsν = ν[εs,−1/2 + εs,+1/2] = 2νµB |H| , ν = 2, 3, ...

(42)

remain invariant under the electron-rotated-electron unitary transformation. Those are non-interacting
objects such that their energy is additive in the individual energies of the corresponding 2ν η-spinons and
2ν spinons, respectively. Therefore, for U/4t > 0 they refer to the same occupancy configurations in
terms of both rotated electrons and electrons. This refers to the η-spin and spin degrees of freedom,
respectively, of such rotated-electron occupancy configurations. The corresponding rotated-electron
degrees of freedom associated with the c fermion U(1) symmetry are not in general invariant under
that transformation.

Another important property is that a sν fermion with ν > 1 spinon pairs (and a ην fermion) created
onto an initial Ss = 0 andH = 0 (and Sη = 0) ground state remains invariant under the electron-rotated-
electron unitary transformation. Indeed and as reported above, such an object has a uniquely defined
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energy εsν = 0 (and εην = 2νµ0). Furthermore, its momentum is ~q = ~qs = 0 (and ~q = ~qη = 0). Hence
it obeys indeed to the condition given in Equation (42). In turn, sν fermions with ν > 1 spinon pairs
(and ην fermions) created onto initial Ss > 0 (and Sη > 0) ground states may have energy εsν smaller
than 2νµB |H| (and energy εην larger than 2ν|µ|), so that they are not necessarily invariant under the
electron-rotated-electron unitary transformation.

To understand this property, we consider a set of 2ν deconfined η-spinons (and 2ν deconfined spinons)
involving ν deconfined +1/2 η-spinons (and ν deconfined +1/2 spinons) and ν deconfined −1/2

η-spinons (and ν deconfined −1/2 spinons). Such a set of 2ν deconfined η-spinons (and 2ν deconfined
spinons) refers to a Sη = ν and Sx3η = 0 η-spin multiplet configuration of energy 2ν|µ| where µ = µ0

at x = 0 (and a Ss = ν and Sx3s = 0 spin multiplet configuration of energy 2νµB |H|). In turn, the
2ν η-spinons (and spinons) of a ην fermion (and sν fermion) correspond to a Sη = Sx3η = 0 η-spin
singlet configuration of energy εην ≥ 2ν|µ| (and a Ss = Sx3s = 0 spin singlet configuration of energy
εsν ≤ 2νµB |H|). The point is that only when the energy εην (and εsν) of a ην fermion (and sν fermion)
2ν-η-spinon η-spin singlet configuration (and 2ν-spinon spin singlet configuration) reads εην = 2ν|µ|
(and εsν = 2νµB |H|), as given in Equation (42), is it degenerated with that of the above 2ν-deconfined
η-spinon η-spin multiplet configuration (and 2ν-deconfined spinon spin multiplet configuration). Only
when that occurs is such a ην fermion (and sν fermion) invariant under the electron-rotated-electron
unitary transformation.

On the other hand, ην fermions of any ν = 1, 2, . . . branch and sν fermions with ν > 1 spinon pairs
whose energies obey the inequalities εην > 2ν|µ| and εsν < 2νµB |H|, respectively, are not invariant
under the electron-rotated-electron transformation. Furthermore, for finite U/4t values c fermions and
s1 fermions are not in general invariant under that transformation.

For the 1D model the αν fermion energy εαν(q) depends on the αν fermion momentum q, which is a
good quantum number. For U/4t > 0 and the sν branches with ν > 1 spinon pairs and all ην branches
such momenta belong to the range q ∈ (−mπ,+mπ) and q ∈ (−xπ,+xπ), respectively. Only at the
limiting momenta q = qη = ±xπ (and q = qs = ±mπ) is the invariance condition given in Equation (42)
met by the ην fermion energy εην(q) (and sν fermion energy εsν(q) for ν > 1 branches). The ην
fermion energy dispersions εην(q) are plotted for the η1 (and η2) branches in Figures 8(a) and 9(a) (and
Figures 8(b) and 9(b)) of Reference [26] as a function of q for several U/4t values and electronic density
n = 1/2 and n = 5/6, respectively. (In that reference the ην fermions are called c, ν pseudoparticles.)
The zero-energy level of Figures 8(a) and 9(a) (and Figures 8(b) and 9(b)) refers to the energy 2|µ| (and
4|µ|) of the invariance condition given in Equation (42) for ν = 1 (and ν = 2).

For the Hubbard model on the square lattice the αν fermions whose energy obeys the invariance
condition given in that equation have a well-defined momentum ~qα, which can point in different
directions. At x = 0 (and m = 0) the momentum ~qη (and ~qs) vanishes. This is alike for the above
corresponding momentum qη = ±xπ (and qs = ±mπ) of the 1D model, which vanishes at x = 0 (and
m = 0). While at 1D the momentum qη = ±xπ (and qs = ±mπ) can for x > 0 (and m > 0) have
two values, for the square-lattice model the momentum ~qη (and ~qs) can for x > 0 (and m > 0) point to
several directions. For instance, for x < x∗ and m = 0 where x∗ is the hole concentration considered in
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Reference [10] below which the ground-state s1 fermion spinon pairing is associated with a short-range
spin order, a good approximation for the momentum ~qη centered at −~π = [−π,−π] is,

~qη = ~q hFc = qhFc ~eφc ; qhFc ≈ 2
√
x π ; φc ∈ (0, 2π) (43)

Here ~q hFc is the c fermion hole Fermi momentum considered in Reference [10] and ~eφc is a unit vector
centered at −~π of Cartesian components [cosφc, sinφc]. As required, ~qη → 0 as x→ 0.

Ground State Occupancies

Consistent with the energy values given in Equations (40) and (41), one finds that both for the
model on the 1D and square lattice in the subspace spanned by the x > 0 and m > 0 LWS ground
states and their excited energy eigenstates of energy ω < min {2µ, 2µBH} the η-spinon and spinon
numbers are given by Mη,−1/2 = M co

η /2 = Mde
η,−1/2 = 0, Mη,+1/2 = Mde

η,+1/2 = 2Sη = xND
a and

Ms,−1/2 = M co
s /2 = N↓, Ms,+1/2 = M co

s /2 + Mde
s,+1/2 = N↑, respectively, so that Mde

s,+1/2 = 2Ss =

mND
a . Hence for such energy eigenstates the numbers of ην fermions and sν ′ fermions with ν ′ > 1

spinon pairs vanish and the number of c fermions is Nc = 2Sc = N and that of s1 fermions is conserved
and reads Ns1 = N↓.

Except that the −1/2 η-spinons and −1/2 spinons play the role of the +1/2 η-spinons and
+1/2 spinons, respectively, and vice versa, similar results are reached for highest-weight states (HWSs)
of the η-spin and spin algebras. Comparison of the occupancies of the spin LWS ground states (m > 0)
and spin HWS ground states (m < 0) provides useful information. From it and again consistently with
the energy values of Equations (40) and (41), one finds that am = 0 ground state for whichN is even and
x ≥ 0 has Mη,±1/2 and Nc values as given above whereas Ms,±1/2 = M co

s /2 = N/2 so that Mde
s,±1/2 = 0

and Ns1 = N/2.

4.4. The Site Numbers and Spacing of the αν Effective Lattices

The number of sites of the αν effective lattice, which equals that of αν band discrete momentum
values, has the general form,

ND
aαν = [Nαν +Nh

αν ] (44)

where Nh
αν is the number of unoccupied sites whose expression is derived in Reference [9] on use of

symmetry representation counting and reads,

Nh
αν = [Mde

α + 2
∞∑

ν′=ν+1

(ν ′ − ν)Nαν′ ]

= [ND
aα −

∞∑
ν′=1

(ν + ν ′ − |ν − ν ′|)Nαν′ ] ; α = η, s ; ν = 1, 2, ...,∞
(45)

where Mde
α = 2Sα. Importantly, this expression is also that obtained from the BA exact solution for

the 1D Hubbard model. However, it is fully determined by state-representation dimension requirements
of the global SO(3) × SO(3) × U(1) symmetry that apply to the Hubbard model on the square lattice
as well. (Note that the equivalence of the two expressions given in Equation (45) confirms that the
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Nc = 2Sc and {Nαν′} values with ν ′ = 1, 2, . . . remaining fixed is equivalent to the η-spin Sη (α = η)
or spin Ss (α = s) and values of the set of numbers {Nαν′} with ν ′ = ν, ν + 1, . . . remaining fixed as
well. In both cases that implies that the ND

aαν value remains fixed.)
Provided that ND

aαν/N
D
a remains finite as ND

a → ∞, the related αν effective lattices can for the 1D
and square-lattice models be represented by 1D and square lattices, respectively, of spacing,

aαν =
L

Naαν

=
Na

Naαν

a =
Naα

Naαν

aα ; Naαν ≥ 1 (46)

Here ν = 1, 2, . . . and α = η, s. The arguments behind the lattice geometry and the average distance aαν
between the sites of the αν effective lattice playing the role of lattice spacing are similar to those used
for the lattice geometry and spacing of the η-spin and spin effective lattices. In turn, the corresponding
αν bands whose number of discrete momentum values is also given by ND

aαν are well defined even when
ND
aαν is given by a finite small number, ND

aαν = 1, 2, . . .

5. The Square-Lattice Quantum Liquid: A Two-Component Fluid of Charge c Fermions and
Spin-Neutral Two-Spinon s1 Fermions

In this section we review a suitable one- and two-electron subspace. (For hole concentrations x > 0

our studies refer to excitation energies below 2µ for which Mη,−1/2 = 0 for that subspace.) For x ≥ 0

the picture that emerges is that of a two-component quantum liquid of charge c fermions and spin
neutral two-spinon s1 fermions. It refers to the square-lattice quantum liquid further investigated in
Reference [10]. Moreover, a preliminary application of the description reviewed here is presented.

5.1. The One- and Two-Electron Subspace

General N -Electron Subspaces

We consider a x ≥ 0 and m = 0 ground state |ΨGS〉. Application onto it of a N -electron operator
ÔN generates a state,

ÔN |ΨGS〉 =
∑
j

Cj|ΨU/4t(j)〉 ; Cj = 〈ΨU/4t(j)|ÔN |ΨGS〉 (47)

contained in a N -electron subspace. This is a subspace spanned by the set of energy eigenstates
{|ΨU/4t(j)〉} such that

∑
j |Cj|2 ≈ 1. It is thus associated with a given N -electron operator ÔN .

Generally, such operators can be written as a product of

N =
∑

lη ,ls=±1

Nlη ,ls ; l = ±1 (48)

one-electron creation and annihilation operators. Here Nlη ,ls is the number of electron creation and
annihilation operators in the operator ÔN expression for lη = −1 and lη = +1, respectively, and with
spin down and spin up for ls = −1 and ls = +1, respectively.

A general local N -electron operator ÔN ,j refers to a product of N local electron creation and
annihilation operators. For N > 1 such an operator has a well defined local structure. It involves
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N−1,ls electron creation operators of spin projection ls/2 and N l
+1,ls

electron annihilation operators of
spin projection ls/2 whose real-space coordinates refer in general to a compact domain of neighboring
lattice sites. Such a local N -electron operator ÔN ,j may be labelled by the real-space coordinate ~rj of
a corresponding central site. A second type of N -electron operator is denoted by ÔN (~k) and carries
momentum ~k. It is related to a local operator ÔN ,j by a Fourier transform.

The general N -electron operators ÔN considered here belong to one of these two types and are such
that the ratio N /ND

a vanishes in the thermodynamic limit. The operators ÔN (~k) of physical interest
correspond in general to operators ÔN ,j whose N elementary electronic operators create or annihilate
electrons in a compact domain of lattice sites. The more usual cases for the description of experimental
studies correspond to the N = 1 one-electron and N = 2 two-electron operators. Therefore, in this
section we are mostly interested in the corresponding one- and two-electron subspace.

Application onto a x ≥ 0 and m ≥ 0 ground state of a general N -electron operator ÔN leads to
electron number deviations δN = δN↑+δN↓ and δN↑−δN↓. As a result of the expressions and relations
given above in this paper, such deviations may be expressed in terms of corresponding deviations in the
number of c fermions, αν fermions, deconfined η-spinons, and deconfined spinons as follows,

δN = δNc + 2Mde
η,−1/2 +M co

η = δNc + 2Mde
η,−1/2 + 2

∞∑
ν=1

ν Nην (49)

and

δ(N↓ −N↑) = 2δNs1 − δNc + 2Mde
s,−1/2 + 2

∞∑
ν=2

ν Nsν (50)

respectively. (Note that Mde
η,−1/2 = M co

η = Nην = Mde
s,−1/2 = Nsν |ν>1 = 0 for the initial ground state so

that δMde
η,−1/2 = Mde

η,−1/2, δM
co
η = M co

η , δNην = Nην , δMde
s,−1/2 = Mde

s,−1/2, and δNsν |ν>1 = Nsν |ν>1.)
Hence only transitions to excited states associated with deviations obeying the sum rules Equations (49)
and (50) are permitted. The electron number deviations Equations (49) and (50) are associated with
sum rules obeyed by the numbers Nlη ,ls of Equation (48) specific to the N -electron operator ÔN under
consideration, which read,

δN =
∑

lη ,ls=±1

(−lη)Nlη ,ls ; δ(N↓ −N↑) =
∑

lη ,ls=±1

(lη ls)Nlη ,ls (51)

Furthermore, it is straightforward to show that useful exact selection rules hold for excitations of
well-defined initial ground states. For instance, the values of the numbers Mde

η = [Mde
η,−1/2 +Mde

η,+1/2] =

2Sη of deconfined η-spinons and Mde
η,±1/2 of ±1/2 deconfined η-spinons generated by application onto a

Sη = Ss = 0 ground state of a N -electron operator ÔN are restricted to the following ranges,

Mde
η = 2Sη = 0, 1, ...,N

Mde
η,±1/2 = 0, 1, ...,

∑
ls=±1

N±1,ls
(52)

respectively. Here Sη denotes the excited-state η-spin and the numbers Nlη ,ls are those of Equation (48)
specific to the N -electron operator.
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In the case of an initial Ss = 0 ground state with hole concentration x > N /ND
a or x = 0 one finds

that the numbers Mde
s = [Mde

s,−1/2 + Mde
s,+1/2] = 2Ss and Mde

s,±1/2 of deconfined spinons generated by
application onto that state of a N -electron operator are restricted to the ranges,

Mde
s = 0, 1, ...,N for x > N /ND

a

Mde
s,±1/2 = 0, 1, ...,

∑
lη ,ls=±1

δlη ,∓ls Nlη ,ls for x > N /ND
a

Mde
s = 0, 1, ...,

∑
ls=±1

N+1,ls at x = 0

Mde
s,±1/2 = 0, 1, ...,N+1,∓1 at x = 0

(53)

The range restrictions of Equations (52) and (53) are exact for both the model on the square and 1D
lattice, as well as for any other bipartite lattice.

For x > 0 we limit our considerations to the vanishing rotated-electron double occupancy subspace.
Consistently with the ∆Drot energy spectrum of Equations (26) and (39), this is accomplished merely by
limiting the excitation energy to values below 2µ, so that the Mη,−1/2 = 0 constraint is automatically
fulfilled: It follows from the form of such a spectrum that excited states with ∆Drot < 2µ have vanishing
rotated-electron double occupancy. Indeed creation of one rotated-electron doubly occupied site onto an
initial x > 0 and m = 0 ground state is a process of minimum energy 2µ. In turn, at x = 0 we consider
both states with vanishing and finite rotated-electron double occupancy.

Creation onto the Sη = 0, µ = 0, and Ss = 0 ground state of one ην fermion is a vanishing momentum
process whose finite energy is exactly given by εην = 2νµ0. That object then obeys the criterion of
Equation (42) for invariance under the electron-rotated-electron unitary transformation. It follows that
the η-spin degrees of freedom of such a ην fermion exactly involve ν electron doubly occupied sites.
Furthermore, creation onto an initial x ≥ 0 and Ss = 0 ground state of one sν fermion with a number
ν > 1 of spinon pairs is a vanishing energy and momentum process. Since vanishing spin Ss = 0

refers to vanishing magnetic field H = 0, such an object obeys the criterion εsν = 2νµB |H| = 0 of
Equation (42). Thus it is invariant under the electron-rotated-electron unitary transformation. It follows
that for U/4t > 0 creation of such an object involves occupancy configurations whose spin degrees
of freedom are similar in terms of both rotated-electron and electron occupancy configurations. That
reveals that such a sν fermion describes the spin degrees of freedom of a number 2ν of electrons.

It then follows from the invariance under the electron-rotated-electron unitary transformation of the
η-spin and spin degrees of freedom of the above ην fermion and sν fermion, respectively, that for
x > N /ND

a where N /ND
a → 0 as ND

a → ∞ and excitation energy ω < 2µ and any excitation
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energy at x = 0 nearly the whole spectral weight generated by application onto the above ground states of
N -electron operators refers to a subspace spanned by excited states with numbers in the following range,

Mde
η = 2Sη = Mde

η,+1/2 = xND
a for x > N /ND

a and ω < 2µ

Mde
η,−1/2 = M co

η = 0 for x > N /ND
a and ω < 2µ

Mη = Mde
η +M co

η = 0, 1, ...,N at x = 0

Mη,±1/2 = Mde
η,±1/2 +M co

η /2 = 0, 1, ...,
∑
ls=±1

N±1,ls at x = 0

Ms − 2Bs = Mde
s +M co

s − 2Bs = 0, 1, ...,N for x > N /ND
a

= 0, 1, ...,
∑
ls=±1

N+1,ls at x = 0

Ms,±1/2 −Bs = Mde
s,±1/2 +M co

s /2

= 0, 1, ...,
∑

lη ,ls=±1

δlη ,∓ls Nlη ,ls for x > N /ND
a

= 0, 1, ...,N+1,∓1 at x = 0

(54)

Here M co
α = 2

∑∞
ν=1 ν Nαν where α = η, s and Bs =

∑∞
ν=1Nsν . The quantities Mde

η , Mde
η,±1/2, M

co
η ,

Mde
s , Mde

s,±1/2, and M co
s appearing in Equation (54) are good quantum numbers. Moreover, provided that

N /ND
a → 0 and [Bs − Sc + Ss]/N

D
a → 0 as ND

a → ∞, the number Bs =
∑

ν Nsν is a good quantum
number for the model on the square lattice, alike for 1D.

The selection rules given in Equations (52) and (53) are exact. In turn, for x > 0 and m = 0

initial ground states and excitation energy ω < 2µ (and an initial x = 0 and m = 0 ground state and
any excitation energy) nearly the wholeN -electron spectral weight is generated by excited states whose
numbers obey the approximate selection rules given in Equation (54). Indeed excited states with numbers
[M co − 2Bs] > N for x > 0 (and Mη > N and [Ms − 2Bs >

∑
ls=±1N+1,ls ] at x = 0) generate a very

small amount yet non-vanishing N -electron spectral weight.
Why, in spite of the invariance under the electron-rotated-electron unitary transformation of the sν

fermions with a number ν > 1 of spinon pairs created onto an initial x ≥ 0 and m = 0 ground state
(and that of the ην fermions created onto an initial x = 0 and m = 0 ground state), are the selection
rules provided in Equation (54) not exact? The reason is that while the spin degrees of freedom of
the 2ν-electron occupancy configurations involved in a sν fermion are exactly described by that object,
their hidden U(1) symmetry degrees of freedom are not invariant under the electron-rotated-electron
unitary transformation. The same applies to the η-spin degrees of freedom of the 2ν-electron occupancy
configurations exactly described by a ην fermion created onto a x = 0 ground state. Their corresponding
hidden U(1) symmetry degrees of freedom are not in general invariant under that transformation. The
spin degrees of freedom of the 2ν-electron occupancy configurations involved in a sν fermion are for
U/4t > 0 exactly the same as those of the corresponding 2ν-rotated-electron occupancy configurations.
In turn, the occupancy configurations of the 2ν c fermions that describe the hidden U(1) symmetry
degrees of freedom of the 2ν rotated electrons under consideration are slightly different from those of
the corresponding 2ν electrons. The same applies to the η-spin degrees of freedom and hidden U(1)

symmetry degrees of freedom of the 2ν electrons and corresponding 2ν rotated electrons involved
in a ην fermion created onto a x = 0 ground state. The former and the latter are and are not
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invariant under that transformation. Hence that the selection rules of Equation (54) are not exact but
a very good approximation stems from the lack of invariance under the electron-rotated-electron unitary
transformation of the degrees of freedom associated with the hidden U(1) symmetry of the Hubbard
model. This applies both to the model on the 1D and square lattice.

TheN -electron spectral weight generated by excited states of initial x > 0 andm = 0 ground states of
excitation energy ω < 2µ and numbers [Ms−2Bs] > N is extremely small. The same applies to excited
states of initial x = 0 and m = 0 ground states of numbers Mη > N and [Ms − 2Bs] >

∑
ls=±1N+1,ls .

Therefore, in this paper we define theN -electron subspace as that spanned by an initial x ≥ 0 andm = 0

ground state plus the set of excited states whose numbers obey the approximate selection rules given in
Equation (54). Note that the latter set of excited states depends on the specificN -electron operator under
consideration. (For hole concentrations x > 0 this definition refers to excitation energy ω < 2µ.)

The One- and Two-Electron Subspace

The concept of a N -electron subspace as defined above refers to a specific operator. In contrast,
rather than referring to a specific N -electron operator, the one- and two subspace is the set of
N = 1 and N = 2 subspaces associated with the one-electron operator and all simple two-electron
operators, respectively. Besides the N = 1 one-electron operator Ô1(~k) = c~k,σ (measured in the
angle-resolved photoelectron spectroscopy), this includes a set of N = 2 operators ÔN (~k) such as the
spin-projection σ density operator Ôσsd

2 (~k) = [1/
√
ND
a ]
∑

~k′ c
†
~k+~k′,σ

c~k′,σ, the transverse spin-density

operator Ôsdw
2 (~k) = [1/

√
ND
a ]
∑

~k′ c
†
~k+~k′,↑

c~k′,↓, and the charge density operator (measured in
density-density electron energy loss spectroscopy and inelastic X-ray scattering). The latter operator
is written in terms of the above spin-up and spin-down density operators. Moreover, the set of
N = 2 operators includes several superconductivity operators whose pairing symmetries are in
general different at 1D and for the square lattice. The local operators ÔN ,j corresponding to the
operators ÔN (~k) whose explicit expression is provided above read Ô1,j = c~rj ,σ, Ôσsd

2,j = c†~rj ,σc~rj ,σ,

and Ôsdw
2,j = c†~rj ,↑ c~rj ,↓, respectively.

In the case of excitations of x > 0 and m = 0 ground states, in the remaining of this paper we are
mostly interested in the subspace obtained from the overlap of the one- and two-electron subspace with
the vanishing rotated-electron double occupancy subspace. Such a subspace is the one- and two-electron
subspace for excitation energy ω < 2µ. For finite hole concentrations this is the subspace of interest for
the one- and two-electron physics. In turn, concerning the excitations of a x = 0 and m = 0 ground state
we consider the whole one- and two-electron subspace, which refers both to the spin lower-Hubbard
band physics and one-electron and charge upper-Hubbard band physics.

As discussed above concerning the general N -electron spectral weight, for the model on the 1D and
square lattices there is for x > 0 an extremely small amount of one- and two-electron spectral weight
that for excitation energy ω < 2µ is generated by states that do not obey the approximate selection rules
of Equation (54) for N = 1, 2. Nearly all such very small amount of spectral weight refers to Ns3 = 1

excited states. (States with Ns4 = 1 or Ns2 = 2 generate nearly no spectral weight.) That very small
weight is neglected within the present definition of the one- and two-electron subspace, which refers to
excitation energies below 2µ. In turn, concerning the one- and two-electron excitations of a x = 0 and
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m = 0 ground state the very small amount of spectral weight generated by states that do not obey the
approximate selection rules of Equation (54) refers toNs3 = 1 and/orNη2 = 1 orNη1 = 2 excited states.
That very small weight is also neglected within the definition of the one- and two-electron subspace.
(Both the Nη2 = 1 and Nη1 = 2 excited states have energy much larger than the upper-Hubbard band
Mde

η,−1/2 = 1, 2 or Nη1 = 1 excited states that obey the selection rules of Equation (54) for N = 1, 2.)
Initial x > 0 and m = 0 ground states and their excited states of energy ω < 2µ that span the

one- and two-electron subspace considered in this paper have no −1/2 η-spinons, no ην fermions, and
no sν ′ fermions with ν ′ > 2 spinon pairs, so that Nην = 0 and Nsν′ = 0 for ν ′ > 2. In turn, initial x = 0

and m = 0 ground states and their excited states that span the one- and two-electron subspace have no
ην fermions with ν > 1 η-spinon pairs and no sν ′ fermions with ν ′ > 2 spinon pairs, so that Nην = 0 for
ν > 1 and Nsν′ = 0 for ν ′ > 2. Thus, consistent with the approximate selection rules of Equation (54),
the values of the object numbers of such ground states and their excited states that span the subspace
considered here are restricted to the following ranges,

Mde
η = 2Sη = Mde

η,+1/2 = xND
a for x > 0 and ω < 2µ

Mde
η,−1/2 = M co

η = 0 for x > 0 and ω < 2µ

Mη = 0, ...,N for N = 1, 2 at x = 0

Mη,±1/2 = 0, ...,
∑
ls=±1

N±1,ls for
∑
ls=±1

N±1,ls = 0, 1, 2 at x = 0

Ms − 2Bs = 0, ...,N for N = 1, 2 and x > 0

= 0, ...,
∑
ls=±1

N+1,ls for
∑
ls=±1

N+1,ls = 0, 1, 2 at x = 0

Ms,±1/2 −Bs = 0, ...,
∑

lη ,ls=±1

δlη ,∓ls Nlη ,ls for
∑

lη ,ls=±1

δlη ,∓ls Nlη ,ls = 0, 1, 2 for x > 0

= 0, ...,N+1,∓1 for N+1,∓1 = 0, 1, 2 at x = 0

(55)

We emphasize that the maximum values of the numbers [
∑

ls
N±1,ls ], [

∑
ls
N+1,ls ], [

∑
lη ,ls

δlη ,∓ls Nlη ,ls ],
and N+1,∓1 appearing in this equation must be consistent with the inequality requirement
N =

∑
lη ,ls
Nlη ,ls ≤ 2. Furthermore, the hole concentrations in the inequality x > 0 and equality

x = 0 also appearing here refer to the initial ground states and in the inequality x > 0 we have
neglected 1/ND

a and 2/ND
a corrections. We recall that the numbers N = 1, 2 and Nlη ,ls correspond

to a specificN -electron operator ÔN whose application onto a ground state |ΨGS〉 generatesN -electron
excited states, as given in Equation (47). The subspace considered here refers though to the whole set
of such subspaces associated with the one-electron operator and the set of simple two-electron operators
mentioned above.

Fortunately, the subspace spanned by states whose numbers have values in the ranges given in
Equation (55) is a [M co

s /2 − Bs] = Ns2 = 0, 1 and [M co
η /2 − Bη] = 0 a subspace (A) as defined

in Reference [9]. For initial x > 0 and m = 0 (and x = 0 and m = 0) ground states it is such
that M co

s = [2Ns1 + 4Ns2], Bs = [Ns1 + Ns2], and M co
η = Bη = 0 (and M co

s = [2Ns1 + 4Ns2],
Bs = [Ns1 +Ns2], and M co

η /2 = Bη = Nη1 = 0, 1.) Hence the following c and s1 fermion numbers are
conserved both for the subspaces with initial x = 0 and x > 0 ground states,

ND
ac = [Nc +Nh

c ] = ND
a ; Nc = 2Sc ; Nh

c = ND
a − 2Sc (56)
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and

ND
as1

= [Ns1 +Nh
s1] = [Sc + Ss] ; Ns1 = [Sc − Ss − 2Ns2] ; Nh

s1 = [2Ss + 2Ns2] = 0, 1, 2 (57)

respectively. The hidden U(1) symmetry generator eigenvalue 2Sc appearing here and the η-spin Sη and
spin Ss have in the present subspace the following values,

2Sc = (1− x)ND
a = N for x > 0 and ω < 2µ

= N − 2Mde
η,−1/2 − 2Nη1 for the initial x = 0 GS excitations

Sη =
1

2
xND

a for x > 0 and ω < 2µ

=
1

2
xND

a +Mde
η,−1/2 = 0,

1

2
, 1 for the initial x = 0 GS excitations

Ss = Sc −Ns1 − 2Ns2 = 0,
1

2
, 1 for x ≥ 0

(58)

Furthermore, for the subspace considered here the following number associated with the αν = s1

branch is conserved,
P h
s1 ≡ eiπN

h
s1 = ei2πSs = ei2πSc = eiπN = ±1 (59)

Combination of this exact relation between Nh
s1 and the number of electrons N with the expressions and

values of Equations (55) and (57) reveals that the one- and two-electron subspace considered here is
spanned by states whose deviation δNh

c in the number of c band holes and number Nh
s1 of s1 band holes

may only have the following values,

δNh
c = −2δSc = −δN = 0,∓1,∓2

Nh
s1 = 2Ss + 2Ns2 = 0, 1, 2

(60)

(The initial x ≥ 0 and m = 0 ground states have zero holes in the s1 band so that δNh
s1 = Nh

s1 for
their excited states.) For Nh

s1 = 0 ground states and their charge excited states all Ms = 2Sc spinons are
confined within the two-spinon bonds of the Ns1 = Ms/2 s1 fermions.

The number P h
s1 = ±1 of Equation (59) is associated with an important exact selection rule. One of

its consequences is that one- and two-electron excitations of x ≥ 0 and m = 0 ground states contain no
states with an even and odd number Nh

s1 of s1 fermion holes in the s1 momentum band, respectively. For
such initial ground states we consider thatN is an even integer number. Since, as given in Equation (59),
eiπ

∏
lN

h
s1(l) = eiπN , for one-electron excited states for which the deviation in the value of N reads

δN = ±1 the number of s1 fermion holes Nh
s1 must be always an odd integer. On the other hand, for

both δN = 0 and δN = ±2 two-electron excited states Nh
s1 must always be an even integer. Such exact

selection rules play an important role in the one- and two-electron spectra of the square-lattice quantum
liquid further studied in Reference [10]. That quantum liquid refers to the Hamiltonian Equation (1) in
the one- and two-electron subspace for initial x ≥ 0 and m = 0 ground states.

5.2. The Spin and s1 Effective Lattices for the One- and Two-Electron Subspace

According to the restrictions and numbers values of Equations (55) and (60), the states that span
the one- and two-electron subspace may involve none or one s2 fermion. As confirmed in the studies of
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Reference [10], it is convenient to express the one- and two-electron excitation spectrum relative to initial
x ≥ 0 andm = 0 ground states in terms of the deviations in the numbers of c effective lattice unoccupied
sites and s1 effective lattice unoccupied sites. Those are given explicitly in Equation (60) and equal the
corresponding deviations in the numbers of c band fermion holes and s1 band fermion holes, respectively.
Note that for x > 0 and ω < 2µ states the s1 fermion related numbers provided in Equation (57) can be
written asND

as1
= [N/2+Ss], Ns1 = [N/2−Ss−2Ns2], andNh

s1 = [2Ss+2Ns2] = 0, 1, 2 where Ss = 0

for Ns2 = 1 and Ss = 0, 1/2, 1 for Ns2 = 0. In turn, for excited states of the x = 0 and m = 0 ground
state they read ND

as1
= [N/2 −Mde

η,−1/2 − Nη1 + Ss], Ns1 = [N/2 −Mde
η,−1/2 − Nη1 − Ss − 2Ns2], and

Nh
s1 = [2Ss + 2Ns2] = 0, 1, 2 where Ss and Ns2 may have the same values as above and Mde

η,−1/2 = 0

for Nη1 = 1 and Mde
η,−1/2 = 0, 1, 2 for Nη1 = 0. Provided that n = (1 − x) is finite, the corrections to

ND
as1
≈ N/2 and Ns1 ≈ N/2 are in both cases of the order of 1/ND

a , whereas Nh
s1 = [2Ss + 2Ns2] =

0, 1, 2 has the same expression and allowed values.
As discussed above, for Ns2 = 1 spin-singlet excited energy eigenstates the single s2 fermion has

vanishing energy and momentum. Consistent with Equation (42), for vanishing magnetic field H = 0 it
is invariant under the electron-rotated-electron unitary transformation. The same applies to the single η1

fermion ofNη1 = 1 η-spin-singlet excited states of the x = 0, µ = 0, andm = 0 ground state. Therefore,
the only effect of creation and annihilation of such two objects is in the numbers of sites and occupied
sites of the s1 effective lattice. Their creation can then be merely accounted for by small changes in
the occupancies of the discrete momentum values of the s1 band. Hence the only composite object
whose internal occupancy configurations are important for the physics of the Hamiltonian Equation (1)
in the one- and two-electron subspace is the spin-neutral two-spinon s1 fermion and related spin-singlet
two-spinon s1 bond particle [10].

It turns out that for the Hubbard model in the one- and two-electron subspace and alike for the
s2 fermion and/or the η1 fermion, the presence of deconfined spinons is felt through the numbers of
occupied and unoccupied sites of the s1 effective lattice. For excited states of x ≥ 0 and m = 0 ground
states the number of deconfined η-spinons equals that of the unoccupied sites of the c effective lattice. For
excited states of the x = 0, µ = 0, and m = 0 ground state the presence of deconfined η-spinons is felt
in addition through the above numbers of sites and occupied sites of the s1 effective lattice. Those may
be rewritten as ND

as1
= [ND

a /2−Mde
η /2−Nη1 + Ss] and Ns1 = [ND

a /2−Mde
η /2−Nη1 − Ss − 2Ns2],

respectively, where Mde
η = 2Sη = 0, 1, 2. Therefore, when acting onto the one- and two-electron

subspace, the Hubbard model refers to a two-component quantum liquid that can be described only
in terms of c fermions and s1 fermions. For excited states of x > 0 and m = 0 ground states this
analysis applies to excitation energies ω < 2µ. For those of the x = 0, µ = 0, and m = 0 ground
state the η-spin degrees of freedom are in addition behind the finite energy ∆Drot given in Equation (39)
and the related energy ∆h

Drot
. Those are associated with rotated-electron doubly occupied sites and

rotated-electron unoccupied sites, respectively, of excited states with finite occupancy Mde
η = 1, 2 of

deconfined η-spinons or Nη1 = 1 of a single η1 fermion. However, the magnitude of that energy is fixed
for each branch of excitations of that ground state. Hence for it and its excited states the square-lattice
quantum liquid may again be described solely in terms of c fermions and s1 fermions.

For excited states of x > 0 and m = 0 ground states belonging to the one- and two-electron subspace
the spin effective lattice has a number of sites given by ND

as = (1 − x)ND
a . For those of the x = 0,
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µ = 0, and m = 0 ground state it reads ND
as = [ND

a −Mde
η − 2Nη1] so that ND

as may have the values
ND
a , [ND

a − 1], and [ND
a − 2]. For x > 0 its value is smaller than that of the original lattice. Within the

ND
a � 1 limit one may neglect corrections of the order 1/ND

a so that for both types of excited states
the lattice spacing as is that provided in Equation (30) for α = s. For the model on the square lattice it
reads as ≈ a/

√
1− x. Both it and its general expression given in Equation (30) are such that the area

L2 = [as ×Nas ]
2 = [a×Na]

2 of the system is preserved. The concept of a spin effective lattice is valid
only within the ND

a � 1 limit that the description reviewed in this paper refers to. For the model on
the square lattice, the corresponding s1 fermion spinon occupancy configurations are expected to be a
good approximation provided that the ratio N2

as/N
2
a and thus the electronic density n = (1− x) remain

finite as N2
a → ∞. This is met for the hole concentration range x ∈ (0, x∗) considered in the studies of

Reference [10].
Within the present N2

a � 1 limit there is for the one- and two-electron subspace of the model on
the square lattice commensurability between the real-space distributions of the N2

as1
≈ Ns1 sites of the

s1 effective lattice and the N2
as ≈ 2Ns1 sites of the spin effective lattice. For (1 − x) ≥ 1/N2

a and
N2
a � 1 the spin effective lattice has N2

as ≈ (1− x)N2
a sites and from the use of the expression given in

Equation (57) for the number of s1 effective lattice sites N2
as1

and Equation (46) for the corresponding
spacing as1 we find,

as1 = as

√
2

1 + 2Ss
(1−x)N2

a

≈
√

2 as

(
1− 2Ss

2(1− x)

1

N2
a

)
≈
√

2 as , Ss = 0,
1

2
, 1 (61)

Our general description refers to a very large number of sites N2
a � 1. Although very large, we

assume that ND
a is finite and only in the end of any calculation take the ND

a → ∞ limit. For ND
a � 1

very large but finite the m = 0 ground state spin effective lattice is full and both at x = 0 and for
x > 0 such a state is a spin-singlet state. (For m = 0 and x = 0 this agrees with the exact theorem of
Reference [4].) For Nh

s1 = 0 states such as x ≥ 0 and m = 0 ground states and their charge excited
states the spin effective square lattice has two well-defined sub-lattices, which we call sub-lattice 1 and
2, respectively. (For the Nh

s1 = 1, 2 states of the present subspace the spin effective lattice has two
bipartite lattices as well, with the one or two extra sites accounted for by suitable boundary conditions.)
The two spin effective sub-lattices have spacing as1 ≈

√
2 as. The fundamental translation vectors of the

sub-lattices 1 and 2 read,

~as1 =
as1√

2
(~ex1 + ~ex2) ,

~bs1 = −as1√
2

(~ex1 − ~ex2) (62)

respectively. Here ~ex1 and ~ex2 are unit vectors pointing in the direction associated with the Cartesian
coordinates x1 and x2, respectively. The vectors given in this equation are the fundamental translation
vectors of the s1 effective square lattice.

In the case of x ≥ 0, m = 0, and Nh
s1 = 0 ground states whose s1 momentum band is full and all

N2
as1

= Nas1 × Nas1 sites of the s1 effective square lattice are occupied, we consider that the square
root Nas of the number N2

as = Nas × Nas of sites of the corresponding spin effective square lattice is
an integer. Although the square root Nas1 of the number N2

as1
= Nas1 ×Nas1 of sites of the s1 effective

lattice is not in general an integer number, within the present N2
a � 1 limit we consider that it is the

closest integer to it.
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5.3. The Square-Lattice Quantum Liquid of c and s1 Fermions

It follows from the above results that when acting onto the one- and two-electron subspace, the
Hubbard model on a 1D or square lattice refers to a two-component quantum liquid described in terms
of two types of objects on the corresponding effective lattices and momentum bands: The charge c
fermions and spin-neutral two-spinon s1 fermions. The one- and two-electron subspace can be divided
into smaller subspaces that conserve Sc and Ss. When expressed in terms of c and s1 fermion operators,
the Hubbard model on a square lattice in the one- and two-electron subspace is the square-lattice quantum
liquid further studied in Reference [10].

The quantum-liquid c fermions are η-spinless and spinless objects without internal degrees of freedom
and structure whose effective lattice is identical to the original lattice. For the complete set of U/4t > 0

energy eigenstates that span the full Hilbert space, the occupied sites (and unoccupied sites) of the
c effective lattice correspond to those singly occupied (and doubly occupied plus unoccupied) by the
rotated electrons. The corresponding c band has the same shape and momentum area as the first
Brillouin zone [10].

In contrast, the quantum-liquid composite spin-neutral two-spinon s1 fermions have internal structure.
Thus the spinon occupancy configurations that describe such objects are a more complex problem for
the one- and two-electron subspace. It is simplified by the property that the number of unoccupied sites
of the s1 effective lattice is in that subspace limited to the values Nh

s1 = 0, 1, 2.
That the square-lattice quantum liquid is constructed to inherently the c and s1 fermion discrete

momentum values being good quantum numbers is behind the suitability of the present description in
terms of occupancy configurations of the c and s1 effective lattices and corresponding c and s1 band
discrete momentum values. The latter c and s1 values are the conjugate of the real-space coordinates
of the c and s1 effective lattice, respectively. Are the approximations used in the construction of the s1
effective lattice inconsistent with the s1 band discrete momentum values being good quantum numbers?
The answer is no. Indeed, such approximations concern the relative positions of the j = 1, . . .,N2

as1
sites

of the s1 effective lattice [10]. Those control the shape of the s1 momentum band boundary. They do not
affect the s1 band discrete momentum values being good quantum numbers. At x = 0 the spin effective
lattice is identical to the original square lattice and the s1 effective lattice is one of its two sub-lattices.
Consistently, at x = 0 andm = 0 the boundary of the s1 momentum band is accurately known. Then the
s1 band coincides with an antiferromagnetic reduced Brillouin zone of momentum area 2π2 such that
|qx1| + |qx2 | ≤ π [10]. In turn, it is known that for x > 0 and m = 0 the s1 band boundary encloses a
smaller momentum area (1− x)2π2 yet its precise shape remains an open issue.

The general problem of expressing the 1D Hubbard model in terms of c and αν fermion operators is
beyond the goals of this paper. Fortunately, the problem of physical interest is simpler. It refers to the
expression of the Hamiltonian Ĥ of Equation (6) in the one- and two-electron subspace alone. This leads
to an expression in terms of only c fermion and s1 fermion operators. However, this remains a problem
of some complexity. It is discussed in Section 4.1 of Reference [10]. The corresponding general energy
spectrum involves c and s1 momentum bands and corresponding energy dispersions. Such dispersions
and associated velocities are studied in that reference.
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5.4. A Preliminary Application: The Inelastic Neutron Scattering of LCO

It is desirable that the results of the square-lattice quantum liquid studied in this paper are compared
with those of the standard formalism of many-body physics. Unfortunately, such a quantum liquid is
non-perturbative in terms of electron operators so that, in contrast to a 3D isotropic Fermi liquid [27],
rewriting the theory in terms of it is an extremely complex problem.

In spite of the lack of an exact solution for the model on a square lattice and the non-perturbative
character of the quantum problem in terms of electrons, in this subsection results achieved by the
square-lattice quantum liquid description are compared with those obtained by methods relying on the
standard formalism of many-body physics. Unfortunately, there are not many controlled results for
the Hubbard model on the square lattice from approximations relying on that formalism. Here we
consider the interesting problem of the spin-excitation spectrum of the half-filling Hubbard model on
the square lattice.

Within the present description and as discussed below, since the c and s1 fermion momentum values
are for the model in the one- and two-electron subspace good quantum numbers, that problem refers to
an effectively non-interacting limit whereas in terms of electrons it is an involved many-body problem.
Fortunately, there are reliable results on that particular problem obtained by controlled approximations
of the standard formalism of many-electron physics: within such approximations its solution requires
summing up an infinite set of ladder diagrams, to find the spin-wave dispersion of the half-filled Hubbard
model on the square lattice in a spin-density-wave-broken symmetry ground state [14]. In turn, within
the present description the spin spectrum involves the creation of two holes in the s1 band. Agreement
between the two methods is both a further checking of the validity of the description and a confirmation
that the c and s1 fermion interactions are indeed residual and their momentum values good quantum
numbers for the model on the square lattice in the one- and two-electron subspace.

The spin-triplet excitations relative to the x = 0 and m = 0 absolute ground state involve creation of
two holes in the s1 band along with a shift ~π/N2

a of all discrete momentum values of the full c band so
that the their spectrum reads,

ω(~k) = [−εs1(~q)− εs1(~q ′)] ; ~k = [~π − ~q − ~q ′] (63)

where ~π = ±[π,±π] and for approximately U/4t ≥ 1.3, excitation energy ω below µ0, and temperatures
T below ω/kB, the s1 fermion energy dispersion εs1(~q) reads [10],

εs1(~q) = −
√
|ε0s1(~q)|2 + |∆s1(~q)|2 ; ε0s1(~q) = −W

0
s1

2
[cos qx1 + cos qx2 ]

|∆s1(~q)| =
µ0

2
Fs1(~q) ; Fs1(~q) =

| cos qx1 − cos qx2|
2

(64)

Here the maximum gap magnitude µ0/2 of the s1 fermion energy dispersion equals the maximum s1

fermion pairing energy per spinon for x = 0 andm = 0. It corresponds to the s1 band momentum values
belonging to the s1 boundary line and pointing in the anti-nodal directions.

The x = 0 and m = 0 s1 energy dispersion Equation (64) is derived in Reference [10]. The main
point is that in the absence of any spin order, the s1 fermion spinon-pairing energy would vanish and the
energy dispersion εs1(~q) of the s1 fermions would be given by the auxiliary energy dispersion ε0s1(~q), also
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provided in that equation. An important issue for the Reference [10] derivation of the s1 fermion energy
dispersion εs1(~q) in the presence of such an order as N2

a → ∞, is that for excitation energy below the
energy scale µ0 one can ignore the amplitude fluctuations of the order parameter and the problem can be
handled by a suitable mean-field theory where the occurrence of that order is described for the x = 0 and
m = 0 problem by a s1 energy dispersion of the general form −

√
|ε0s1(~q)|2 + |∆s1(~q)|2, where |∆s1(~q)|

is the s1 fermion pairing energy per spinon given in Equation (64).
We emphasize that for small U/4t values the energy scale µ0/2 becomes small and given by

µ0/2 ≈ 16 t e−π
√

4t/U , so that the amplitude fluctuations of the order parameter cannot be ignored
and thus the energy dispersion provided in Equation (64) is not expected to be a good approximation.
Indeed and as discussed in Reference [10], within the c and s1 fermion description the small-U/4t
physics corresponds to a non-trivial problem. This applies to the derivation of the s1 fermion dispersion
εs1(~q) for small values of U/4t, which remains an unsolved issue. Fortunately, the energy dispersion
Equation (64) is expected to be a good approximation for U/4t ≥ 1.3. Furthermore, as confirmed in
the following the relation of the present quantum problem to the unusual physics of the Mott–Hubbard
insulator parent compounds such as LCO refers to a value U/4t ≈ 1.525 > 1.3, so that the description
introduced in References [9,10] is of interest for the study of such materials.

For x = 0 and m = 0 both the c and s1 bands are full for the initial ground state and since the c
band remains full for the excited states one can ignore the s1-s1 and s1-c fermion interactions. Indeed,
then the residual fermion interactions have little effect on the occupancy configurations of the two holes
created in the s1 band upon the two-electron spin-triplet excitations. This is consistent with the lack of
a c Fermi line for the initial ground state and the lack of s1 band holes other than the two holes created
upon the spin-triplet excitation so that in spite of the s1-s1 fermion long-range interactions associated
with the effective vector potential of Equation (33) the exclusion principle, phase-space restrictions, and
momentum and energy conservation drastically limit the number of available momentum occupancy
configurations of the final excited states.

The excitation spectrum Equation (63) refers both to coherent and incoherent spin spectral weight.
In contrast to the 1D case where a suitable c and s1 fermion dynamical theory is available [28,29], for
the square-lattice quantum liquid there are within the present status of the theory no suitable tools to
calculate matrix elements between the ground state and one- and two-electron excited states. Hence, one
cannot calculate explicitly spin-spin correlation functions. Within the 1D c and s1 fermion dynamical
theory, the sharp features of the spin two-electron spectral weight distributions result from processes
where one of the two s1 fermion holes is created at the s1 boundary line.

The coherent spin spectral weight is here associated with a Goldstone-mode-like gapless spin-wave
spectrum. It consists of sharp δ-peaks having as background the incoherent spectral-weight distribution.
From comparison with the results of Reference [14], we have confirmed that such spectral weight is
generated by processes corresponding to well-defined values of the momenta ~q and ~q ′ of the general
spectrum Equation (63) such that one hole is created at a momentum pointing in the nodal directions of
the s1 band and the other hole at a momentum belonging the s1 band boundary line, as expected from
analogy with the 1D spectral-weight distributions. The incoherent part corresponds to the remaining
values of ~q and ~q ′ of the excitation spectrum Equation (63). The occurrence of the Goldstone-mode-like
gapless spin-wave spectrum follows from the long-range antiferromagnetic order of the initial x = 0 and
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m = 0 ground state. In turn, for the x > 0 short-range spin ordered phase the spin weight distribution
has no coherent part. In 1D it has not coherent part both for x = 0 and x > 0, due to the lack of a
ground-state long-range antiferromagnetic order.

As mentioned above, for the original electrons the problem is highly correlated and involves an
infinite set of ladder diagrams and no simple analytical expression was found for the spin-wave energy
spectrum [14]. In contrast, for the s1 fermion description it is effectively non-interacting and described
by simple analytical expressions. Let us profit from symmetry and limit the present analysis to the
sector kx ∈ (0, π) and ky ∈ (0, kx) of the (~k, ω) space. Within the description of the quantum problem
used here, for 1/kB T → ∞ the coherent spin-spectral-weight distribution derived in Reference [14]
corresponds to a surface of energy and momentum given by,

ω(~k) =
µ0

2

∣∣∣∣sin(kx + ky
2

)∣∣∣∣+W 0
s1

∣∣∣∣sin(kx − ky2

)∣∣∣∣ ; ~k = ~π − ~q − ~q ′ (65)

This is a particular case of the general spin spectrum given in Equation (63), which corresponds to the
above-mentioned specific processes associated with the following choices for ~π, ~q, and ~q ′,

~π = [π,−π]

~q =

[
π

2
− (kx + ky)

2
,−π

2
− (kx + ky)

2

]
~q ′ =

[
π

2
− (kx − ky)

2
,−π

2
+

(kx − ky)
2

] (66)

for the sub-sector such that kx ∈ (0, π), ky ∈ (0, kx) for kx ≤ π/2, and ky ∈ (0, π − kx) for
kx ≥ π/2 and,

~π = [π, π]

~q =

[
π

2
− (kx + ky)

2
,
3π

2
− (kx + ky)

2

]
~q ′ =

[
π

2
− (kx − ky)

2
,−π

2
+

(kx − ky)
2

] (67)

for the sub-sector such that ky ∈ (0, π), kx ∈ (π − ky, π) for ky ≤ π/2, and kx ∈ (ky, π) for ky ≥ π/2,
respectively. Note that as mentioned above, the components of the s1 band momenta ~q appearing in
Equations (66) and (67) are such that qx1 − qx2 = −π and thus belong to the half-filling s1 boundary
line, whereas those of the momenta ~q ′ in the same equations obey the relation q′x1 = −q′x2 so that point
in the nodal directions.
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Figure 5. The theoretical spin spectrum Equation (65) (solid lines) plotted for the high
symmetry directions in the second Brillouin zone for µ0 = 565.6 meV and W 0

s1 = 49.6 meV
and the experimental data of Reference [13] (circles) in meV. Such theoretical magnitudes
correspond to t ≈ 0.295 eV and U ≈ 1.800 eV, so that U/4t ≈ 1.525. The momentum is
given in units of 2π. The corresponding theoretical lines plotted in Figure 5 of Reference [14]
are very similar to those plotted here yet are obtained within the standard formalism of
many-body physics by summing up an infinite number of ladder diagrams. [10]
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The curves plotted in Figure 5 of Reference [14] refer to the high symmetry directions in the Brillouin
zone. The use of the above general expression given in Equation (65) leads for U/4t = 1.525 to an
excellent agreement with such curves. These directions correspond also to those measured by high-
resolution inelastic neutron scattering in LCO, as plotted in Figure 3(A) of Reference [13]. We denote
such symmetry directions by MO, ΓO, XM , ΓX , and XO. They connect the momentum-space points
M = [π, π], O = [π/2, π/2], Γ = [0, 0], and X = [π, 0] of the general spin-wave spectrum provided in
Equation (65).

Such a spin-wave excitation spectrum is plotted for the above symmetry directions in Figure 1 (solid
line) for µ0 = 565.6 meV and W 0

s1 = 49.6 meV together with the experimental results (circles) for
T = 10 K. This gives a Mott–Hubbard gap 2µ0 = 1131.2 meV. The spin-spectrum expression given in
Equation (65) refers to the first Brillouin zone. In Figure 1 we plot it in the second Brillouin zone, alike
in Figure 3(A) of Reference [13] and Figure 5 of Reference [14]. An excellent quantitative agreement
is reached for these magnitudes of the involved energy scales, which according to the complementary
results of Reference [14] correspond to U/4t ≈ 1.525 and t ≈ 295 meV.

The above results confirm that the predictions of the square-lattice quantum liquid theory concerning
the spin spectrum at half filling agree both with experiments on the parent compound LCO and results
obtained by the standard formalism of many-body physics.
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6. Concluding Remarks

In this paper a general operator description valid for both the Hubbard model on the 1D and square
lattice in terms of three types of elementary quantum objects introduced in References [9,10] was
reviewed. Such a rotated-electron related operational description is an application of the Hubbard model
on a bipartite lattice extended global SO(3)×SO(3)×U(1) symmetry recently found in Reference [6].
The occupancy configurations of such objects correspond to state representations of such an extended
global symmetry. The physical interest of the present rotated-electron related operational description
refers mostly to the model in the one- and two-electron subspace. However, the definition of that
subspace requires the use of general properties of the full-Hilbert-space description summarized in
this paper.

Although the operator description reviewed in this paper is compatible with and in part inspired
in the exact solution of the 1D model, it accounts for the basic differences between the physics of
the Hubbard model on the 1D and square lattice, respectively. For instance, in 1D the occurrence
of an infinite set of conservation laws associated with the model integrability implies that the c-s1
fermion residual interactions refer only to zero-momentum forward-scattering. They merely give rise
to phase shifts whose expressions may be extracted from the BA solution. This allows the introduction
of a pseudofermion dynamical theory, which provides finite-energy spectral and correlation function
expressions involving phase shifts [28,29]. Hence in 1D such interactions do not involve interchange
of energy and momentum. In contrast, they do for the Hubbard model on the square lattice, yet
they are much simpler than the corresponding electronic correlations. Indeed the quantum problem
is non-perturbative in terms of electron operators. It follows that in contrast to a 3D isotropic Fermi
liquid [27], rewriting the square-lattice quantum-liquid theory in terms of the standard formalism of
many-electron physics is in general an extremely complex problem. Fortunately, such a quantum liquid
dramatically simplifies when expressed in terms of the c fermion and s1 fermion operators [10].

The problem is simplest at x = 0 for spin excitations for which the c band remains full and the
effects of the c-s1 fermion interactions are frozen. The preliminary investigations reported in this paper
on the physical consequences of the model on the square lattice new found global symmetry in actual
materials in terms of the c and s1 fermion description refer to x = 0. Such results confirm that the
present description is useful for the further understanding of the role played by the electronic correlations
in the spin spectrum of the parent compound LCO [13]. Indeed, it is quantitatively described by the
corresponding spin spectrum of the square-lattice quantum liquid at U/4t ≈ 1.525 and t ≈ 295 meV.

A similar good quantitative agreement with the LCO spin-wave spectrum is reached by use of the
Hubbard model on the square lattice for U/4t values in the range U/4t ∈ (1.5, 2.0) and suitable different
magnitudes of t. For instance, the studies of References [10,14] find U/4t = 1.525 alike here whereas
those of References [30] and [31] use U/4t = 1.625 and U/4t = 2.000, respectively. Consistent with the
results of References [17,18], the Hubbard model in the subspace of vanishing rotated-electron double
occupancy is related to the t-J model only for larger U/4t values. Importantly, for arbitrary U/4t > 0

values the usual large-U energy scale 4t2/U is replaced by the s1 fermion energy nodal bandwidth Ws1

of Equation (36). Its maximum magnitudeWs1 = 4t is reached for U/4t→ 0. For U/4t > 0 it decreases
monotonously for increasing values of U/4t, vanishing for U/4t→∞ asWs1 ∝ 4t2/U [10]. Hence the
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4t2/U magnitude found here and in References [10,14,30,31] for the description of the LCO spin-wave
spectrum within the Hubbard model should not be compared with that used by t-J model descriptions
of the same spectrum. Indeed for the above intermediate U/4t values there is no direct relation between
the two models.

Further investigations on more complex x > 0 andm = 0 2D problems for which the effects of doping
are accounted for in terms of c-s1 fermion residual inelastic interactions will be also fulfilled elsewhere.
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6. Carmelo, J.M.P.; Östlund, S.; Sampaio, M.J. Global SO(3) × SO(3) × U(1) symmetry of the

Hubbard model on bipartite lattices. Ann. Phys. 2010, 325, 1550–1565.
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