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1. Introduction

Let G be a finite group. Given an element g ∈ G, the symmetry on G with the centre g is the mapping

ηg : G 3 x 7→ gx−1g ∈ G

This is an old notion, which can be found in the book [1]. And it is a very natural one, since

ηg = λg ◦ ι ◦ λ−1g = ρg ◦ ι ◦ ρ−1g
where

λg : G 3 x 7→ gx ∈ G, ρg : G 3 x 7→ xg ∈ G, and ι : G 3 x 7→ x−1 ∈ G

are the left translation, the right translation, and the inversion, respectively. Indeed, it follows from
λg(x) = gx that λ−1g (gx) = x, so λ−1g (x) = g−1x. Consequently, λ−1g = λg−1 . Similarly, ρ−1g = ρg−1 .
Then

λg ◦ ι ◦ λ−1g (x) = λg ◦ ι ◦ λg−1(x) = g(g−1x)−1 = gx−1g and

ρg ◦ ι ◦ ρ−1g (x) = ρg ◦ ι ◦ ρg−1(x) = (xg−1)−1g = gx−1g
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A subset S ⊆ G is symmetric if it is invariant with respect to some symmetry on G. Equivalently,
S is symmetric if there exists an element g ∈ G (centre of symmetry) such that gS−1g = S.

Given r ∈ N, an r-coloring of G is any mapping χ : G→ {1, . . . , r}.

Definition 1.1 For every finite group and r ∈ N, define the numbers sr(G) and σr(G) as follows.

sr(G) is the greatest number of the form k
|G| , where k ∈ N such that for every r-coloring of G there

exists a monochrome symmetric subset of cardinality k.

σr(G) is the greatest number of the form k
|G| , where k ∈ N such that for every r-coloring χ of G there

exists a subset X ⊆ G of cardinality k and element g such that χ(x) = χ(gx−1g) for all x ∈ X .

It is easy to see that

sr(G) ≤
1

r
+

1

|G|
, σr(G) ≤ 1, sr(G) ≥

σr(G)

r

For every finite Abelian groupG, σr(G) ≥ 1
r
, and consequently, sr(G) ≥ 1

r2
[2]. In the non-Abelian case

this inequality fails [3]. In this note we describe groups with σr(G) = 1
r
, σr(G) = 1, and s2(G) = 1

4
.

Since the journal [2] is not easy to access and it is in Ukrainian, we give here also a short proof of the
inequality from [2].

2. The Inequality

In this section we prove the following theorem.

Theorem 2.1 Let G be a finite group of odd order or any finite Abelian group, and let r ∈ N. Then

σr(G) ≥
1

r

and consequently

sr(G) ≥
1

r2

Let G be a finite group. For every r-coloring χ : G→ {1, . . . , r} and g ∈ G, let

S(χ, g) = |{x ∈ G : χ(x) = χ(gx−1g)}|

and let
σ(χ) =

1

|G|
max
g∈G

S(χ, g)

Then
σr(G) = min

χ:G→{1,...,r}
σ(χ)

For every a ∈ G, let
ν(a) = |{x ∈ G : x2 = a}|

Lemma 2.2 For every χ : G→ {1, . . . , r},∑
g∈G

S(χ, g) =
r∑
i=1

∑
(x,y)∈A2

i

ν(yx−1)

where Ai = χ−1(i).
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Proof Computing in two ways the number of all triples (g, x, y) ∈ G × G × G such that gx−1g = y,
we obtain

∑
g∈G

S(χ, g) =
r∑
i=1

∑
(x,y)∈A2

i

|{g ∈ G : gx−1g = y}|

It remains to notice that

|{g ∈ G : gx−1g = y}| = |{g ∈ G : gx−1gx−1 = yx−1}| = ν(yx−1)

Proof of Theorem 2.1 Let χ : G→ {1, . . . , r} and let Ai = χ−1(i). By Lemma 2.2

∑
g∈G

S(χ, g) =
r∑
i=1

∑
(x,y)∈A2

i

ν(yx−1)

If G has odd order, then ν(yx−1) = 1 for any x, y ∈ G. Since the function x21 + · · · + x2r , where
x1 + · · ·+ xr = C, attains minimum when x1 = · · · = xr =

C
r

,

∑
g∈G

S(χ, g) =
r∑
i=1

|Ai|2 ≥
(
|G|
r

)2

+ · · ·+
(
|G|
r

)2

︸ ︷︷ ︸
r

=
|G|2

r

If G is Abelian, then ν(yx−1) > 0 if and only if yx−1 ∈ G2 = {g2 : g ∈ G} and in this case
ν(yx−1) = [G : G2]. Let Cj (1 ≤ j ≤ k) be cosets of G modulo G2, Cj,i = Cj

⋂
Ai. Then

∑
g∈G

S(χ, g) =
r∑
i=1

k∑
j=1

|Cj,i|2 · k ≥ rk

(
|G|
rk

)2

· k =
|G|2

r

Therefore, in each case, there exists an element g ∈ G such that S(χ, g) ≥ |G|
r

and so σ(χ) ≥ 1
r
.

3. Finite Abelian Groups with σr(G) = 1
r

and σr(G) = 1

In this section we describe finite Abelian groups with σr(G) = 1
r

and σr(G) = 1.

Theorem 3.1 σr(G) =
1
r

if and only if r divides |2G|.

Proof Define the subgroups 2G = {2x : x ∈ G} and B(G) = {x ∈ G : 2x = 0}. Denote |2G| = m

and |B(G)| = k. Obviously, |G| = mk.

Consider first the case when r does not divide m. Fix any r-coloring χ of a group G. Let Cj
(1 ≤ j ≤ k) be cosets of G modulo 2G, Cj,i = Cj

⋂
χ−1(i). Then

r∑
i=1

|Cj,i|2 > r
(m
r

)2
=
m2

r

Hence, ∑
g∈G

S(χ, g) = k
k∑
j=1

r∑
i=1

|Cj,i|2 > k2
m2

r
=
|G|2

r



Symmetry 2011, 3 129

Therefore, there exists an element g ∈ G such that S(χ, g) > |G|
r

and so σ(χ) > 1
r
.

Now consider the case where r divides m. By Theorem 2.1, σr(G) ≥ 1
r
, so it suffices to construct a

coloring χ with σ(χ) = 1
r
. Pick subgroup H of a group G such that B(G) ⊆ H and [G : H] = r. Then

[2G : 2H] = r. Define r-coloring χ of G as follows:
(1) every coset of G modulo 2H is monochrome;
(2) every r cosets of G modulo 2H which form a coset of G modulo 2G are colored in r

different colors.
Then

χ(x) = χ(2g − x)⇔ x− (2g − x) ∈ 2H

⇔ 2(x− g) ∈ 2H

⇔ ∃h ∈ H : 2(x− g − h) = 0

⇔ ∃h ∈ H : x− g − h ∈ B(G)

⇔ x− g ∈ H +B(G) = H

⇔ x ∈ g +H.

So S(χ, g) = |H| for every g ∈ G. Therefore σ(χ) = |H|
|G| =

1
[G:H]

= 1
r
.

Theorem 3.2 σr(G) = 1 if and only if one of the following cases holds:

(1) r = 1;
(2) r = 2 and G is a cyclic group of order either 3 or 5;
(3) G is a Boolean group.

Proof Sufficiency is obvious. We need to prove Necessity. Assume on the contrary that neither of
cases (1)–(3) holds.

Suppose first that |G| is even. Then both subgroups 2G and the elementary Abelian 2-group B(G)

are different from G. Pick a, b ∈ G such that a+ b /∈ 2G and a− b /∈ B(G). Define χ : G→ {1, 2} by

χ(x) =

1 if x ∈ {a, b}

2 otherwise

Let g ∈ G. Since a + b /∈ 2G, 2g − a 6= b. If 2g − a = a, then 2g − b 6= b, because a − b /∈ B(G). It
follows that either χ(a) 6= χ(2g − a) or χ(b) 6= χ(2g − b), a contradiction.

Now suppose that |G| is odd. Then 2G = G. Since |G| ≥ 7, we can choose distinct a, b, c ∈ G such
that for any distinct g, x ∈ {a, b, c}, 2g − x /∈ {a, b, c}.

To see this, pick any distinct a, b ∈ G. There is a unique g ∈ G such that b = 2g − a. We then pick
c ∈ G \ {a, b, g, 2a− b, 2b− a}.

Define χ : G→ {1, 2} by

χ(x) =

1 if x ∈ {a, b, c}

2 otherwise
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Let g ∈ G. If g /∈ {a, b, c} and 2g − a = b, then 2g − c /∈ {a, b, c}. If g ∈ {a, b, c}, say g = a, then
2g−b /∈ {a, b, c}. It follows that there is x ∈ {a, b, c} such that χ(x) 6= χ(2g−x), again a contradiction.

Remark Theorem 3.2 describes finite Abelian groups where each r-coloring is symmetric. A coloring
χ of G is symmetric if there exists g ∈ G such that

χ(gx−1g) = χ(x) for all x ∈ G

Obviously, the number of all r-colorings of a group G of order n equals rn. To find the number of
all symmetric r-colorings of a group G is a quite complicated exercise involving Möbious inversion on
the lattice of subgroups. Precise formula for the number of all symmetric r-colorings of finite Abelian
group was established in [4], and the corresponding formula for every finite group has been found only
recently [5] (for the quaternion group, see [6]).

4. Finite Abelian Groups with s2(G) = 1
4

In this section we prove the following.

Theorem 4.1 Let G be a finite Abelian group and n ∈ N.

(1) If G contains subgroup
⊕
n

Z4, then s2n(G) = 1
4n

;

(2) If G does not contain subgroup Z4, then s2(G) > 1
4
.

We first prove some auxiliary statements.

Lemma 4.2 s2n(
⊕
n

Z4) =
1
4n

.

Proof Define the coloring χ :
⊕
n

Z4 →
⊕
n

Z2 by

(χ(x))i =

0 if (x)i ∈ {0, 1}

1 if (x)i ∈ {2, 3}

Fix g ∈
⊕
n

Z4. If χ(x) = χ(2g − x), then (χ(x))i = (χ(2g − x))i. It remains to notice that s2(Z4) =
1
4
.

For every groupG and a coloring χ, let s(χ) denote the cardinality of the largest monochrome symmetric
subset of G divided by |G|.

Lemma 4.3 Let G be a finite group, let f : G → H be a surjective homomorphism and let χ be a
coloring of H . Define coloring ϕ of G by ϕ = χ ◦ f . Then s(ϕ) = s(χ).

Proof Let S be a monochrome subset of G symmetric with respect to g ∈ G. By definition of ϕ it
follows that ϕ(x) = ϕ(gx−1g) if and only if χ(f(x)) = χ(f(g)f(x)−1f(g)). So, f(S) is a monochrome
subset of H symmetric with respect to f(g). Since |S| ≤ | ker f | · |f(S)|,

|S|
|G|
≤ | ker f | · |f(S)|

|G|
=
f(S)

|H|
Thus s(ϕ) ≤ s(χ).
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Conversely, let S be a monochrome subset of H symmetric with respect to h ∈ H . Then f−1(S) is a
monochrome subset of G symmetric with respect to any g ∈ f−1(h). Since |f−1(S)| = | ker f | · |f(S)|,

|f−1(S)|
|G|

=
|S|
|H|

Thus s(ϕ) ≥ s(χ).

Corollary 4.4 Let G be a finite group and let H be a homomorphic image of G. Then sr(G) ≤ sr(H).

Proof of Theorem 4.1 (1) By Theorem 2.1, we have that s2n(G) ≥ 1
4n

. If G contains subgroup
⊕
n

Z4,

then there exists a homomorphism from G onto
⊕
n

Z4. Thus, by Corollary 4.4, s2n(G) ≤ s2n(
⊕
n

Z4).

By Lemma 4.2, s2n(
⊕
n

Z4) =
1
4n

. Thus s2n(G) = 1
4n

.

(2) Suppose that G does not contain Z4. Then G = H × B for some subgroup H of odd order and
Boolean group B (which can be trivial). Let χ be an arbitrary 2-coloring of G. For every b ∈ B define
the coloring χb on H by χb(x) = χ(x, b). Then∑

h∈H

S(χ, h) =
∑
h∈H

∑
b∈B

S(χb, h) =
∑
b∈B

∑
h∈H

S(χb, h)

Since H has odd order, we obtain that ∑
h∈H

S(χb, h) >
|H|2

2

Then ∑
h∈H

S(χ, h) =
∑
h∈H

∑
b∈B

S(χb, h) > |B| ·
|H|2

2

It follows that there exists h ∈ H such that

S(χ, h) >
|B| · |H|

2
=
|G|
2

Consequently,

σ(χ) >
1

2

and hence
s2(G) >

1

4

Theorem 4.1 implies the following two criteria.

Corollary 4.5 For every finite Abelian group G, s2(G) = 1
4

if and only if G contains subgroup Z4.

Corollary 4.6 s2(Zn) = 1
4

if and only if 4|n.

Below we give the corresponding coloring.
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We conclude the paper with the following table (Table 1).

Table 1. Ramsey functions s2(Zn) and σ2(Zn) for n ≤ 8.
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