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Abstract

:

An independent set in a graph is a set of pairwise non-adjacent vertices, and α(G) is the size of a maximum independent set in the graph G. A matching is a set of non-incident edges, while μ(G) is the cardinality of a maximum matching. If sk is the number of independent sets of size k in G, then I(G;x)=s0+s1x+s2x2+…+sαxα, α=αG, is called the independence polynomial of G (Gutman and Harary, 1986). If sj=sα−j for all 0≤j≤α/2, then I(G;x) is called symmetric (or palindromic). It is known that the graph G∘2K1, obtained by joining each vertex of G to two new vertices, has a symmetric independence polynomial (Stevanović, 1998). In this paper we develop a new algebraic technique in order to take care of symmetric independence polynomials. On the one hand, it provides us with alternative proofs for some previously known results. On the other hand, this technique allows to show that for every graph G and for each non-negative integer k≤μG, one can build a graph H, such that: G is a subgraph of H, IH;x is symmetric, and IG∘2K1;x=1+xk·IH;x.
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1. Introduction


Throughout this paper G=(V,E) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set V=V(G) and edge set E=E(G). If X⊂V, then G[X] is the subgraph of G spanned by X. By G−W we mean the subgraph G[V−W], if W⊂V(G). We also denote by G−F the partial subgraph of G obtained by deleting the edges of F, for F⊂E(G), and we write shortly G−e, whenever F ={e}.



The neighborhood of a vertex v∈V is the set NG(v)={w:w∈Vand vw∈E}, while NG[v]=NG(v)∪{v}; if there is no ambiguity on G, we write N(v) and N[v].



Kn,Pn,Cn denote, respectively, the complete graph on n≥1 vertices, the chordless path on n≥1 vertices, and the chordless cycle on n≥3 vertices.



The disjoint union of the graphs G1,G2 is the graph G=G1∪G2 having as vertex set the disjoint union of V(G1),V(G2), and as edge set the disjoint union of E(G1),E(G2). In particular, nG denotes the disjoint union of n>1 copies of the graph G.



If G1,G2 are disjoint graphs, A1⊆V(G1),A2⊆V(G2), then the Zykov sum of G1,G2 with respect to A1,A2, is the graph G1,A1+(G2,A2) with V(G1)∪V(G2) as vertex set and


E(G1)∪E(G2)∪{v1v2:v1∈A1,v2∈A2}








as edge set [1]. If A1=V(G1) and A2=V(G2), we simply write G1+G2.



The corona of the graphs G and H with respect to A⊆V(G) is the graph G,A∘H obtained from G and A copies of H, such that every vertex belonging to A is joined to all vertices of a copy of H [2]. If A=V(G) we use G∘H instead of G,V(G)∘H (see Figure 1 for an example).



Let G,H be two graphs and C be a cycle on q vertices of G. By (G,C)△H we mean the graph obtained from G and q copies of H, such that each two consecutive vertices on C are joined to all vertices of a copy of H (see Figure 2 for an example).



An independent (or a stable) set in G is a set of pairwise non-adjacent vertices. By Ind(G) we mean the family of all independent sets of G. An independent set of maximum size will be referred to as a maximum independent set of G, and the independence number of G, denoted by α(G), is the cardinality of a maximum independent set in G.



Let sk be the number of independent sets of size k in a graph G. The polynomial


I(G;x)=s0+s1x+s2x2+…+sαxα,α=αG








is called the independence polynomial of G [3,4], the independent set polynomial of G [5]. In [6], the dependence polynomial D(G;x) of a graph G is defined as D(G;x)=I(G¯;−x).



A matching is a set of non-incident edges of a graph G, while μ(G) is the cardinality of a maximum matching. Let mk be the number of matchings of size k in G.



The polynomial


M(G;x)=m0+m1x+m2x2+…+mμxμ,μ=μG








is called the matching polynomial of G [7].



The independence polynomial has been defined as a generalization of the matching polynomial, because the matching polynomial of a graph G and the independence polynomial of its line graph are identical. Recall that given a graph G, its line graph L(G) is the graph whose vertex set is the edge set of G, and two vertices are adjacent if they share an end in G. For instance, the graphs G1 and G2 depicted in Figure 3 satisfy G2=L(G1) and, hence, I(G2;x)=1+6x+7x2+x3=M(G1;x).



In [3] a number of general properties of the independence polynomial of a graph are presented. As examples, we mention that:


I(G1∪G2;x)=I(G1;x)·I(G2;x),I(G1+G2;x)=I(G1;x)+I(G2;x)−1.











The following equalities are very useful in calculating of the independence polynomial for various families of graphs.



Theorem 1.1.

Let G=(V,E) be a graph of order n. Then the following identities are true:



(i) I(G;x)=I(G−v;x)+x·I(G−N[v];x) holds for each v∈V [3].



(ii) IG∘H;x=IH;xn·IG;xIH;x for every graph H [8].





A finite sequence of real numbers (a0,a1,a2,…,an) is said to be:

	
unimodal if there is some k∈{0,1,…,n}, such that a0≤…≤ak−1≤ak≥ak+1≥…≥an;



	
log-concave if ai2≥ai−1·ai+1,i∈{1,2,…,n−1};



	
symmetric (or palindromic) if ai=an−i,i=0,1,…,n/2.








It is known that every log-concave sequence of positive numbers is also unimodal.



A polynomial is called unimodal (log-concave, symmetric) if the sequence of its coefficients is unimodal (log-concave, symmetric, respectively).



For instance, the independence polynomial:

	
I(K42+3K7;x)=1+63x+147x2+343x3 is log-concave;



	
I(K43+3K7;x)=1+64x+147x2+343x3 is unimodal, but it is not log-concave, because 147·147−64·343=−343<0;



	
I(K127+3K7;x)=1+148x+147x2+343x3 is non-unimodal;



	
I(K18+3K3+4K1;x)=1+31x+33x2+31x3+x4 is symmetric and log-concave;



	
I(K52+3K4+4K1;x)=1+68x+54x2+68x3+x4 is symmetric and non-unimodal.








It is easy to see that if α(G)≤3 and I(G;x) is symmetric, then it is also log-concave.



For other examples, see [9,10,11,12,13,14]. Alavi et al. proved that for every permutation π of {1,2,…,α} there is a graph G with α(G)=α such that sπ(1)<sπ(2)<…<sπ(α) [9].



The following conjecture is still open.



Conjecture 1.2.

The independence polynomial of every tree is unimodal [9].





Hence to prove the unimodality of independence polynomials is sometimes a difficult task. Moreover, even if the independence polynomials of all the connected components of a graph G are unimodal, then I(G;x) is not for sure unimodal [15]. The following result shows that symmetry gives a hand to unimodality.



Theorem 1.3.

If P and Q are both unimodal and symmetric, then P·Q is unimodal and symmetric [16].





A clique cover of a graph G is a spanning graph of G, each connected component of which is a clique. A cycle cover of a graph G is a spanning graph of G, each connected component of which is a vertex, an edge, or a proper cycle. In this paper we give an alternative proof for the fact that the polynomials I(G∘2K1;x), I(Φ(G);x), and I(Γ(G);x) are symmetric for every clique cover Φ, and every cycle cover Γ of a graph G, where Φ(G) and Γ(G) are graphs built by Stevanović’s rules [17]. Our main finding claims that the polynomial I(G∘2K1;x) is divisible both by I(Φ(G);x) and I(Γ(G);x).



The paper is organized as follows. Section 2 looks at previous results on symmetric independence polynomials, Section 3 presents our results connecting symmetric independence polynomials derived by Stevanović’s rules [17], while Section 4 is devoted to conclusions, future directions of research, and some open problems.




2. Related Work


The symmetry of the matching polynomial and the characteristic polynomial of a graph were examined in [18], while for the independence polynomial we quote [17,19,20]. Recall from [18] that G is called an equible graph if G=H∘K1 for some graph H. Both matching polynomials and characteristic polynomials of equible graphs are symmetric [18]. Nevertheless, there are non-equible graphs whose matching polynomials and characteristic polynomials are symmetric.



It is worth mentioning that one can produce graphs with symmetric independence polynomials in different ways. For instance, the independence polynomial of the disjoint union of two graphs having symmetric independence polynomial is symmetric as well. Another basic graph operation preserving symmetry of the independence polynomial is the Zykov sum of two graphs with the same independence number. We summarize other constructions respecting symmetry of the independence polynomial in what follows.



2.1. Gutman’s Construction [21]


For integers p>1, q>1, let Jp,q be the graph built in the following manner [21]. Start with three complete graphs K1, Kp and Kq whose vertex sets are disjoint. Connect the vertex of K1 with p−1 vertices of Kp and with q−1 vertices of Kq (see Figure 4 as an example).



The graph thus obtained has a unique maximum independent set of size three, and its independence polynomial is equal to


IJp,q;x=1+(p+q+1)x+(pq+2)x2+x3.








Hence the independence polynomial of G=Jp,q+Kpq−p−q+1 is


IG;x=IJp,q;x+IKpq−p−q+1;x−1=1+2+pqx+2+pqx2+x3,








which is clearly symmetric and log-concave.




2.2. Bahls and Salazar’s Construction [20]


The Kt-path of length k≥1 is the graph P(t,k)=(V,E) with V={v1,v2,…,vt+k−1} and E=vivi+j:1≤i≤t+k−2,1≤j≤min{t−1,t+k−i−1}. Such a graph consists of k copies of Kt, each glued to the previous one by identifying certain prescribed subgraphs isomorphic to Kt−1. Let d≥0 be an integer. The d-augmented Kt path P(t,k,d) is defined by introducing new vertices {ui,1,ui,2,…,ui,d}i=0t+k−2 and edges viui,j,vi+1ui,j:j=1,…,di=1t+k−2∪v1,u0,j:j=1,…,d. Let G=(V,E) and U⊆V be a subset of its vertices. Let v∉V and define the cone of G on U with vertex v, denoted G*(U,v)=G,U+K1, where K1=v,∅. Given G and U and a graph H, we write H+G,U instead of H,VH+G,U.



Theorem 2.1.

Let t≥2,k≥1, and d≥0 be integers, and let G=(V,E) be a graph with U⊆V a distinguished subset of vertices. Suppose that each of the graphs G, G−U, and G,U+K1 has a symmetric and unimodal independence polynomial, and deg(I(G;x))=deg(I(G,U+K1;x))=deg(I(G−U;x))+2. Then the independence polynomial of the graph P(t,k,d)+(G,U) is symmetric and unimodal [20].






2.3. Stevanović’s Constructions [17]


Taking into account that s0=1 and s1=V(G)=n, it follows that if I(G;x) is symmetric, then s0=sα and s1=sα−1, i.e., G has only one maximum independent set, say S, and n−α(G) independent sets, of size α(G)−1, that are not subsets of S.



Theorem 2.2.

If there is an independent set S in G such that N(A)∩S=2A holds for every independent set A⊆VG−S, then I(G;x) is symmetric [17].





The following result is a consequence of Theorem 2.2.



Corollary 2.3.

(i) If α(G)=α,sα=1,sα−1=V(G), and for the unique stability system S of G it is true that N(v)∩S=2 for each v∈V(G)−S, then I(G;x) is symmetric [17]; (ii) If G is a claw-free graph with α(G)=α,sα=1,sα−1=V(G), then I(G;x) is symmetric.





Corollary 2.3 gives three different ways to construct graphs having symmetric independence polynomials [17].



	
Rule 1. For a given graph G, define a new graph H as: H=G∘2K1.






For an example, see the graphs in Figure 5: I(G;x)=1+6x+9x2+3x3, while


I(H1;x)=1+x61+12x+48x2+77x3+48x4+12x5+x6=










=1+18x+135x2+565x3+1485x4+2601x5+3126x6+2601x7+1485x8+565x9+135x10+18x11+x12.











	
A cycle cover of a graph G is a spanning graph of G, each connected component of which is a vertex (which we call a vertex-cycle), an edge (which we call an edge-cycle), or a proper cycle. Let Γ be a cycle cover of G.






Rule 2. Construct a new graph H from G, denoted by H=ΓG, as follows: if C∈Γ is



(i) a vertex-cycle, say v, then add two vertices and join them to v;



(ii) an edge-cycle, say uv, then add two vertices and join them to both u and v;



(iii) a proper cycle, with


V(C)={vi:1≤i≤s},E(C)={vivi+1:1≤i≤s−1}∪{v1vs},








then add s vertices, say {wi:1≤i≤s} and each of them is joined to two consecutive vertices on C, as follows: w1 is joined to vs,v1, then w2 is joined to v1,v2, further w3 is joined to v2,v3, etc.



Figure 6 contains an example, namely, I(G;x)=1+6x+9x2+3x3, while


I(H2;x)=1+13x+60x2+125x3+125x4+60x5+13x6+x7=










=1+x1+12x+48x2+77x3+48x4+12x5+x6.











	
A clique cover of a graph G is a spanning graph of G, each connected component of which is a clique. Let Φ be a clique cover of G.






Rule 3. Construct a new graph H from G, denoted by H=ΦG, as follows: for each Q∈Φ, add two non-adjacent vertices and join them to all the vertices of Q.



Figure 7 contains an example, namely, I(G;x)=1+6x+9x2+3x3, while


I(H3;x)=1+12x+48x2+77x3+48x4+12x5+x6.











Theorem 2.4.

Let H be the graph obtained from a graph G according to one of the Rules 1, 2 or 3. Then H has a symmetric independence polynomial [17].





Let us remark that I(H1;x)=1+x6·I(H3;x) and I(H2;x)=1+x·I(H3;x), where H1,H2 and H3 are depicted in Figure 5, Figure 6, and Figure 7, respectively.




2.4. Inequalities and Equalities Following from Theorem 2.4


When inequalities connecting coefficients of the independence polynomial is under consideration, the symmetry mirrors the area, where they are already established. The following results illustrate this idea.



Proposition 2.5.

Let G=H∘2K1 be with α(G)=α, and sk be the coefficients of I(G;x). Then I(G;x) is symmetric, and [22]


s0≤s1≤…≤sp,forp=(2α+2)/5,while










st≥…≥sα−1≥sα,fort=(3α−2)/5.













Theorem 2.6.

Let H be a graph of order n≥2, Γ be a cycle cover of H that contains no vertex-cycles, G be obtained by Rule 2, and α(G)=α. Then I(G;x) is symmetric and its coefficients (sk) satisfy the subsequent inequalities [22]


s0≤s1≤…≤sp,forp=(α+1)/3,and










sq≥…≥sα−1≥sα,forq=(2α−1)/3.













Let Hn,n≥1, be the graphs obtained according to Rule 3 from Pn, as one can see in Figure 8.



Theorem 2.7.

If Jn(x)=I(Hn;x),n≥0, then [23]



(i) J0(x)=1,J1(x)=1+3x+x2 and Jn,n≥2, satisfies the following recursive relations:


J2n(x)=J2n−1(x)+x·J2n−2(x),n≥1,










J2n−1(x)=(1+x)2·J2n−2(x)+x·J2n−3(x),n≥2;











(ii) Jn is both symmetric and unimodal.





It was conjectured in [23] that I(Hn;x) is log-concave and has only real roots. This conjecture has been resolved as follows.



Theorem 2.8.

Let n≥1. Then [24]



(i) the independence polynomial of Hn is


I(Hn;x)=∏s=1n+1/21+4x+x2+2x·cos2sπn+2;











(ii) I(Hn;x) has only real zeros, and, therefore, it is log-concave and unimodal.







3. Results


The following lemma goes from the well-known fact that the polynomial P(x) is symmetric if and only if it equals its reciprocal, i.e.,


P(x)=xdeg(P)·P1x.



(1)







Lemma 3.1.

Let fx, gx and hx be polynomials satisfying fx=gx·hx. If any two of them are symmetric, then the third is symmetric as well.





For H=2K1, Theorem 1.1 gives


IG∘2K1;x=1+x2n·IG;x1+x2.








Since


x1+x2=1x1+1x2anddegIG∘2K1;x=2n,








one can easily see that the polynomial IG∘2K1;x satisfies the identity (1). Thus we conclude with the following.



Theorem 3.2.

For every graph G, the polynomial IG∘2K1;x is symmetric [17].





3.1. Clique Covers Revisited


Lemma 3.3.

If A is a clique in a graph G, then for every graph H


I((G,A)∘H;x)=IH;xA−1·I((G,A)+H;x).













Proof: 

Let G1=(G,A)∘H and G2=(G,A)+H∪(A−1)H.



For S∈Ind(G), let us define the following families of independent sets:


ΩSG1={S∪W:W⊆V(G1−G),S∪W∈Ind(G1},










ΩSG2={S∪W:W⊆V(G2−G),S∪W∈Ind(G2)}.








Since A is a clique, it follows that S∩A≤1.



Case 1. S∩A=∅.



In this case S∪W∈ΩSG1 if and only if S∪W∈ΩSG2. Hence, for each size m≥S, we get that


{S∪W∈ΩSG1:S∪W=m}={S∪W∈ΩSG2:S∪W=m}.











Case 2. S∩A={a}.



Now, every S∪W∈ΩSG1 has W∩V(H)=∅ for exactly one H, namely, the graph H whose vertices are joined to a. Hence, W may contain vertices only from |A|−1H.



On the other hand, each S∪W∈ΩSG2 has W∩V(H)=∅ for the unique H appearing in (G,A)+H. Therefore, W may contain vertices only from |A|−1H.



Hence for each positive integer m≥S, we obtain that


{S∪W∈ΩSG1:S∪W=m}={S∪W∈ΩSG2:S∪W=m}.











Consequently, one may infer that for each size, the two graphs, G1 and G2, have the same number of independent sets, in other words, I(G1;x)=I(G2;x).



Since G2=(G,A)+H∪(A−1)H has A−1 disjoint components identical to H, it follows that I(G2;x)=IH;xA−1·I((G,A)+H;x). ◊





Corollary 3.4.

If A is a clique in a graph G, then


I((G,A)∘2K1;x)=1+x2A−2·I((G,A)+2K1;x).













Theorem 3.5.

If G is a graph of order n and Φ is a clique cover, then


I(G∘2K1;x)=1+x2n−2Φ·I(Φ(G);x).













Proof: 

Let Φ=A1,A2,…,Aq. According to Corollary 3.4, each



(a) vertex-clique of Φ yields 1+x2−2=1 as a factor of I(G∘2K1;x), since a vertex defines a clique of size 1;



(b) edge-clique of Φ yields 1+x2 as a factor of I(G∘2K1;x), since an edge defines a clique of size 2 (see Figure 9 as an example);



(c) clique Aj∈Φ,Aj≥3, produces 1+x2Aj−2 as a factor of I(G∘2K1;x) (see Figure 10 as an example).



Since the cliques of Φ are pairwise vertex disjoint, one can apply Corollary 3.4 to all the q cliques one by one.



Using Corollary 3.4 and the fact that A1∩A2=∅, we have


I((G,A1∪A2)∘2K1;x)=I((G,A1)∘2K1,A2∘2K1;x)=










=1+x2A2−2·I((G,A1)∘2K1,A2+2K1;x)=










=1+x2A2−2·I((G,A2)+2K1,A1∘2K1;x)=










=1+x2A1+A2−2·I((G,A2)+2K1,A1+2K1;x).











Repeating this process with A3,A4,…,Aq, and taking into account that all the cliques of Φ are pairwise disjoint, we obtain


I((G∘2K1;x)=I((G,A1∪A2∪…∪Aq)∘2K1;x)=










=1+x2A1+A2+…+Aq−2q·I(((G,A1)+2K1,A2…),Aq+2K1;x)=










=1+x2n−2Φ·I(Φ(G);x),








as required. ◊





Lemma 3.1 and Theorem 3.5 imply the following.



Corollary 3.6.

For every clique cover Φ of a graph G, the polynomial I(Φ(G);x) is symmetric [17].





Clearly, for every k≤μG there exists a clique cover containing k non-trivial cliques, namely, edges. Consequently, we obtain the following.



Theorem 3.7.

For every graph G and for each non-negative integer k≤μG, one can build a graph H, such that: G is a subgraph of H, IH;x is symmetric, and IG∘2K1;x=1+xk·IH;x.






3.2. Cycle Covers Revisited


Lemma 3.8.

If C is a proper cycle in a graph G, then for every graph H


I((G,C)∘2H;x)=IH;xC·I((G,C)△H;x).













Proof: 

Let C=VC,EC, q=VC, G1=(G,C)∘2H, and G2=(G,C)△H∪qH.



For an independent set S⊂V(G), let us denote:


ΩSG1={S∪W:W⊆V(G1)−V(G),S∪W∈Ind(G1)},










ΩSG2={S∪W:W⊆V(G2)−V(G),S∪W∈Ind(G2)}.











Case 1. S∩V(C)=∅.



In this case S∪W∈ΩSG1 if an only if S∪W∈ΩSG2, since W is an arbitrary independent set of 2qH. Hence, for each size m≥S, we get that


{S∪W∈ΩSG1:S∪W=m}={S∪W∈ΩSG2:S∪W=m}.











Case 2. S∩V(C)≠∅.



Then, we may assert that


ΩSG1={S∪W:Wisanindependentsetin2(q−S∩V(C))H}=ΩSG2,








since W has to avoid all the “H-neighbors” of the vertices in S∩V(C), both in G1 and G2.



Hence, for each positive integer m≥S, we get that


{S∪W∈ΩSG1:S∪W=m}={S∪W∈ΩSG2:S∪W=m}.








Consequently, one may infer that for each size, the two graphs, G1 and G2, have the same number of independent sets. In other words, I(G1;x)=I(G2;x).



Since G2 has C disjoint components identical to H, it follows that


I(G2;x)=1+xC·I((G,C)△H;x),








as required. ◊





Corollary 3.9.

If C is a proper cycle in a graph G, then


I((G,C)∘2K1;x)=1+xC·I((G,C)△K1;x).













Theorem 3.10.

If G is a graph of order n and Γ is a cycle cover containing k vertex-cycles, then


I(G∘2K1;x)=1+xn−k·I(Γ(G);x).













Proof: 

According to Corollaries 3.4 and 3.9, each



(a) vertex-cycle of Γ yields 1+x2−2=1 as a factor of I(G∘2K1;x), since each vertex defines a clique of size 1;



(b) edge-cycle of Γ yields 1+x2 as a factor of I(G∘2K1;x), since every edge defines a clique of size 2;



(c) proper cycle C∈Γ produces 1+xC as a factor (see Figure 11 as an example).



Let Γ=Cj:1≤j≤q∪vi:1≤i≤k be a cycle cover containing k vertex-cycles, namely, vi:1≤i≤k.



Using Corollary 3.9 and the fact that C1∩C2=∅, we have


I((G,C1∪C2)∘2K1;x)=I((G,C1)∘2K1,C2∘2K1;x)=










=1+xC2·I((G,C1)∘2K1,C2△K1;x)=










=1+xC2·I((G,C2)△K1,C1∘2K1;x)=










=1+xC1+C2·I((G,C2)△K1,C1△K1;x).











Repeating this process with C3,C4,…,Cq, and taking into account that all the cycles of Γ are pairwise vertex disjoint, we obtain


I((G∘2K1;x)=I((G,C1∪C2∪…∪Cq)∘2K1;x)=










=1+xC1+C2+…+Cq·I(((G,C1)△K1,C2…),Cq△K1;x)=










=1+xn−k·I(Γ(G);x),








as claimed. ◊





Lemma 3.1 and Theorem 3.10 imply the following.



Corollary 3.11.

For every cycle cover Γ of a graph G, the polynomial I(Γ(G);x) is symmetric [17].







4. Conclusions


In this paper we have given algebraic proofs for the assertions in Theorem 2.4, due to Stevanović [17]. In addition, we have shown that for every clique cover Φ, and every cycle cover Γ of a graph G, the polynomial I(G∘2K1;x) is divisible both by I(Φ(G);x) and I(Γ(G);x).



For instance, the graphs from Figure 12 have:I(G;x)=1+6x+9x2+2x3, while


I(G∘2K1;x)=1+x61+12x+48x2+76x3+48x4+12x5+x6=










=1+x5·I(Γ(G);x)=1+x6·I(Φ(G);x),










I(Γ(G);x)=1+13x+60x2+124x3+124x4+60x5+13x6+x7,










I(Φ(G);x)=1+12x+48x2+76x3+48x4+12x5+x6.











The characterization of graphs whose independence polynomials are symmetric is still an open problem [17].



Let us mention that there are non-isomorphic graphs with the same independence polynomial, symmetric or not. For instance, the graphs G1, G2, G3, G4 presented in Figure 13 are non-isomorphic, while


I(G1;x)=I(G2;x)=1+5x+5x2,and










I(G3;x)=I(G4;x)=1+6x+10x2+6x3+x4.











Recall that a graph having at most two vertices with the same degree is called antiregular [25]. It is known that for every positive integer n≥2 there is a unique connected antiregular graph of order n, denoted by An, and a unique non-connected antiregular graph of order n, namely An¯ [26]. In [27] we showed that the independence polynomial of the antiregular graph An is:


I(A2k−1;x)=1+xk+1+xk−1−1,and










I(A2k;x)=2·1+xk−1,k≥1.











Let us mention that I(A2k;x)=I(Kk,k;x) and I(A2k−1;x)=I(Kk,k−1;x), where Km,n denotes the complete bipartite graph on m+n vertices. Notice that the coefficients of the polynomial


I(A2k;x)=2·1+xk−1=∑j=0ksjxj








satisfy sj=sk−j for 1≤j≤k/2, while s0≠sk, i.e., I(A2k;x) is “almost symmetric”.



Problem 4.1.

Characterize graphs whose independence polynomials are almost symmetric.





It is known that the product of a polynomial Px=∑k=0nakxk and its reciprocal Qx=∑k=0nan−kxk is a symmetric polynomial. Consequently, if I(G1;x) and I(G2;x) are reciprocal polynomials, then the independence polynomial of G1∪G2 is symmetric, because IG1∪G2;x=I(G1;x)·I(G2;x).



Problem 4.2.

Describe families of graphs whose independence polynomials are reciprocal.
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Figure 1. G,H and L=G,A∘H, where A={a,b}. 






Figure 1. G,H and L=G,A∘H, where A={a,b}.
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Figure 2. G and W=(G,C)△H, where V(C)={a,b,c,d} and H=K1. 






Figure 2. G and W=(G,C)△H, where V(C)={a,b,c,d} and H=K1.
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Figure 3. G2 is the line-graph of and G1. 






Figure 3. G2 is the line-graph of and G1.
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Figure 4. IJ4,3;x=1+8x+14x2+x3 and IJ4,3+K6;x=1+14x+14x2+x3. 






Figure 4. IJ4,3;x=1+8x+14x2+x3 and IJ4,3+K6;x=1+14x+14x2+x3.
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Figure 5. G and H1=G∘2K1. 






Figure 5. G and H1=G∘2K1.
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Figure 6. G and H2=ΓG, where Γ=x,a,b,c,y,z. 






Figure 6. G and H2=ΓG, where Γ=x,a,b,c,y,z.
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Figure 7. G and H3=ΦG, where Φ=x,a,b,c,y,z. 






Figure 7. G and H3=ΦG, where Φ=x,a,b,c,y,z.
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Figure 8. Pn and Hn=Ω{Pn}. 






Figure 8. Pn and Hn=Ω{Pn}.
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Figure 9. G1=K2∘2K1, IG1;x=1+x2·IΦK2;x=1+x2·1+4x+x2. 






Figure 9. G1=K2∘2K1, IG1;x=1+x2·IΦK2;x=1+x2·1+4x+x2.
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Figure 10. G1=K4∘2K1, G2=6K1∪ΦK4, and IG1;x=1+x6·IΦK4;x. 






Figure 10. G1=K4∘2K1, G2=6K1∪ΦK4, and IG1;x=1+x6·IΦK4;x.
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Figure 11. G1=C4∘2K1, G2=4K1∪ΓC4 and IG1;x=1+x4·IΓC4;x






Figure 11. G1=C4∘2K1, G2=4K1∪ΓC4 and IG1;x=1+x4·IΓC4;x
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Figure 12. G with ΓG=y,z,x,a,b,c and ΦG=z,x,y,a,b,c. 






Figure 12. G with ΓG=y,z,x,a,b,c and ΦG=z,x,y,a,b,c.
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Figure 13. Non-isomorphic graphs. 






Figure 13. Non-isomorphic graphs.
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