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1. Introduction

Let us consider a compact connected Lie group G of dimension d endowed with its normalized
biinvariant Haar measure dg. Let us consider the Laplacian ∆ on it. It is equal to

∑
(∂ei)

2 where ei
is an orthonormal basis of the Lie algebra of G. It generates a Markov semi-group Pt:

∂

∂t
Ptf = ∆Ptf (1)

if f is smooth. Moreover there is a strictly positive heat kernel

Ptf(g) =

∫
G

pt(g, g
′)f(g′)dg′ =

∫
G

pt(e, g
−1g′)f(g′)dg′ (2)

when t→∞
Ptf(g)→

∫
G

f(g)dg (3)

Let us consider a Bilaplacian on G, this means a power ∆k k > 1. It generates still a semi-group
P k
t . P k

t is not a Markovian semi-group. This means that the heat kernel pkt (g, g
′) associated to P k

t can
change sign. We have still when t→∞

P k
t f(g)→

∫
G

f(g)dg (4)
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In the first case, the heat semi-group is represented by the Brownian motion on G. In the second case,
there is until now no stochastic process associated to it. In the case of Rd, the path integral involved with
the semi-group P k

t is defined as a distribution in [1].
We are motivated in this work by an extension in infinite dimension of these results, by considering

the case of the path-group C([0, 1], G) from continuous path from [0, 1] into G starting from e.
Let us recall that the Haar measure dg̃ on a topological group G̃ exists as a full measure if and only

if the group is locally compact. Haar measure means that for all bounded measurable function F̃∫
G̃

F̃ (g̃1g̃)dg̃ =

∫
G̃

F̃ (g̃)dg̃ (5)

The difficult requirement to satisfy is the Lebesgue dominated convergence: Let F̃n be a bounded
increasing sequence of measurable functions tending almost surely to F̃ . Then∫

G̃

F̃ndg̃ →
∫
G̃

F̃ dg̃ (6)

Haar measures in infinite dimension were studied by Pickrell [2] and Asada [3]. We have defined
the Haar distribution on a path group by using the Hida-Streit approach of path integrals as distribution
[4–7]. We refer to the review of Albeverio for various rigorous approaches to path integrals [8] and our
review on geometrical path integrals [4,9].

In the case of a path group, we can consider the Wiener process on a path-group t → {s → gs,t}
starting from the unit path (See the work of Airault-Malliavin ([10]), the work of Baxendale [11] and the
review paper of Léandre on that topic [12]). We have shown that

E[F (g.,t)]→
∫
C([0,1],G)

F (g(.))dD (7)

when t → ∞ where dD is the Haar distribution on the path group and F is a test functional of
Hida type [7].

Recently we are motivated by extending stochastic analysis tools in the non-Markovian
context ([13–17]). Especially in [1], we are interested in constructing the sheet and martingales problem
in distributional sense for a big-order differential operator on Rd. We consider for that the Connes
test algebra.

Let us recall what is the main difference between the Hida test algebra and the Connes test algebra.
(1) Hida considers Fock spaces and tensor product of Hilbert spaces.
(2) Connes, motivated by his work on entire cyclic cohomology, considers Banach spaces. Tensor

product of Banach spaces whose theory (mainly due to Grothendieck) is much more complicated than
the theory of tensor product of Hilbert spaces.

In [1], we are motivated by the generalization of martingale problems in the non-Markovian context.
We consider Connes spaces in [1]. In the present context, we are not motivated by that and we return in
the original framework of [7].

We consider the heat semi-group on a path group associated to a bilaplacian on the group in the
manner of [1]. In [1], we look at the case of Rd. Here we consider the case of the compact Lie group G.
The analysis is similar because we have analog estimates of the heat-kernel [18–20].
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In order to resume, we consider an element σ of an Hida Fock space, we associate a functional
Ψ(σ) on the path group. The heat-semi group (in the distributional sense) Qk

t satisfies the three next
properties:

(1) Qk
tΨ(σ) is still in the considered space

(2) Qk
t ◦Qk

t′ = Qk
t+t′

(3) When t→∞
Qk
tΨ(σ)(g.)→

∫
C([0,1],G)

Ψ(σ)dD (8)

Qk
t is not a Markovian semi-group on C([0, 1], G). Especially, Qk

t is not represented by a stochastic
process. However we expect to extend in this context (7).

2. A Brief Review on the Haar Distribution on a Path Group

Let us recall what is the Brownian motion t → Bt on R. We consider the set of continuous path
t → Bt issued from 0 from R+ into R. We consider the sigma-algebra Ft spanned by Bs, s ≤ t. The
Brownian motion probability measure dP is characterized as the solution of the following martingale
problem: if f is any bounded smooth function on R,

t→ f(Bt)−
∫ t

0

∆f(Bs)ds (9)

is a martingale associated to the filtration Ft. This means that

E[(f(Bt)−
∫ t

0

∆f(Bs)ds)G] = E[(f(Bt′)−
∫ t′

0

∆f(Bs′)ds
′)G] (10)

where G is a bounded functional Ft′ measurable (t′ < t).
The Brownian motion is only continuous. However we can define stochastic integrals (as it was done

by Itô). Let s → hs be a bounded continuous process. We suppose that hs is Fs measurable. Then the
Itô integral is defined as follows:∫ 1

0

hsδBs = lim
k→∞

∑
l≤k

h(
l

k
)(B (l+1)

k

−B l
k
) (11)

Moreover we have the Itô isometry

E[(

∫ 1

0

hsδBs)
2] = E[

∫ 1

0

h2sds] (12)

Associated to the Brownian motion is classically associated the Bosonic Fock space.
Let H2 be the Hilbert space of L2 functions h(.) from R+ into R. We consider the symmetric tensor

product H⊗̂
n

2 of H2. It can be realized as the set of symmetric maps hn from (R+)n into R such that∫
(R+)n

|hn(s1, .., sn)|2ds1..dsn = ‖hn‖22 <∞ (13)

The symmetric Fock space WN0 coincides with the set of formal series σ =
∑
hn such that∑

n!‖hn‖2 <∞. To each hn we associate the nth Wiener chaos

Ψ(hn) =

∫
(R+)n

hn(s1, .., sn)δBs1 ...δBsn (14)
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if Bs is the standard R-valued Brownian motion. The definition of the Wiener chaos Ψ(hn) is a small
improvement of the stochastic integral

∫ 1

0
h(s)δBs. By using the symmetry of hn, we have:

Ψ(hn) = n!

∫
0<s1<s2<...<sn

hn(s1, .., sn)δBs1 ...δBsn (15)

Moreover EP [|Ψ(hn)|2] = n!‖hn‖22 and Ψ(hn) and Ψ(hm) are orthogonal in L2(dP ). The L2 of the
Brownian motion can be realized as the symmetric Fock space through the isometry Ψ.

We introduce the Laplacian ∆+ on (R)+ and we consider the Sobolev space H2,k associated to
(∆+ + I)k. On the set of formal series σ =

∑
hn, we choose a slightly different Hilbert structure:

‖σ‖2k,C =
∞∑
n=0

n!Cn‖hn‖22,k <∞ (16)

We get another symmetric Fock space denoted WNk,C . We remark that if k′ ≥ k, C ′ ≥ C

‖σ‖k′,C′ ≥ ‖σ‖k,C (17)

The Hida test function space W.N.∞− is the intersection of W.Nk,C k ≥ 1, C ≥ 1 endowed with the
projective topology. A sequence σn of the Hida Fock space converges to σ for the topology of the Hida
Fock space if σn converges to σ in all W.Nk,C . The map Wiener chaos Ψ realized a map from W.N∞−

into the set of continuous Brownian functional dense in L2(dP ). We refer to the books [21] and [22] for
an extensive study between the Fock space and the L2 of the Wiener measure.

In infinite dimensional analysis, there are basically 3 objects:
(i) An algebraic model.
(ii) A mapping space and a map Ψ from the algebraic model into the space of functionals on this

mapping space.
(iii) A path integral µ which is an element of the topological dual of the algebraic model.
In the standard case of the Brownian motion, µ is the vacuum expectation:

µ[Ψ(σ)] = h0 (18)

A distribution on the Hida Fock space is a linear map µ fromW.N∞− into R which satisfies the following
requirement: there exists k, C,K such that for all σ ∈ W.N∞−

|µ(σ)| ≤ C‖σ‖k,C (19)

Getzler in his seminal paper [23] is the first author who considered another map than the map Wiener
chaos. Getzler is motivated by the heuristic considerations of Atiyah-Bismut-Witten relating the structure
of the free loop space of a manifold and the Index theorem on a compact spin manifold. Getzler used as
algebraic space a Connes space and as map Ψ the map Chen iterated integrals.

Getzler’s idea was developed by Léandre ([9]) to study various path integrals in the Hida-Streit
approach with a geometrical meaning. Especially Léandre ([5–6]) succeeded to define the Haar measure
dD as a distribution on a current group. Let us recall quickly the definition on it. We consider a compact
Riemannian manifold M (S ∈ M ) and a compact Lie group G (g ∈ G). We consider the current
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group C(M,G) of continuous maps S → g(S) from M into G. We consider the cylindrical functional
h(g(S1), .., g(Sr)) on the current group. We have∫

C(M,G)

h(g(S1), .., g(Sr))dD =

∫
Gr

h(g1, .., gr)dg1..dgr (20)

We would like to close this operation consistently. It is the object of [5-6].
(1) Construction of the algebraic model. We consider the positive self-adjoint Laplacian on M × G

∆M×G. We consider the Sobolev space Hk of maps from h M ×G into R such that∫
M×G

((∆M×G + 2)kh)2dSdg = ‖h‖2k (21)

We consider the tensor product H⊗nk associated to it and we consider the natural Hilbert norm on it (dS
and dg are normalized Riemannian measures on M and G respectively). W.Nk,C is the set of formal
series σ =

∑
hn such that ∑

Cn‖hn‖2k = ‖σ‖2k,C <∞ (22)

The Hida test functional space is the space W.N∞− = ∩W.Nk,C endowed with the projective topology.
(2) Construction of the map Ψ. To hn we associate

Ψ(hn)(g(.)) =

∫
[0,1]n

hn(g(S1), .., g(Sn), S1, .., Sn)dS1...dSn (23)

We put if σ =
∑
hn

Ψ(σ) =
∞∑
n=0

Ψ(hn) (24)

The map Ψ realizes a continuous map from W.N∞− into the set of continuous functional on C(G,M).
(3) Construction of the path integral. We put if hn belongs to all the Sobolev Hilbert spaces Hk∫

G,M)

Ψ(hn)dD =

∫
Mn×Gn

hn(g1, .., gn, S1, .., Sn)dg1..dgndS1..dSn (25)

This map can be extended into a linear continuous application from W.N∞− (We say it is a Hida
distribution) into R. This realizes our definition ([5–7]) of the Haar distribution on the current group
C(M,G).

Let I ∈ [0, 1]n. We consider the normalized Lebesgue measure dνn on [0, 1]n. Let Li be the ith partial
Laplacian on Gn. We consider the total operator

Lnt =
n∏
i=1

(Li + 2)
n∏
i=1

(− ∂2

∂s2i
+ 2) (26)

which operates on function hn on Gn × [0, 1]n and we consider its power (Lnt )k. Let hn(gn, I) be a
function on Gn × [0, 1]n. We put

‖hn‖2C,k = Cn

∫
Gn×[0,1]n

|(Lnt )khn(gn, I)|2dgndνn(I) (27)

(dgn is the normalized Haar measure on Gn and dνn the normalized Lebesgue measure on [0, 1]n).
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We put
σ =

∑
hn (28)

and we consider the Hilbert norm
‖σ‖2k,C =

∑
‖hn‖2k,C (29)

Definition 1: The Hida Fock space W.N∞− is the space constituted of the σ defined above such that
for all k ∈ N, C > 0 ‖σ‖2k,C <∞

If σ belongs to W.N∞−, we associate

Ψ(σ)(g(.)) =
∞∑
n=0

∫
[0,1]n

hn(g(s1), .., g(sn), I)dνn(I) (30)

where s→ g(s) belongs to C([0, 1], G).
Theorem 2: If σ ∈ W.N∞−, Ψ(σ) is a continuous bounded function on C([0, 1], G).
We put ∫

C([0,1],G)

Ψ(hn)dD =

∫
[0,1]n×Gn

hn(g1, .., gn, s1, .., sn)dg1..dgnds1..dsn (31)

Let us recall three of the main theorems of [7]:
Theorem 3: dD can be extended as a distribution on the Hida Fock space. This means that there

exists k, C,K such that for all σ ∈ W.N∞−

|
∫
C([0,1],G)

Ψ(σ)dD| ≤ K‖σ‖k,C (32)

Theorem 4: If Ψ(σ) ≥ 0,
∫
C([0,1];G)

Ψ(σ)dD ≥ 0.
Theorem 5: If Ψ(σ) = 0,

∫
C([0,1];G)

Ψ(σ)dD = 0.

3. A Non-Markovian Semi-group on a Path Group

In the sequel, we will suppose that 4k ≥ d. In such a case ( [20]), we have

|pkt (g, g′)| ≤
C

td/4k
G2k,a(

d(g, g′)

t1/4k
) (33)

where Gm,a(u) = exp[−au2m/2m−1]. pkt (g, g′) is the heat-kernel associated to the heat semi-group P k
t

and d is the biinvariant Riemannian distance on G.

P k
t f(g) =

∫
G

pkt (g, g
′)f(g′)dg′ (34)

Moreover, since ∆k is biinvariant

pkt (gg
1, g′g1) = pkt (g

1g, g1g′) = pkt (g, g
′) (35)

Since it is an heat kernel associated to a semi-group, it satisfies the Kolmogorov equation:

pkt+s(g, g
′) =

∫
G

pkt (g, g
1)pks(g

1, g′)dg1 (36)
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This shows that if t ∈ [0, 1] that
‖P k

t f‖∞ ≤ C‖f‖∞ (37)

and that
|P k
t |[|d(e, .)|p](e) ≤ Ctα(k,p) (38)

Remark: We could get in the sequel more general convolution semi-groups [20] with generators of
degree 2k whose associated heat-kernels satisfied still (33).

Let us divide the interval time [0, 1] into in time intervals [tl, tl+1] of length 1/m. Let F be a cylindrical
functional h(gt1 , gt2 , gtm). Let us introduce

P k,m
t h(gt1 , .., gtm) =

∫
Gm

h(gt1g1, .., gtmgm)
m∏
i=1

pkt/m(gi−1, gi)dgi (39)

(g0 = e). This defines a semi-group on Gm. Let us show this statement. We remark

P k,m
s P k,m

t Fm(gt1 , .., tm) =∫
Gm×Gm

h(gt1g1g1, .., gtmgmgm)
m−1∏
i=0

pkt/m(gi, gi+1)
m−1∏
i=0

pks/m(gi, gi+1)dgidgi (40)

We do the change of variable g̃i = gigi ; gi = gi. We recognize in the last expression∫
Gm×Gm

h(gt1 g̃1, .., gtm g̃m)
m−1∏
i=0

pkt/m(gi, gi+1)
m−1∏
i=0

pks/m(g̃ig
−1
i , g̃i+1g

−1
i+1)dgidg̃i (41)

But ∫
Gm

m−1∏
i=0

pkt/m(gi, gi+1)
m−1∏
i=0

pks/m(g̃ig
−1
i , g̃i+1g

−1
i+1)dgi =

∫
Gm

m−1∏
i=0

pkt/m(gi, gi+1)p
k
s/m(g̃i, g̃i+1g

−1
i+1gi)dgi =

∫
Gm

m−1∏
i=0

pks/m(g̃i, gi)p
k
t/m(gi, g̃i+1)dgi =

m−1∏
i=0

pks+t
m

(g̃i, g̃i+1) (42)

We have used the semi-group property (36) of P k
t and the fact that P k

t is biinvariant (35).
We would like to extend by continuity this formula for functionals which depend on an infinite number

of variables Ψ(σ) of the previous type. We put for hn:

µ[Ψ(hn)] =∫
Gn×[0,1]n

hn(g1, .., gn, s1, .., sn)
n−1∏
i=0

pksi+1−si(gi, gi+1)dgidν
n(s1, .., sn) (43)

(s0 = 0). We order s1 < s2 < .. < sn without to loose generality.
We extend µ by linearity.
Theorem 6: µ is a Hida distribution . Moreover if Ψ(σ) = 0, µ[Ψ(σ] = 0.
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Proof: By the property of the cylindrical semi-group listed in the beginning of this part, we have∫
Gn

|hn(g1, .., gn, s1, .., sn)|
n−1∏
i=0

|pksi+1−si(gi, gi+1)|dgi ≤ Cn‖hn‖∞ (44)

where ‖‖∞ is the uniform norm of hn. This uniform norm can be estimated by Sobolev imbedding
theorem by ‖hn‖k,C for some big k and C independent of n. It follows clearly from that µ is an Hida
distribution.

Let us give some details in order to estimate ‖hn‖∞. We introduce the ordered set of eigenvalues λi of
∆. Let (α) = (i1, .., in). Let φi be the normalized eigenvectors associated to λi. We consider C-valued
functions to do that. We introduce φ(α)(g1, .., gn) =

∏
φij(gj). We get

hn =
∑
(α)

λ(α)φ(α) (45)

Therefore
‖hn‖∞ ≤

∑
(α)

‖λ(α)‖∞‖φ(α)‖∞ (46)

By Garding and Sobolev inequality, the right-hand side of the previous inequality is smaller than

Cn
∑
(α)

K−l(α)‖λ(α)‖k,C‖φ(α)‖k,C (47)

for some big k, some big C and some big l.

K(α) =
∏
i∈(α)

(2 + λi) (48)

Let us recall that λi ≥ 0 and that λi ≥ Cimfor some m ([24]). We apply Cauchy-Schwartz inequality
in (47). We deduce that

‖hn‖∞ ≤ Cn{
∑
(α)

K−l(α)}
1/2{

∑
(α)

‖λ(α)|2k,C‖φ(α)‖2k,C}1/2 (49)

But ∑
(α)

‖λ(α)‖2k,C‖φ(α)‖2k,C = ‖hn‖2k,C (50)

Moreover, by [8], λi ≥ Cim for some i. Therefore if l is big enough,
∑

(α)K
−l
(α) is finite bounded

independently of n.
Let us consider the polygonal approximation of mesh 1/l gl. of g.. If Ψ(σ) = 0, we get Ψ(σ)(gl.) = 0.

But Ψ(σ)(gl.) is a cylindrical functional which depends only of gt1 , .., gtl = x1. We use the properties
listed in the beginning of this part. We get

P k,l
1 [Ψ(σ)(gl.)](e) = 0 (51)



Symmetry 2011, 3 80

by the property listed of the beginning of the cylindrical semi-group P k,l
t . It remains to show that when

l→∞ that P k,l
1 [Ψ(σ)(gl.)] is very close from µ[Ψ(σ)(g.)]. This follows from the next consideration. Let

hn be an elementary tensor product. We get clearly

|µ[Ψ(hn)(gl.)]− µ[Ψ(hn)(g.)]| ≤ Cn‖hn‖1,∞
n∑
i=0

∫
[0,1]n×G

|d(e, gi)|(|pksi−[si]−(e, gi)|+ |pk[si]+−si(e, gi)|)dgidν
n(s1, .., sn) (52)

where [s]− denotes the supremum of the time of the subdivision smaller to s and [s]+ denotes the
infimum of the time of the subdivision larger to s. ‖hn‖1,∞ is the uniform C1 norm of hn. This norm can
be estimated by the Sobolev imbedding theorem by ‖hn‖k1,C1

for k1 and C1 independent of n as in (50).
It remains to use the inequality (35) to conclude.♦
Definition 7: µ is called the Wiener distribution issued from the unit path associated to ∆k.
Let hn be a smooth function from Gn × [0, 1]n into R. We suppose that 0 < s1 < s2.. < sn in order

to simplify the exposition. We put

P k,n
t F n(g1, .., gn, s1, .., sn) =∫

Gm

hn(g1y1, .., gmyn, s1, .., sn)
n−1∏
i=0

pkt(si+1−si)(yi, yi+1)dyi (53)

P k,n
t is the cylindrical semi-group on cylindrical functional associated to gs1 , .., gsn .

lemma 8: There exist a C ′ bounded when t is bounded and which depend not of n, a k′ which depend
only of k and not on n such that

‖P k,n
t hn‖C,k ≤ ‖hn‖C′,k′ (54)

Proof: If we take derivative in gi, the result comes by taking derivative under the sign integral in (43).
The result arises then from (37). Let us take first of all derivative in si. Either we take derivative of
hn and the result goes by the same way. Or we take derivative in si+1 or si of the heat kernel pks . We
represent in the way (43) the integral, we remark that the heat kernel satisfies the heat-equation and we
integrate by parts in order to conclude.♦

Let us suppose that the time subdivision is fixed. Clearly

P k,n
t′ ◦ P

k,n
t = P k,n

t+t′ (55)

Let hn be a function from Gn × [O, 1]n into R. We put

Qk
t [Ψ(hn)](g.) =

∫
[0,1]n

P k,n
t hn(gs1 , .., gsn , s1, .., sn)dνn(s1, .., sn) (56)

Theorem 9: Qk
t can be extended by linearity as a continuous linear operator on the Hida Fock space.

If Ψ(σ)(g.) = 0, Qk
t [Ψ(σ)](g.) = 0 and we get the semi-group property

Qk
t [Q

k
t′ [Ψ(σ)]](g.) = Qk

t+t′ [Ψ(σ)](g.) (57)

if σ belong to W.N∞−.
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Proof: The fact that Qk
t can be extended by linearity follows from the previous lemma.

Qk
t [Ψ(σ)](x.) = 0 if Ψ(σ) = 0 holds exactly as in the proof of Theorem 6. For a simple element

hn of the Hida Fock space, we have clearly:

Qk
t [Q

k
t′ [Ψ(hn)]](g.) = Qk

t+t′ [Ψ(hn)](g.) (58)

This result can be extended by continuity.♦

4. Long Time Behaviour

The main theorem of this paper is the following:
Theorem 10: If σ belong to W.N∞−, then when t→∞

Qk
t [Ψ(σ)](e.)→

∫
C([0,1];G)

Ψ(σ)dD (59)

where e. is the unit path.
Proof: Let us decompose L2(G) in an orthonormal basis of eigenvectors φi of ∆ associated to the

eigenvalues λi. Classically [24], supg |φi(g)| ≤ Cim0 and λi ≥ Cim1 for some positive m0 and m1.
Classically the heat kernel is given by

pkt (g, g
′) = 1 +

∑
i>0

exp[−λki ]φi(g)φi(g
′) (60)

>From the previous bound, we deduce if t ≥ 1

sup
g,g′
|pkt (g, g′)| ≤ C <∞ (61)

P k,n
t is associated if s1 < s2 < .. < sn < 1 to a invariant elliptic operator on Gn. It has therefore the

unique invariant measure ⊗dgi. This shows that if hn is an element of the Hida Fock space that

P k,n
t hn(e, .., e, s1, sn)→

∫
Gn

hn(g1, .., gn, s1, .., sn)
n∏
i=1

dgi (62)

provided all si are different.
By the previous estimates, if t ≥ 1

sup |P k,n
t hn| ≤ Cn‖hn‖∞ (63)

where ‖hn‖∞ is the supremum norm of hn which can be estimated by Sobolev imbedding theorem by
‖hn‖C′,k′ for some C ′, some k′ independent of n. Therefore

Qk
t [Ψ(σ)](e.) =

∞∑
n=0

∫
[0,1]n

P k
t [hn](e, .., e, s1, ..sn)ds1..dsn (64)

By the dominated Lebesgue convergence, this tends when t→∞ to
∞∑
n=0

∫
Gn×[0,1]n

hn(g1, .., gn, s1, .., sn)
n∏
i=1

dgi

n∏
i=1

dsi =

∫
C([0,1];G)

Ψ(σ)dD (65)

♦
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5. Conclusions

We define a non-Markovian semi-group on a path group which acts on a Hida type test algebra on the
path group and we study its long time behaviour related to the Haar distribution on the path group.
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