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Abstract: This article proves that formal theories of evidential favoring must fail because they
are inevitably language dependent. I begin by describing Carnap’s early confirmation theories
to show how language dependence problems (like Goodman’s grue problem) arise. I then
generalize to show that any formal favoring theory satisfying minimal plausible conditions will
yield different judgments about the same evidence and hypothesis when they are expressed
in alternate languages. This does not just indict formal theories of favoring; it also shows
that something beyond our evidence must be invoked to substantively favor one hypothesis
over another.
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1. Introduction

We are constantly judging hypotheses in light of evidence, to see whether the evidence supports one
hypothesis over another, is better explained by one hypothesis, makes one hypothesis more likely than the
other, etc. In doing so we invoke a general evidential favoring relation, according to which an evidential
proposition may favor one hypothesis proposition over another. When that relation holds among such
relata, it reveals an important asymmetry between the hypotheses relative to the evidence—an asymmetry
we rely on in making predictions, designing experiments, and deciding among courses of action. Little
wonder, then, that philosophers since Hempel ([1] and [2]) have tried to formalize the relation of
evidential favoring. I begin this article by explaining and evaluating Carnap’s [3] probabilistic theory of
evidential favoring. Among other problems, that theory has trouble with language dependence: it yields
different favoring judgments when the same hypotheses and evidence are re-expressed in a different
language. In another article [4], I have proven that these language dependence problems generalize
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beyond the particulars of Carnap’s theory, and even beyond probabilistic approaches to evidential favoring.
Here I will explain how the proof proceeds, what assumptions it makes about favoring, and how it
shows that an accurate formal theory of evidential favoring is impossible. Finally, I will sketch some
philosophical consequences of this result, in particular that hypotheses are more symmetrically related
to evidence than we think and that choosing among hypotheses almost always requires a contribution
from agents that goes beyond their evidence.

2. Carnap’s Early Theories of Favoring

Carnap’s central idea is that a body of evidence favors one hypothesis over another just in case it
renders the former more probable than the latter. To make this precise, he first represents evidence and
hypothesis propositions in a first-order formal language L. Such a language has predicates (F,G,H, . . .)
that can be applied to constants (a, b, c, . . .) to form atomic sentences (Fa,Gb,Hc, . . .). By combining
atomic sentences with sentential connectives, we build more complex sentences. Carnap’s languages
are interpreted: each constant represents a particular object in the world; each predicate represents a
property such objects may display; each sentence represents a particular proposition.

With his interpreted language in place, Carnap defines a real-valued function c on ordered pairs of
sentences in L. cph, eq measures how strongly the evidence represented by e confirms the hypothesis
represented by h. The proposition represented by e favors the proposition represented by h1 over the
proposition represented by h2 just in case cph1, eq ą cph2, eq.1 The substance of Carnap’s theory comes
from the particular values of c. c is defined in terms of a real-valued one-place function m on L. For any
x, y P L (with y non-contradictory),

cpx, yq “
mpx& yq

mpyq
(1)

Carnap requires that m be a probability function in the sense of Kolmogorov [5]: non-negative, normal,
and finitely additive. He also requires that m be regular, in the sense that it assigns positive values to all
non-contradictions. Combined with Equation (1), these requirements make cp¨, eq a probability function
for any non-contradictory e P L. This squares with Carnap’s central idea that cph, eq—the degree to
which e confirms h—is just the probability of h on e.

Carnap then needs to specify values for m. He proves that a probability distribution over L can be
fully specified by assigning values to L’s state descriptions. A state description is a maximal consistent
conjunction of literals ofL. (A literal is either an atomic sentence or its negation.) Any non-contradictory
sentence x P L is logically equivalent to a disjunction of state descriptions; that disjunction is called x’s
disjunctive normal form.

For example, take a simple language LG with two constants a and b and one predicate G. Table 1
lays out a set of state descriptions for LG. (The table’s leftmost column provides a name for each state
description.)2 Suppose we assign m-values to each of the four state descriptions in Table 1. Carnap

1This is Carnap’s “firmness” explication of confirmation, as opposed to the “increase in firmness” explication he
distinguishes from it in the preface to the second edition of [3]. We will stick with the firmness explication because it is
easier to work with, but my criticisms below apply equally well to the increase in firmness explication.

2To prevent logical redundancy in a language’s set of state descriptions, we assume that no literal appears more than once
in a state description and the literals appear in alphabetical order. So Ga&Gb is a state description of LG, but Ga&Ga&Gb
and Gb&Ga are not.
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proves that the state descriptions’ m-values generate a probabilistic distribution over LG just in case they
are non-negative and sum to 1. If that condition is met, the m-value of any non-contradictory x P LG

can be calculated by summing the m-values of the state descriptions in its disjunctive normal form. (A
contradictory x receives an m-value of 0.)

Table 1. m:- and m˚-values for language LG.

Name State description m: m˚

s1 Ga&Gb 1{4 1{3

s2 Ga&„Gb 1{4 1{6

s3 „Ga&Gb 1{4 1{6

s4 „Ga&„Gb 1{4 1{3

Take the m: column of Table 1, for instance. Setting aside for the moment where m: comes from, the
m:-values specified for the state descriptions of LG are clearly non-negative and sum to 1. This induces
a probability function m: over the entire LG language. For example, since the disjunctive normal form
of sentence Ga is a disjunction of s1 and s2, m:pGaq is the sum of the m:-values in Table 1’s first two
rows. In other words, m:pGaq “ 1{2.

Carnap has now moved from the problem of specifying c-values to the problem of specifying m-values,
and from the problem of specifying an entire m-distribution to the problem of specifying m over state
descriptions. He notes that for any x, mpxq “ cpx,Tq, where T is an arbitrary tautology in LG. So he
thinks of mpxq as the probability of the proposition represented by x relative to a tautology, or relative
to an evidence set containing no empirical information.3 The state descriptions of LG describe the basic
states of the world LG is capable of discriminating among, and it is natural to think that lacking any
empirical information, each of these states should be treated symmetrically. That is, we should assign
each state description the same m-value. This gives us distribution m: in Table 1, which (applying
Equation (1)) yields a confirmation function Carnap calls c:.

c: captures some intuitive favoring relations. For example, a bit of calculation with Table 1 and
Equation (1) reveals that

1 “ c:pGa,Ga&Gbq ą c:p„Ga,Ga&Gbq “ 0 (2)

Recall that evidence favors one hypothesis over another just in case the former receives a higher c-value
on the evidence than the latter. So c: is suggesting a sensible favoring relation: Since the evidence
represented byGa&Gb entails the hypothesis represented byGawhile refuting the hypothesis represented
by „Ga, that evidence favors the former over the latter.

But broadening our view reveals clear flaws in c: as an explication of evidential favoring. Suppose,
for example, that a and b represent two emeralds to be sampled, and G represents the property of being

3On a probabilistic approach like Carnap’s, an evidence set is represented by a conjunction each of whose conjuncts
represents one of the set’s members. It makes no difference to the probability calculations if an extra, tautologous conjunct
is added to this evidential conjunction. So we can imagine that if we removed empirical facts from an evidence set one at a
time, in the end our “evidential conjunction” would be just a tautology.
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green. We might think that the evidence represented by Ga favors the hypothesis represented by Gb over
the hypothesis represented by „Gb. Yet from Table 1 we can calculate

c:pGb,Gaq “ c:p„Gb,Gaq “ 1{2 (3)

The problem generalizes. When we construct c: for larger languages, we find that even when many
objects are represented the evidence that all but one have the property G does not confirm the hypothesis
that the last object hasG over the hypothesis that it does not. As Carnap puts it, c: does not allow learning
from experience.

The trouble is that m: is too symmetrical. To get learning from experience, we need a state in which
all the emeralds are green to be more probable than a state in which the first run of emeralds are green but
the last one is not. By treating all state descriptions symmetrically, m: renders our evidence incapable of
discriminating among full states of the world consistent with that evidence.

So Carnap constructs a new confirmation function c˚ from the probability function m˚. Instead of
treating state descriptions symmetrically, m˚ treats structure descriptions symmetrically. Intuitively, a
structure description describes the distribution of properties over objects at an abstract level, without
specifying which objects occupy which places in the property distribution. A structure description might
say “one sampled emerald is green while another is not,” without telling us which of the emeralds is the
green one.

At the technical level, a structure description is a disjunction of state descriptions obtainable from
each other by permuting constants. Our simple language LG has three structure descriptions: s1 by itself
(“both emeralds are green”), the disjunction of s2 and s3 (“exactly one of the emeralds is green”), and
s4 by itself (“neither emerald is green”). m˚ assigns each structure description the same value; within a
given structure description, m˚-value is divided up equally among the state descriptions. The resulting
m˚-values are displayed in Table 1.4

c˚ solves the learning from experience problem, because

2{3 “ c˚pGb,Gaq ą c˚p„Gb,Gaq “ 1{3 (4)

This evidential favoring is possible because s1 has a higher m˚-value than s2. There’s only one way
to arrange the world such that both emeralds are green, so there’s only one state description in s1’s
structure description and that state description gets the full 1{3 probability. Yet there are two possible
arrangements in which exactly one emerald is green (first emerald green, second emerald green), so s2
has to share a structure description with s3 and gets an m˚-value of only 1{6. Symmetric treatment of
structure descriptions yields asymmetric treatment of state descriptions, making the sought-after favoring
relations possible.5

But c˚ has a new problem: language dependence. Even with a language as simple as LG, we can
construct a version of Goodman’s [6] “grue” problem. Suppose we define a language LH with the same
constants as LG representing the same objects. But LH has a predicateH related toG as follows: for any

4Marlos Viana points out to me (in correspondence) that the transition from distributions over state descriptions to
distributions over structure descriptions is familiar from Bose–Einstein, Fermi–Derac, and Boltzmann–Maxwell statistics.

5c˚ can also retrieve the favoring judgment represented in Equation (2)—in fact, any c-function derived from a regular,
probabilistic m-function will retrieve that judgment.
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constant x, Hx has the same truth-value asGx ” px “ aq.6 Table 2 displays a set of state descriptions of
LH and their m˚-values, calculated just as before. But it also reveals a further fact: each state description
of LH expresses the same proposition as a state description of LG. That means LH can express every
proposition expressible inLG: given any LG-sentence, we find its disjunctive normal form inLG, replace
its LG state descriptions with the corresponding LH state descriptions from Table 2, and are left with an
LH synonym for the LG original. Each LG sentence has a synonym in LH : an LH sentence that expresses
the same proposition as the LG original.

Table 2. m˚-values for language LH .

Expresses same
State description m˚ proposition as

Ha&Hb 1{3 s2

Ha&„Hb 1{6 s1

„Ha&Hb 1{6 s4

„Ha&„Hb 1{3 s3

Consulting Table 2, we find that

1{3 “ c˚p„Hb,Haq ă c˚pHb,Haq “ 2{3 (5)

But Ha is a synonym for Ga and Hb is a synonym for „Gb. Equation (5) indicates exactly the opposite
favoring relation—relative to the same evidence—as Equation (4)!

Goodman reverses the confirmation relations among propositions indicated by a theory of evidential
favoring by re-expressing the same propositions in a new language. But we can also make those favoring
relations disappear entirely. Consider a new language LS . LS has one constant, o, which names the
ordered pair consisting of first the emerald named by a and then the emerald named by b in LG. LS has
two predicates. G1x obtains when the first element of the ordered pair named by x is green. Sx obtains
when the two objects in the ordered pair are the same with respect to greenness—they are either both
green or they are both not. Since there is only one constant in this new language, permuting constants
does not turn any state description into another; each state description has its own structure description.
Table 3 displays the resulting m˚-values for LS .

6This is a metalinguistic statement about how the truth-values of propositions represented by atomic LH sentences relate
to the truth-values of propositions represented by atomic LG sentences. None of our object languages contain both G and H
as predicates, nor do any of our languages represent the identity relation.
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Table 3. m˚-values for language LS .

Expresses same
State description m˚ proposition as

G1o& So 1{4 s1

G1o&„So 1{4 s2

„G1o& So 1{4 s4

„G1o&„So 1{4 s3

Again, each state description of LG has a synonym in LS , so every proposition expressible in LG is
expressible in LS . And now we have

c˚pG1o ” So,G1oq “ c˚p„rG1o ” Sos, G1oq “ 1{2 (6)

G1o expresses the same proposition as Ga did in language LG, while G1o ” So is a synonym for
Gb. In LS , the favoring relations we found earlier disappear. LH and LS reveal that the facts c˚ relies
upon—facts about which propositions are expressed in sentences that share structure descriptions with
others—are artifacts of language choice.

3. Alternative Approaches to Favoring

Evidential favoring is a relation among propositions—evidence and hypotheses. With only a few
exceptions (which we’ll discuss later), favoring relations among propositions should turn out the same
regardless of which language the propositions are expressed in. Yet Carnap’s formal analyses of
confirmation yield different favoring judgments for the same propositions when those propositions are
expressed in different languages.

Once the possibility of a language like LS—a language in which all the objects are referred to via
a single n-tuple name—has come up, it may seem like any formal Carnap-style theory of favoring is
doomed. But some features of evidence and hypotheses are invariant among all the languages we have
considered, even LS . Consider again the situation in which our evidence is that emerald a is green, our
first hypothesis is that emerald b is green, and our second hypothesis is that emerald b is not. In each of
the three languages we have seen, that evidence and those hypotheses are each expressed by a disjunction
of two state descriptions. For example, in LG their disjunctive normal forms are:7

h1 : s1 _ s3 h2 : s2 _ s4

e : s1 _ s2

Notice also that each hypothesis shares one state description with the evidence but no state descriptions
with the other hypothesis. That remains true across LG, LH , and LS .

We could imagine a formal confirmation theory that works with these facts about state-description
counts and state-description sharing. For instance, we can invent a “Proportional Theory” that counts what

7Since s1 through s4 are names we have given to state descriptions of LG—and not sentences appearing in LG—the
disjunctive normal forms written here for h1, h2, and e are metalinguistic indications of what those disjunctive normal forms
actually look like in LG.
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proportion of its state descriptions a hypothesis shares with the evidence, then favors a hypothesis that
has a higher proportion of shared state descriptions over one that has a lower proportion. In the example
at hand each hypothesis would have a shared proportion of 1{2, so neither h1 nor h2 would be favored
by e over the other. So the Proportional Theory fails to yield intuitively plausible favoring judgments
about learning from experience—but it can still serve as our toy example of a theory that gives consistent
favoring results across the transition from LG to LH and LS . It appears at least possible that with a bit
of work something in the Proportional Theory’s neighborhood could yield plausible favoring results.

But this appearance is illusory. In Sections 5 and 6 I will describe a general proof that rules out all
formal theories of evidential favoring. Starting with very general conditions on what any formal favoring
theory would have to achieve, I will show that even if a theory yields consistent indications of favoring
for a set of evidence and hypotheses across LG through LS , those indications disappear when the relata
are expressed in yet another language. After describing the proof, I explain in Section 7 what we can
learn from it about the underlying nature of evidential favoring.

Possessing such a general proof is also important for historical reasons. Despite the positive results
c˚ yields for simple cases of enumerative induction, Carnap was dissatisfied with that confirmation
function’s inability to properly model what he called “arguments by analogy”. So Carnap produced and
refined a number of successors to c˚. Meanwhile, Jaynes ([7] and [8]) developed a rival confirmation
approach based on maximizing entropy in probabilistic distributions. Other authors, such as Maher [9]
have since tried to develop further formal theories of evidential favoring.8

While presenting Carnap’s first steps is useful for illustrative purposes, there’s no need to work
through these further proposals because they all run into the same problem Carnap did: language
dependence.9 The result I present in the next few sections reveals that this is not a coincidence—any
formal theory of favoring meeting very general conditions will have language dependence problems.

4. General Conditions on Evidential Favoring

What, in general, do we know about the evidential favoring relation? It is a relation among propositions,
but we must express those propositions as sentences in a language to work with them. So if h1, h2, e P L
represent two hypotheses and a body of evidence in interpreted first-order language L (with a finite
number of constants and predicates, and no quantifiers or identity symbol), we will write fph1, h2, eq
when the evidence represented by e favors the hypothesis represented by h1 over the hypothesis
represented by h2. Unlike Carnap, we will not assume that f has anything to do with probabilities
or numerical functions, though what we do assume about f will be compatible with that possibility. For
example, we will assume that f is antisymmetric relative to a given e—that is, we cannot have both
fph1, h2, eq and fph2, h1, eq.

We might also think that f should obtain in some clear cases involving entailment relations. We
saw one such case in Equation (2): the evidential proposition represented in LG by Ga & Gb favors
the hypothesis represented by Ga over the hypothesis represented by „Ga. But if we want a theory
of f to detect these entailment-based favorings, we cannot expect the theory to yield correct results for

8See Maher’s [10] for discussion of arguments by analogy and Carnap’s later views, as well as favoring theories by Hesse
and others. Maher freely admits the language-dependence of his own systems.

9For example, [11] develops language dependence problems for Jaynes’s maximum entropy approach.
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every conceivable language, because some languages will hide the relevant entailments. For example,
a language with a single constant (like the ordered-pair constant in LS) might express the evidence and
pair of hypotheses from Equation (2) with the atomic sentences To, Uo, and V o. In that language there
would be no way to formally recover the entailment facts in virtue of which the favoring holds.

This example shows that we cannot demand invariance of a confirmation theory’s results over every
language capable of expressing the evidence and hypotheses of interest. As we go along, we will
consider which kinds of language-independence we want and which are inessential. We will judge
this by asking what it would reveal about the underlying evidential favoring relation if a correct theory
of that relation were invariant across a particular language type. Since it seems plausible that some
evidential favorings arise from entailments, we will require a formal theory to detect evidential favoring
only when propositions are represented in faithful languages. While faithfulness is defined precisely
in [4], the key condition is that the state descriptions of a faithful language express a set of mutually
exclusive, exhaustive propositions. Because of this, two sentences x and y in a faithful language will
have x $ y just in case the proposition represented by x entails the proposition represented by y.10 A
faithful language captures in its syntax all the entailment relations among the propositions it represents.

Unfaithful languages go wrong by failing to capture entailment relations among the propositions they
represent. But a language may also go wrong by failing to represent some propositions entirely. When
we work with scientific hypotheses, a body of evidence may favor one hypothesis over another because
it reveals the truth of a prediction made by the former but not the latter.11 A language that faithfully
represents the entailment relations among evidence and hypotheses but lacks a sentence representing
that prediction may leave formal theories incapable of detecting the favoring relation that obtains.

We will call a language adequate for a particular set of evidence and hypotheses if it contains
sentences representing not only those three propositions but also any other propositions necessary for
detecting favoring relations among the three. I have no precise characterization of the conditions a
language must meet to be adequate for a particular set of evidence and hypotheses. Luckily, all we
need for our result is that the concern for adequacy is a concern about representational paucity. We
will suppose that for any evidence and two hypotheses, there is a set of languages adequate for those
three relata. We will require formal theories of evidential favoring to yield correct results when applied
to adequate languages. And we will assume that if language L is adequate for a set of evidence and
hypotheses, and language L1 contains synonyms for every sentence in L, then L1 is adequate for those
relata as well.

To this point we have required that the f relation be anti-symmetric for a given e and that formal
favoring theories detect the relation’s presence when its relata are represented in a language that is
adequate for them and faithful. Although I believe various favorings based on entailments (such as
the one represented in Equation (2)) hold, we will be able to prove our result without assuming there
are any such favorings in the extension of f . We will, however, assume that the extension of f contains
something besides entailment-based favorings. This follows Hume’s point in [13, Book I] that if favoring

10The full definition of faithfulness also ensures that if we think of propositions as sets of worlds, a faithful language will
have „x represent the complement of the proposition represented by x, x & y represent the intersection of the propositions
represented by x and y, and x_ y represent the union of those propositions.

11This idea is familiar from the hypothetico-deductivist theory of confirmation; see [12] for discussion.



Symmetry 2011, 3 688

underwrites the inductive inferences that get us through our days, it cannot be restricted to cases in which
the evidence either entails or refutes one of the hypotheses.

To be precise: We will say that h1, h2, and e in faithful language L are logically independent just
in case any conjunction obtainable by inserting a non-negative number of negation symbols into “h1 &
h2 & e” represents a non-empty (non-contradictory) proposition. If there exists at least one faithful L
with logically independent h1, h2, e P L such that fph1, h2, eq, we will say that f is substantive. I take it
Hume showed us evidential favoring is substantive.12

Finally, we need a condition capturing what it is to say that a theory of the evidential favoring
relation is “formal”. Typically, formality means that a theory operates on the structure of sentences
without noticing which particular items play which roles in that structure. For example, suppose a
theory of evidential favoring said that in LG, Ga favored Gb over „Gb, but Gb did not favor Ga
over „Ga. These two triples are structurally identical; such a theory would be differentiating between
them strictly on the grounds that a appeared in the evidence in the first case while b appeared in the
evidence in the second. A formal theory treats constants in a language as interchangeable. It also treats
predicates as interchangeable, which is the condition that will play a central role in our proof. We will
require f to treat predicate permutations identically, by which we mean that for any language L that is
faithful and adequate for h1, h2, e P L and any permutation π of the predicates of L, fph1, h2, eq entails
fpπph1q, πph2q, πpeqq. (Where πpxq is the sentence that results from replacing each predicate occurrence
in x with its image under the permutation π.)

5. First Stage of the Proof

With these notions in place, our general result can be stated simply:

General Result: If the evidential favoring relation is antisymmetric and substantive, it does
not treat predicate permutations identically.

For the full details of the proof, I refer the reader to [4]. Here I will simply explain how it works, starting
with an overview of the proof strategy: Suppose for reductio that evidential favoring is substantive
and antisymmetric and treats predicate permutations identically. By f ’s substantivity there exist an h1,
h2, and e in faithful, adequate language L such that these three relata are logically independent and
fph1, h2, eq. We will construct another faithful, adequate language L˚ with h˚1 , h˚2 , and e˚ representing
the same propositions as h1, h2, and e respectively. Since f concerns a relation among the propositions
expressed by sentences, we will have fph˚1 , h

˚
2 , e

˚q. Moreover, L˚ will be constructed so as to make
available a predicate permutation π such that πph˚1q “ h˚2 , πph˚2q “ h˚1 , and πpe˚q “ e˚. Since f
treats predicate permutations identically, fph˚2 , h

˚
1 , e

˚q. But that violates f ’s antisymmetry, yielding a
contradiction.

The difficult part of this proof is demonstrating that the required L˚, h˚1 , h˚2 , e˚, and π can be
constructed in the general case. That generalization proceeds in two stages. The first stage begins by
noting that while L might contain multi-place predicates and any (finite) number of constants, given any

12Evidential favoring will not be substantive if evidence can only discriminate among hypotheses by logically ruling some
out, as suggested by the falsificationism of [14]. Miller [15] is moved to falsificationism in part by language dependence
issues related to those discussed in this article. Nevertheless, falsificationism remains a minority view of evidential favoring.
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faithful adequate Lwe can always find another language that is faithful and adequate for the propositions
expressed by h1, h2, and e but contains a single constant and only single-place predicates. We do
this in much the same way we moved from language LG to language LS earlier: We make the new
language’s constant represent a tuple of the objects represented by the constants of L, then make the new
language’s predicates represent properties of objects at particular places in the tuple (“the first object
in the tuple is green”) or relations among those objects (“the objects in the tuple match with respect to
greenness”). Since whenever there is a faithful, adequate language representing h1, h2, and e there is also
a faithful, adequate language representing the same propositions with only one constant and single-place
predicates, we will assume without loss of generality that our original language L has only one constant,
a, and only single-place predicates.

Having made this assumption, let’s fix a case in our minds by imagining that besides its one constant
L has five predicates—it does not matter which particular predicates they are. We can then refer to the
32 state descriptions of L as s1 through s32. And to further fix a particular case, we can imagine that the
h1, h2, and e in question have these disjunctive normal form equivalents:13

h1 : s1 _ s4 _ s5 _ s7 h2 : s2 _ s4 _ s6 _ s7

e : s3 _ s5 _ s6 _ s7

The reader may establish that this particular h1, h2, and e are logically independent as required.
We will now construct language L˚ with one constant, a, representing the same tuple as it represents

in L. Like L, L˚ will have five predicates—they will be F ˚, G˚, B˚1 , B˚2 , and B˚3 . Like L, L˚ will be an
interpreted language; the key to our proof will be how we assign meanings to the sentences ofL˚. L˚ will
be faithful, and will be capable of expressing all the propositions expressed by sentences of L. So, for
instance, L˚ will contain an h˚1 , h˚2 , and e˚ that are synonyms for h1, h2, and e respectively. Because L˚

expresses every proposition expressible in L, and because we have assumed L is adequate for h1, h2, and
e, L˚ will be adequate for h˚1 , h˚2 , and e˚. But L˚ is designed so that a predicate permutation π that maps
each B˚-predicate to itself and interchanges F ˚ with G˚ will map h˚1 to h˚2 , h˚2 to h˚1 , and e˚ to itself.

To construct L˚, we begin with the disjunctive normal form equivalents of h1, h2, and e in L. These
sentences have some state descriptions in common and some distinct. For instance, s4 appears in the
disjunctive normal forms of h1 and h2 but not of e. So we will refer to s4 as an “h1h2-sd”. (A state
description that does not appear in any of our three disjunctive normal forms will a “φ-sd”.) The basic
strategy for setting up L˚ will be to make each state description of L˚ the synonym of a different state
description of L. (Once meanings are assigned to the state descriptions of L˚, the meanings of other L˚

sentences will be built up by interpreting logical connectives in the usual way.)14 This means that s4 P L,
for instance, will have a synonym state description in L˚ occurring in the disjunctive normal forms of h˚1
and h˚2 but not e˚. We will label that state description in L˚ an “h˚1h

˚
2-sd”.

We will achieve the permutations we want by carefully selecting which propositions are expressed by
which state descriptions in L˚. For example, a proposition expressed by an h1-sd in L will be expressed
by an h˚1-sd in L˚. But we get to select which L˚ state description plays that role, so we will select one

13Again, these are metalinguistic indications of what the disjunctive normal forms look like, not actual object-language
expressions of the evidence and hypotheses.

14Because L is faithful, its state descriptions express a set of mutually exclusive, exhaustive propositions. Since the state
descriptions of L˚ express these same propositions, L˚ will wind up faithful as well.
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that is mapped by π to an h˚2-sd. More generally, we will assign state descriptions of L˚ to propositions
so that π maps state description types to each other as described in Table 4. (The rows of Table 4 have
been numbered for reference later.)

Table 4. In L˚, π maps. . .

(i) each h˚1-sd to an h˚2-sd and vice versa,

(ii) each e˚-sd to itself,

(iii) each h˚1h
˚
2-sd to itself,

(iv) each e˚h˚1-sd to a e˚h˚2-sd and vice versa,

(v) each e˚h˚1h
˚
2-sd to itself, and

(vi) each φ˚-sd to a φ˚-sd.

Notice how these mappings have been set up. Once we know which state descriptions express which
propositions, we can determine the disjunctive normal form equivalent of h˚1 . When π is applied to that
disjunctive normal form equivalent, it will replace each h˚1-sd with an h˚2-sd and each e˚h˚1-sd with an
e˚h˚2-sd. In other words, it will replace each state description that appears in h˚1 but not h˚2 with a state
description that appears in h˚2 but not h˚1 . As a result, applying π converts h˚1 into h˚2 . Similarly, if the
mappings in Table 4 hold, π will convert h˚2 to h˚1 while leaving e˚ unchanged.15

How do we assign state descriptions to propositions so as to achieve the mappings described in
Table 4? For the specific example we have been working with, the state description assignments in
Table 5 will do the job. Here I have indicated state descriptions schematically, leaving out the “a”s and
replacing negations with overbars. The table indicates, for example, that the proposition expressed by s4
in L is expressed in L˚ by the state description F ˚a & G˚a & B˚1a & „B

˚
2a & B˚3a. Notice that in our

example s4 is an h1h2-sd, and our permutation π maps the assigned L˚ state description to itself. More
generally, the positions in Table 5 match the positions in Table 4: s1 is an h1-sd, s2 is an h2-sd, s3 is an
e-sd, etc. (Table 5 does not assign state descriptions for φ-sds because those assignments turn out not
to matter, as long as each φ-sd receives an L˚ equivalent that has not been assigned to any other state
description of L.) Assignments in the rows of Table 5 ensure that the mappings in the same-numbered
rows of Table 4 hold. In row (i), for example, when π swaps F ˚ and G˚ the h˚1-sd synonym of s1 is
exchanged with the h˚2-sd synonym of s2.16

The assignments in Table 5 employ a system that can be extended to the general case. First, using
guidance from Table 4 we have divided the L state descriptions appearing in h1, h2, and/or e into
pairs and singletons, depending on whether π will map the relevant state description to another state

15Technically, the order of some conjuncts in the disjunctive normal form of e may be changed. But here and elsewhere in
the argument that follows, I treat a sentence of a faithful language as interchangeable with other sentences in that language
logically equivalent to it. If we think of propositions as sets of possible worlds, then any two logically equivalent sentences in
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Table 5. L˚ synonyms for some L state descriptions.

(i) s1 : F
˚G˚ B˚1B

˚
2B

˚
3 s2 : F ˚G

˚ B˚1B
˚
2B

˚
3

(ii) s3 : F
˚G˚ B˚1B

˚
2B

˚
3

(iii) s4 : F
˚G˚ B˚1B

˚
2B

˚
3

(iv) s5 : F
˚G˚ B˚1B

˚
2B

˚
3 s6 : F ˚G

˚ B˚1B
˚
2B

˚
3

(v) s7 : F
˚G˚ B˚1B

˚
2B

˚
3

description or to itself. The pairs and singletons have been aligned on the individual rows. Each row is
assigned a unique binary code using the B˚-predicates. Row (i) is assigned the binary code B˚1B

˚
2B

˚
3 ;

row (ii) gets B˚1B
˚
2B

˚
3 , etc. We then determine the F ˚s and G˚s. If one state description is to be mapped

onto another (and vice versa) by π, the state description belonging to h˚1 affirms F ˚ and denies G˚, while
the description it’ll be mapped onto denies F ˚ and affirms G˚. The singletons, meanwhile, affirm both
F ˚ and G˚ so that π will map them to themselves.17

With all this work done, π maps h˚1 to h˚2 and vice versa while leaving e˚ intact. And this was our
goal: We started with fph1, h2, eq, so we have fph˚1 , h

˚
2 , e

˚q. We also have πph˚1q “ h˚2 , πph˚2q “ h˚1 , and
πpe˚q “ e˚ in faithful, adequate language L˚. So by the identical treatment of predicate permutations,
fph˚2 , h

˚
1 , e

˚q. Together with f ’s antisymmetry this yields our contradiction.

6. Second Stage of the Proof

Hopefully I have described the strategy for this single case so that the reader can generalize to similar
cases. Unfortunately, though, there is a class of cases to which the strategy (as so far described) will not
generalize. Suppose our h1, h2, and e in faithful, adequate L (with five predicates) have the following
disjunctive normal form equivalents:

h1 : s1 _ s4 _ s5 _ s7 h2 : s0 _ s2 _ s4 _ s6 _ s7

e : s3 _ s5 _ s6 _ s7

These relata are exactly as before, except that I have added an extra disjunct s0 to h2.

a faithful language express the same proposition. Since f relates the propositions expressed by sentences, any two equivalent
sentences in a faithful language will enter into f -relations in exactly the same ways.

16One might wonder what the predicates of L˚ mean—for instance, what property of the a-tuple is represented by the
predicate G˚? We can construct the meaning of G˚ from the meanings of the (presumably well-understood) predicates of
L. Each state description of L says something about a, and there are tuples in the world that make that state description true
when referred to by a. Each state description of L˚ is a synonym of an L state description; an L˚ state description says the
same thing as its L counterpart. G˚a is equivalent to a disjunction of state descriptions of L˚, so we can determine which
tuples make G˚a true when referred to by a. G˚ expresses the property of belonging to the set containing just those tuples.

17Depending on the size of L and the particular constitution of h1, h2, and e, this assignment strategy may require L˚ to
have more predicates, and thus more state descriptions, than L. The relevant calculations and a general recipe for making this
work are described in [4, Appendix A].
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If we pursue the strategy of the previous section, each of L’s state descriptions will have a
state-description synonym in L˚. But even if we are clever and set things up so that the L˚ state
description synonym for s2 is mapped by π to the L˚ state description synonym for s1, there will be
nothing left in h˚1 for π to map the synonym of s0 onto. So π will not map h˚2 onto h˚1 as desired.

The problem is that in our new case the numbers of each type of state description do not line up in the
right way. Looking at Table 4, we can see that in order for our mapping scheme in L˚ to work, we need
the following equalities met:

number of h˚1-sds = number of h˚2-sds
number of e˚h˚1-sds = number of e˚h˚2-sds

(Notice from Table 4 that the number of e˚-, h˚1h
˚
2-, e˚h˚1h

˚
2-, and φ˚-sds is irrelevant, as they are mapped

by π to themselves.) As our strategy stands, the state descriptions of L˚ match up one-to-one with state
descriptions of L, so unstarred versions of those equalities must be met as well. But the first (unstarred)
equality is not met by the h1 and h2 under consideration; in this case there are more h2-sds than h1.

And this case is important, because it represents a favoring instance under the Proportional Theory
discussed in Section 3. Recall that under the Proportional Theory, one hypothesis is favored over another
if a greater proportion of its state descriptions is shared with the evidence. In the case at hand, h1 shares
half the state descriptions in its disjunctive normal form with e, while h2 shares only 2{5. So according
to the Proportional Theory fph1, h2, eq. Moreover, every case in which the Proportional Theory indicates
that one hypothesis is favored over another by evidence will violate the unstarred version of at least one of
the equalities above.18 So for our proof to rule out the Proportional Theory as a viable theory of evidential
favoring, it must apply to cases in which the unstarred version of at least one of these equalities fails.

In the present case there is one more h2-sd than there are h1-sds, but for our permutation mapping
in L˚ to work out we need the number of h˚2-sds to match the number of h˚1-sds. To make this happen,
we must break the one-to-one mapping between propositions expressed by state descriptions of L˚ and
propositions expressed by state descriptions of L. (Breaking the one-to-one mapping allows the starred
equalities to hold when their unstarred analogs do not.) In particular, if the proposition expressed by
s1—a member of h1’s disjunctive normal form but not h2’s—was expressed by the disjunction of two
state descriptions in L˚, the first of these state descriptions could be mapped by π to the synonym of
s2 while the other could be mapped to the synonym of s0. “Splitting” s1—an h1-sd—into two state
descriptions in L˚ would increase the number of h˚1-sds by one while leaving the number of h˚2-sds
unchanged. This would bring the number of h˚1-sds and h˚2-sds into the required alignment.

The trick is to take the proposition expressed by s1 in L and express it as the disjunction of two state
descriptions in L˚, while leaving L˚ adequate and faithful and matching all the other L state descriptions
that participate in h1, h2, or e to state descriptions of L˚ one-to-one (so as not to alter the count of
any non-φ-sd-types besides the h1-sds). We will achieve this using a technique I call “explode and
gather”. This technique involves introducing two intermediary languages, L: and L1, through which we

18Quick proof: If we let #h1 represent the number of h1-sds and so forth, the proportion of its state descriptions that h1
shares with e is p#h1e `#h1h2eq{p#h1 `#h1h2 `#h1e `#h1h2eq and the proportion of its state descriptions that h2
shares with e is p#h2e `#h1h2eq{p#h2 `#h1h2 `#h2e `#h1h2eq. If the unstarred versions of the two equalities are
met, these proportions are equal. So if the unstarred equalities are both met, the Proportional Theory indicates no favoring.
Contraposing, if the Proportional Theory indicates a favoring relation at least one of the unstarred equalities is violated.
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move from L to L˚. Instead of assigning the state descriptions of L synonyms directly in L˚, we will
assign them synonyms in L:. Sentences in L: will in turn receive synonyms in L1, which will finally
receive synonyms in L˚. The net result will be the representation of every proposition expressed by
a state description of L in L˚, but the number of h˚1-sds in L˚ will be one greater than the number of
h1-sds in L.

To get a rough idea of how “explode and gather” works, imagine we had a language B whose one
constant p referred to a pig and whose one predicate N indicated that the pig was north of the barn. Our
h1 might beNp and our h2 might be„Np. We would then introduce a second language B: that contained
the constant p, the predicate N :, and the predicate W : indicating that the pig was west of the barn. This
is the “explosion” phase; while each of our hypotheses was represented by a single state description in B,
each is now represented by a disjunction of two state descriptions in B:. (Np, for instance, has become
pN :p&W :pq _ pN :p&„W :pq.) Notice that just like the state descriptions of B, the state descriptions
of B: express a set of mutually exclusive, exhaustive propositions; B: is faithful just like B.

Now we “gather” with a new language B1. B1 has three state descriptions. One is a synonym for
„N :p, one is a synonym for N :p&W :p, and the last is a synonym for N :p&„W :p. B1 cannot express
every proposition expressible in B:, but it can express every proposition expressible in B, so it inherits
its adequacy from that language. Also, the state descriptions of B1 express a set of mutually exclusive,
exhaustive propositions, so B1 will be faithful as well. And in B1, the synonym of h2 is a single state
description while the synonym of h1 is a disjunction of two. There is one more h11-sd than there are
h1-sds, but the number of h12-sds equals the number of h2-sds.

This example, while hopefully suggestive, cannot actually be carried through in the details—for one
thing, a standard first-order language cannot contain exactly three state descriptions. But now that we
have got the broad idea down, we can implement the technical details of “explode and gather” for the
L-example we have been considering.

We begin by constructing L:. L: has the same single constant, a, as L, representing the same tuple
as in L. L: contains every predicate in L, representing the same properties as they represent in L. But
L: has two additional predicates, which (for the sake of definiteness) we will say are D: and E:. D:

and E: represent properties not already represented by any of the predicates of L. (Their introduction is
analogous to the introduction of W : in the pig example.)19 Notice that under this construction each state
description of L will have a synonym in L:. But the L: synonym of an L state description si will not be
a state description of L:. Instead, it will be a disjunction of four state descriptions: One that looks just
like si but also affirms D:a & E:a, another that looks just like si but appends D:a & „E:a, etc. Thus
we have “exploded” each state description of L into multiple state descriptions of L:.

Now we “gather” the state descriptions of L: into the language L1. L1 has the same constant as L and
L: representing the same tuple. But L1 has only one more predicate than L. Instead of saying what the
predicates of L1 represent, I will describe how we assign L1 state descriptions as synonyms of sentences

19In fact, D: and E: must be chosen so that it is logically possible for the tuple represented by a to have any combination
of the properties represented by D:, E:, and the predicates of L. This is required so that the state descriptions of L: will
express a set of mutually exclusive, exhaustive propositions and L: can be faithful. The possibility of finding properties of
the tuple expressible by D: and E: that are independent in the relevant sense of each other and of the properties represented
in L is guaranteed by an assumption I call the Availability of Independent Properties. For a defense of that assumption see
[4, p. 502].
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in L:. First, assign distinct L1 state descriptions as synonyms for the L: sentences expressing state
descriptions of L—except for the L: sentences expressing s1 and the φ-sds of L. (Recall that s1 is the
state description we’re trying to “split” in two.) s1, like all the state descriptions of L, has been exploded
into four “parts” in L:. Take one of those parts and give it a synonym that is a state description in L1.
Then take the other three parts and give their disjunction another state description synonym in L1.20

The resulting L1 will not be able to express every proposition expressible in L:. But it will be able to
express every proposition expressible in L, because each L state description has a synonym in L1. And
since L is adequate for h1, h2, and e, L1 will be adequate for the propositions expressed by those relata as
well.21 Moreover, each state description of L appearing in h1, h2, or e has a state description synonym in
L1—except for s1. The synonym of s1 is a disjunction of two state descriptions ofL1. Since they compose
the synonym of s1 and s1 is a disjunct of h1, both of these state descriptions will be disjuncts of h11. So
while there was only one h1-sd in L, there will be two h11-sds in L1. Thus the disjunct-type counts in L1

will satisfy our earlier equalities (with primes taking the place of stars). That means we can construct
L˚ from L1 with a one-to-one mapping between state descriptions, cleverly assigning meanings to state
descriptions of L˚ as described in Section 5. L˚ will be adequate and faithful, and the permutation π that
exchanges F ˚ with G˚ while leaving B˚-predicates intact will effect exactly the mappings described in
Table 4. So our proof will go through as before.

Let’s take a step back and assess. The Proportional Theory and theories like it work by counting
the number of disjuncts in hypotheses’ disjunctive normal forms and the number of disjuncts those
hypotheses share with the evidence. Yet these count facts are artifacts of the language in which we choose
to express our evidence and hypotheses. In this section I have worked through a particular example in
which “explode and gather” takes us from one faithful, adequate language to another faithful, adequate
language in which the disjunct counts of sentences expressing the same propositions have changed.
No matter what logically independent evidence and hypotheses we are presented with, the explode and
gather technique can be applied (multiple times if necessary) to bring disjunct counts into the balance
we need to apply the proof maneuver from Section 5. Accurate theories of evidential favoring yield
the same favoring judgments across all faithful, adequate languages, and if they are formal they do so
while treating predicate permutations identically. But given logically independent relata we will always
be able to construct an L˚ in which the hypotheses are predicate permutation variants, so that a formal
theory will detect no favoring between them. This means that a formal theory will never find that a body
of evidence differentially favors logically independent hypotheses. So if it can be captured by a formal
theory, evidential favoring is not substantive.

20What about the sentences in L: that are synonyms of φ-sds? For our particular h1, h2, and e, L has 32 state descriptions
24 of which are φ-sds. Each φ-sd has a synonym that is a disjunction of 4 L: state descriptions. L1 has one more predicate
than L, so it has 64 state descriptions. We have already assigned synonyms to 9 of them, leaving 55. Of the 24 φ-sds in
L, use L: to split 17 of them into disjunctions of 2 state descriptions in L1, and split the other 7 into disjunctions of 3 state
descriptions in L1. This will assign meanings to the remaining 55 state descriptions of L1 and ensure that each φ-sd has a
synonym in L1. (For a generalization of the math involved here, including how big L: and L1 will typically have to be, see
[4, Appendix A], especially notes 68 through 70.)

21A bit of thought will also reveal that because the state descriptions of L: express a mutually exclusive, exhaustive set of
propositions the state descriptions of L1 do so as well. This makes L1 faithful.
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One final note about the proof: One might wonder why h1, h2, and e have to be logically independent
for our argument to go through. The “explode and gather” technique increases the number of h1-sds
(say) by “splitting” an existing h1-sd into two h11-sds. This works only if there is an h1-sd to begin with.
If h1, h2, and e were arranged so that there were some h2-sds but no h1-sds, we would not be able to
split h1-sds to make their number equal the h2-sds’. Logical independence of h1, h2, and e guarantees
that there is at least one state description in L of each type, avoiding situations that would derail the
proof. But once we have seen that proof, it is clear that the logical independence requirement could be
relaxed. For example, we could run the argument for an h1, h2, and e with no h1-sds as long as there
were no h2-sds either. More generally, the relata we work with have to make some φ-sds available, and
if they make one sd-type on a row of Table 4 available they have to make any other types on that row
available as well. This means that we could, for instance, accommodate positions on which evidential
favoring only ever occurs between mutually exclusive hypotheses.22 In a faithful language two mutually
exclusive hypotheses h1 and h2 have no h1h2-sds and no eh1h2-sds. But eliminating those rows from
Table 4 would not disrupt our mapping scheme. So while I will continue to assume logical independence
among the relata for simplicity’s sake, it is significant that this requirement could be relaxed.

7. The Favoring Relation Itself

Even if the logical independence requirement were relaxed, our general result would still have
shortcomings. For example, it applies only to evidence and hypotheses adequately expressible in a
first-order language with no quantifiers or identity symbol. In [4, Appendix B] I argue that this is not
as serious a limitation as it might seem. Certainly most of the evidential favoring on which we rely in
daily life, scientific research, etc. involves more complicated logical structures than this. But notice that
all we need to get our proof going is one instance of logically independent evidence and hypotheses
that are first-order expressible. Moreover, these syntactical limitations apply only to the evidence and
hypotheses, not to the processes used by theories that detect evidential favoring. Even if an entropy
calculation or something more mathematically complex is used to determine the extension of f , our
result will apply as long as at least one triple in that extension consists of sentences as simple as “This
emerald is green” and “The next one will be too.”

Our result may also seem aimed at a project most philosophers have abandoned; very few people still
maintain that evidential favoring can be ferreted out by formal means. So let’s stop thinking about formal
theories of favoring, and start thinking about the evidential favoring relation itself. Most of the conditions
we imposed in Section 4 concerned that relation directly; the only one motivated by the prospect of
formal theorizing was identical treatment of predicate permutations. But the identical treatment of
predicate permutations is significant even when we set formal theories aside. If f fails to treat predicate
permutations identically, there exist hypotheses and evidence in adequate, faithful languages whose
favoring relations disappear when their predicates are swapped around. Since predicates represent
properties, a favoring relation that treats predicate permutations non-identically behaves differently
towards propositions containing some properties than it does towards otherwise-identical propositions
containing different properties. A favoring relation that does not treat predicate permutations identically

22For one such position, see [16].
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plays favorites among properties. Our general result says that if evidential favoring is antisymmetric and
substantive, it must play favorites.

The standard lesson drawn from language dependence results such as Goodman’s “grue” problem
is that evidential favoring privileges some properties over others. Goodman himself [6, Lecture IV]
tried to distinguish “projectible” properties from nonprojectible; later philosophers such as Quine [17]
attempted to identify “natural properties” that play a special role in evidential favoring. If there are
such special properties, favoring theories need not yield consistent results across faithful, adequate
languages; such theories (formal or not) may restrict their attention to languages whose predicates
represent the privileged properties. If greenness, for example, is a natural property, then Carnap’s c˚

function should be applied only to language LG—not LH or LS—and the intuitive confirmation result
of Equation (4) stands.

This standard response leaves an epistemic problem: How can agents determine which properties are
natural? The obvious response is that natural properties are revealed by evidence from the natural world.
But here the generality of our result kicks in. Imagine some multi-stage process agents could apply:
first, the process would use an agent’s empirical evidence to determine a list of natural properties. Next,
the process would sort languages whose predicates represented natural properties from those whose
predicates did not. Finally, the process would work within the set of preferred languages to determine
which hypotheses were favored over others by the agent’s evidence. Now consider a relation np that
captures the net effect of this entire process: npph1, h2, eq holds just in case the natural property list
generated by the evidence represented by e yields a favoring relation on which e favors the hypothesis
represented by h1 over the hypothesis represented by h2.

Now np is just a relation, so the process that takes agents from the inputted e to an ultimate favoring
judgment between h1 and h2 need not proceed in the sequence just described. The key point is that
however it is generated, np should be antisymmetric and had better be substantive, so that favoring
relations may obtain among hypotheses neither entailed nor refuted by the evidence. And so (substituting
np for f ) our general result applies: np will fail to treat predicate permutations identically. That is,
antecedent to the introduction of a particular body of evidence e, np will already prefer some properties
over others. Anyone who tries to work out the natural properties from a body of empirical evidence will
need a preferred property list before that evidence is even consulted.

Apparently substantive favoring among hypotheses arises from something more than just evidence; it
requires an extra-evidential element to select among properties. As far as the evidence and hypotheses
themselves are concerned—considered alone as propositions, without any further information or
influences—any two logically independent hypotheses are related to a given body of evidence in the
same way. The appearance of asymmetry among these propositions, the sense that the evidence has
more in common with one hypothesis or favors it over the other, is an artifact of the language in which
the propositions are expressed. And the propositions themselves cannot tell you which language is best.23

23Notice how much stronger this result is than standard “underdetermination of theory by evidence” arguments.
Underdetermination of theory by evidence typically argues that while some e may favor h1 over h2, we can always
manufacture an h3 that is just as well supported by e as h1. The present result shows that even if e, h1, and h2 are selected
for us, there will be no favoring of h1 over h2 by e unless some logical entailment holds among them. It is not just that an
outlandish theory can be made up that accounts for the data; it is that no theory under serious consideration accounts for the
data better than any of the others.
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This leaves a few options in the theory of evidential favoring. First, one can be an externalist: One
can insist that there are facts in the world about which properties are natural, or projectible—it is just that
those facts cannot be discerned by agents from their evidence. While there are favoring relations among
hypotheses and evidence, agents cannot ever know that they have got those relations right. [4] presents
arguments against this option; I will simply say here that I find favoring facts inaccessible by agents
highly unattractive. Second, one can hold that the preferred property list need not be discerned from
empirical evidence because it can be determined a priori. Besides requiring a very strong view of our a
priori faculties, this response contradicts the positive theories philosophers have offered of what makes
projectible properties projectible. The standard theory (from [18], among others) is that projectible
properties recur regularly because they play a particular role in the natural laws of the universe, but such
laws must be gleaned from empirical data.24

The remaining option maintains that the element privileging some properties over others comes
from agents, and so is accessible to them and allows them to determine when favoring holds. This
“subjectivist” option denies that there is a three-place evidential favoring relation (among two hypotheses
and a body of evidence) at all; it relativizes favoring to a fourth relatum that is a feature of subjects.
Perhaps agents grow up speaking a language whose predicates express certain properties; perhaps agents
evolved to think using certain categories; perhaps for some reason agents have a prior disposition to
project some properties more readily than others. Wherever their preferred property lists come from,
subjects with different lists may not be able to adjudicate disputes between those lists (and the favoring
relations that attend them) by citing evidence or a priori considerations. While this approach avoids the
problems of the other options—it permits substantive evidential favoring, posits no unrealistic a priori
faculties, and allows agents access to favoring facts—it may require us to radically rethink what we are
doing when we ask which of two hypotheses is favored by our evidence.
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24In correspondence Paul Bartha asks me to consider whether the set of languages to which a favoring theory should
apply can be restricted further than I have suggested on an a priori basis. His example is a language whose single constant
represents a tuple of 10 emeralds and whose three predicates represent the properties “tuple elements 1 through 6 are green,”
“tuple elements 7 through 9 are green,” and “tuple element 10 is green.” Bartha suggests that this language can be ruled out
(and in particular that a formal favoring theory need not treat permutations of its predicates identically) on the grounds that
some predicates talk about more objects than others, or alternatively that some atomic sentences convey more information
than others.

My response is that the proper individuation of objects for purposes of projection should be determined by our empirical
evidence. For example if we are making predictions about emeralds, is evidence more significant if it is about more emeralds
or if the emeralds it talks about have a greater total mass? (What if emeralds 7 through 9 in Bartha’s example together
weigh more than emeralds 1 through 6?) Put another way, should a scientific language for predicting features of emeralds
have constants that pick out individual emeralds or individual 1-gram chunks of emerald mass? I do not see how this kind
of question could be answered a priori, but if we try to answer it using empirical evidence and then develop our evidential
favoring relation from languages that individuate objects properly, we will wind up in the same kind of circle as we saw with
np. Once more something beyond our evidence will have to play a decisive role.
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