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Abstract: Pentalene has recently received a considerable amount of attention as a ligand in 

sandwich-type transition metal complexes. In contrast, dibenzo[a,e]pentalene (hereafter 

denoted as dibenzopentalene), which is more -extended than pentalene, has received less 

attention, despite its potential usefulness as a building block of ladder-type -conjugated 

molecules, which have recently received growing interest. However, very recently, several 

novel efficient methods for the synthesis of dibenzopentalenes have been reported. This 

review surveys recent advances in the synthesis and reactions of dibenzopentalenes and 

describes the aromaticity of their ionic species. 

Keywords: dibenzopentalene; thermolysis; skeletal rearrangement; reductive cyclization; 

catalyst; redox reaction 

 

1. Introduction  

The parent pentalene has 8 electrons, which indicates its antiaromatic nature, and is very highly 

reactive, having only been observed using a matrix isolation technique at 196 °C (Chart 1) [1,2]. In 

contrast, its dianion has 10 electrons and is calculated to have considerable aromaticity [3]. The stable 

pentalene dianion was first synthesized in 1962 [4,5] and the X-ray crystal structure of its dilithium salt 

was reported in 1991 [6]. On the other hand, no reports on the generation of a pentalene dication have 

appeared to date, and its aromaticity is still controversial [3,7]. The pentalene dianions are now widely 

used as ligands of sandwich-type transition metal complexes [8-11]. However, the 

dibenzo[a,e]pentalenes (hereafter denoted as dibenzopentalenes), which are more -extended than the 

pentalenes have received less attention despite their potential usefulness as building blocks of ladder-

type -conjugated molecules, which are of growing recent interest (Figure 1). The main reason for this 
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is a limited number of methods for the synthesis of dibenzopentalene frameworks, even though 

synthesis of a dibenzopentalene was first reported in 1912 [12]. However, very recently, efficient and 

unique methods for the synthesis of dibenzopentalenes together with reports of their reactivity have 

successively appeared. It is therefore time to briefly survey the recent advances in the synthesis and 

reactions of dibenzopentalenes and to discuss the aromaticity of their derivatives. 

Figure 1. Pentalene and Dibenzo[a,e]pentalene. 

 

 

 

 

2. Early Studies on the Preparation of Dibenzopentalenes 

The first synthesis of dibenzopentalenes 1a-b was reported by Brand in 1912 [12]. The key starting 

compound was diphenylsuccindanedione 2 [13-15], which was synthesized from diphenylsuccinic 

acid. Treatment of 2 with phenylmagnesium bromide and p-tolylmagnesium bromide followed by an 

addition of ammonium chloride afforded the corresponding diols 3a and 3b, respectively (Scheme 1) 

[12]. Diols 3a and 3b were treated with formic acid to provide dibenzopentalenes 1a and 1b. This 

method could be applied to introduce other aryl or alkyl groups, such as o-anisyl [16], p-anisyl [16], 

methyl [17] and ethyl [17] groups, leading to the formation of dibenzopentalenes 3c-3f (Scheme 1). 

Scheme 1. Early Studies on the Preparation of Dibenzopentalenes from Diphenylsuccindanedione 2. 

 

 

 

 

 

 

 

 

 

 

The parent dibenzopentalene 1g was first synthesized from dihydrodibenzopentalene 4a, which was 

prepared from diphenylsuccindanedione 2 via tetrachlorodibenzopentalene 4b (Scheme 2) [18]. 

Diphenylsuccindanedione 2 reacted with phosphorus pentachloride to afford 4b [19,20], which was 

treated with zinc to provide 4a [20]. Treatment of 4b with bromine followed by silver acetate provided 

the parent dibenzopentalene 1g in 59% yield (Scheme 2) [18]. 
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Scheme 2. Preparation of the Parent Dibenzopentalene 1g. 

 

 

 

 

 

Dibromodibenzopentalene 1h was prepared by the thermolysis of dibenzotricyclic tetrabromide 5 

[21] and by the reaction of 5 with sodium iodide (Scheme 3) [22]. Bromination of 

tetrahydrodibenzopentalene 6 followed by dehydrobromination also afforded 1h (Scheme 3) [22]. 

Scheme 3. Preparation of the Dibromodibenzopentalene 1h. 

 

 

 

 

 

3. Preparation of Dibenzopentalenes by Thermolysis 

Thermolysis, such as the flash vacuum pyrolysis (FVP) technique, is sometimes a very powerful 

tool for the creation of rigid -frameworks through somewhat unexpected and complex reaction 

pathways. 

Bis(pentachlorophenyl)acetylene 7 was heated at 350 ºC for 45 min to afford perchloro-1,2,3-

triphenylnaphtalene 8 (42%) as a main product with perchloro-2,3,8-triphenylbenzofulvene 9 (31%) 

and perchlorodibenzopentalene 10 (1%) (Scheme 4) [23]. Prolonged heating of 7 for 2 h revealed an 

increase of the yield of 10 (23%) and a decrease of the yields 9 (10%): hence, dibenzopentalene 10 was 

formed via 9.  

Scheme 4. Thermolysis of Perchloro-1,2,3-triphenylnaphtalene 8. 

 

 

 

 

 

 

 

 

 

Flash vacuum pyrolysis of diphenylbutadiyne 11 at 1120 ºC/0.03 Torr gave a pyrolysate (22% mass 

recovery), which consisted of dibenzopentalene 1g (19%), fluoranthene 12 (59%), acephenanthrylene 

13 (13%), aceanthrylene 14 (2%) and unreacted 11 (7%) (Scheme 5) [24].  
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Scheme 5. Flash Vacuum Pyrolysis of Diphenylbutadiyne 11. 

 

 

 

 

 

 

 

 

 

Flash vacuum pyrolysis of 3-phenylnaphthalene-1,2-dicarboxylix anhydride 15 at 900 ºC/0.04 

mmHg also gave dibenzopentalene 1g (95%) and a plausible mechanism for the formation of 1g was 

proposed (Scheme 6) [25]. 

Scheme 6. Flash Vacuum Pyrolysis of 3-Phenylnaphthalene-1,2-dicarboxylic Anhydride 15. 

 

 

 

 

 

Flash vacuum pyrolysis of 9,10-bis[(methoxysilyl)methyl]anthracene 16 at 550 ºC/10-3 mmHg also 

gave dibenzopentalene 1g (48%), and a very complicated mechanism was proposed (Scheme 7) [26].  

Scheme 7. Flash Vacuum Pyrolysis of 9,10-Bis[(methoxysilyl)methyl]anthracene 16. 

 

 

 

 

 

Benzo[b]biphenylene 16, benzo[b]fluorenone 17 and 5,12-naphthacene quinone 18 were also heated 

in the gas phase to provide dibenzopentalene 1g and fluoranthene 12, and the ratios of 1g to 12 were 

dependent on the reaction temperature (Scheme 8) [27]. 

Thermolysis is indeed efficient for the preparation of dibenzopentalenes. However, it needs a 

special apparatus: hence, it is rather difficult to carry out. Moreover, it is difficult to prepare 

functionalized dibenzopentalenes using thermolysis. 
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Scheme 8. Flash Vacuum Pyrolysis of Benzannulated Compounds. 

 

 

 

 

 

 

 

 

 

 

 

4. Preparation of Dibenzopentalenes from Dibenzocyclooctene Derivatives through Skeletal 

Rearrangement 

Anionic dibenzocyclooctene derivatives are known to undergo skeletal rearrangements to afford the 

corresponding dibenzopentalenes. 

Treatment of 5,6,11,12-tetrabromodibenzo[a,e]cyclooctatetraene 19 with alkyllithiums followed by 

an addition of phenyllithium and electrophiles provided dihydrodibenzopentalenes 4c-4i  

(Scheme 9) [28]. However, when compound 19 was treated with phenyllithium without a treatment 

with electrophiles, 5,10-diphenyldibenzopentalane 1a was also obtained. 

Scheme 9. Reactions of 5,6,11,12-Tetrabromodibenzo[a,e]cyclooctene 19 with Lithium 

Reagents. 

 

 

 

 

 

 

 

 

 

A similar method starting from dibenzocyclooctadiyne 20 was very recently reported [29]. 

Dibenzocyclooctadiyne 20 reacted with alkyllithiums to provide the corresponding anionic 

intermediates 21, which underwent isomerization to anionic dibenzopentalenes 22. The reactions were 

terminated with electrophiles to afford dibenzopentalenes 1h-1s in very good yields (6178%) 

(Scheme 10) [29].  
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Scheme 10. Preparation of Dibenzopentalenes from Dibenzocyclooctadiyne 20. 

 

 

 

 

 

 

 

 

 

 

 

 

To introduce an aryl group to the dibenzopentalene skeleton, treatment of 20 with butyllithium 

followed by iodine afforded iodo-derivative 1t, which reacted with arylboronic acids and 

aryltributylstannanes through Suzuki-Miyaura and Migita-Kosugi-Stille coupling reactions, 

respectively, to provide the corresponding aryl derivatives 1u-1y in good yields (5070%)  

(Scheme 11) [29]. 

Scheme 11. Preparation of Aryl-substituted Dibenzopentalenes.  
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5. Preparation of Dibenzopentalenes through Reductive Cyclization 

The intramolecular cyclization reactions of o-substituted phenylacetylenes are of considerable use 

for the preparation of benzannulated five-membered ring compounds, such as indenes, indoles, 

benzofurans and benzothiophenes [30,31]. A very sophisticated application of this methodology to 

prepare dibenzopentalene skeletons was very recently reported by Yamaguchi [32]. Reduction of o,o’-

bis(arylcarbonyl)diphenylacetylenes 23 with lithium naphthalenide produced dibenzopentalenes 1 

(825% yields) together with 5,10-dihydroxy-5,10-dihydrodibenzopenatanes 4 (2952% yields) 

(Scheme 12). Since dihydroxy derivative 4k reacted with lithium naphthalenide to afford the 

corresponding dibenzopentalenes 1a in 49% yield (Scheme 13), Li2O was eliminated from dilithium 

alkoxide intermediate 24. 
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Scheme 12. Reductive Cyclization of o,o’-Bis(arylcarbonyl)diphenylacetylenes 23.  

 

 

 

 

 

 

 

Scheme 13. Mechanism for the Formation of Dibenzopentalene.  

 

 

 

 

Scheme 14. Formation of Dibenzopentalene by Reduction of Phenylsilylacetylene. 

 

 

 

 

 

 

 

 

 

 

 

 

Another example of reductive cyclization of a phenylacetylene to form a dibenzopentalene is rather 

unexpected. We recently reported the reduction of phenyl(tri-i-propylsilyl)acetylene 25a with lithium 

providing dilithium dibenzopentalenide 26a as well as 1,4-dilithio-1,3-butadiene 27a, which were 

treated with iodine to afford the corresponding dibenzopentalene 1aa (8%) and 1,4-diiodo-1,3-

butadiene 28a (28%), respectively (Scheme 14) [33]. Since phenylsilylacetylenes are usually reduced 

by lithium to afford 1,4-dilithio-1,3-butadienes [34,35], the formation of dilithium dibenzopentalenide 

26a is surprising and unprecedented. However, the reduction of phenyl(t-butyldimethylsilyl)acetylene 

25b with lithium produced only the corresponding 1,4-dilithio-1,3-butadiene 27b: thus, the reaction 

mode is quite sensitive to bulkiness of the silyl substituent of phenysilylacetylene, even though the 

reason for this is still unclear. 
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6. Preparation of Dibenzopentalenes in the Presence of Catalysts 

Catalytic reactions for the preparation of dibenzopentalenes have also been reported. In early 

studies, the key starting compound was 1,2-bis(phenylethynyl)benzene (29a), treatment of which with 

PtCl4 in benzene afforded a Pt-complex of dibenzopentalene 1bb, an unstable compound that 

converted to 1bb during purification (Scheme 15) [36,37]. The yield of 1bb was 85%. This method 

was later applied for the preparation of dibenzopentalenes 1cc-1ff (Scheme 15) [38]. When PdCl2 was 

used as a catalyst, a Pd-complex of 1bb was isolated and treatment of the resulting complex with 

triphenylphosphine provided 1bb, even though the yield was very low. A mixture of H2PtCl6·6H2O 

and Aliquat 336® (Aliquat = methyltrioctylammonium chloride) was also used as a catalyst for the 

preparation of 1bb with 80% yield [39]. When the reactions were carried out in the presence of dialkyl 

acetylenedicarboxylates, the corresponding adducts 1gg-1ii were obtained (2536% yields) together 

with 1bb (Scheme 16) [40]. 

Scheme 15. Formation of Dibenzopentalene from 1,2-Bis(phenylethynyl)benzene (29a). 

 

 

 

 

 

 

 

Scheme 16. Cyclization of 1,2-Bis(phenylethynyl)benzene (29a) in the Presence of Dialkyl 

Acetylenedicarboxylates. 

 

 

 

 

 

 

 

 

The cyclization reactions of 1,2-bis(phenylethynyl)benzenes to afford dibenzopentalenes were 

surprisingly catalyzed by tellurium (Scheme 17) [38]. Heating of 29a with a catalytic amount of 

tellurium in pentachloroethane (PCE) under reflux provided dibenzopentalene 1jj in 61% yield 

through a halogen transfer reaction (Scheme 17). When 29a was heated with a catalytic amount of 

tellurium in tetrabromoethane at 170 °C, the corresponding bromodibenzopentalene 1kk was obtained 

in 6% yield (Scheme 18) [38]. Treatment of 29b with a catalytic amount of tellurium in PCE under 

reflux produced a 1:1 mixture of 1ll and 1mm in 79% yield. Likewise, 29c reacted in PCD in the 

presence of a catalytic amount of tellurium to afford an 1:1 mixture of 1nn and 1oo in 83% yield. 
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Scheme 17. Cyclization of 1,2-Bis(phenylethynyl)benzenes Catalyzed by Tellurium in 

Pentachloroethane. 

 

 

 

 

 

 

 

 

Scheme 18. Cyclization of 1,2-Bis(phenylethynyl)benzenes Catalyzed by Tellurium in 

Tetrabromoethane. 

 

 

 

 

 

Two phenylacetylenes, one of which has a halogen atom and the other of which has a Bu3Sn group 

were coupled in the presence of CsF, tBu3P and Pd2(dba)3 to give dibenzopentalenes (Scheme 19) [41]. 

The coupling reaction of 30a and 31a under the reaction conditions shown in Scheme 19 provided 

dibenzopentalene 1a in 61% yield. A crossover coupling reaction of 30b and 31a under the same 

conditions afforded homocoupled products 1a (20% yield) and 1qq (trace), as well as the crossover-

coupled product 1pp (40% yield), suggesting that the homocoupling reaction of 31a would proceed.  

Heating of 31a and 31b afforded 1a and 1qq, respectively in very high yields with 2 equivalents of 

hydroquinone, Cs2CO3 and CsF in the presence of catalytic amounts of tBu3P and Pd2(dba)3 in 1,4-

dioxane at 135 ºC (Scheme 20) [41]. This method could be applied for the preparation of a variety of 

dibenzopentalenes (5572% yields) (Scheme 21) [41]. The most striking feature of this catalytic 

system is that a heteroaromatic analog 34 of a dibenzopentalene was able to be synthesized. 

Scheme 19. Coupling of Two Acetylenes in the Presence of CsF, tBu3P and Pd2(dba)3. 
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Scheme 20. Homocoupling of Acetylenes with hydroquinone, Cs2CO3 and CsF in the 

Presence of tBu3P and Pd2(dba)3. 

 

 

 

 

 

 

 

 

 

Scheme 21. Preparation of a Variety of Functionalized Dibenzopentalenes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another catalytic synthesis of a dibenzopentalene from 2-halophenylacetylene was carried out using 

Pd(PPh3)2Cl2 and CuI (Scheme 22) [42]. Heating of a mixture of 2-iodophenylacetylene 35 with 

Pd(PhCN)Cl2, PPh3 and CuI in toluene and diisopropylamine at 90 °C provided dibenzopentalene 1tt 

in 67% yield (Scheme 22). Although this system is simpler than that in Scheme 21, no further 

applications for the synthesis of dibenzopentalenes have been reported. 

Scheme 22. Preparation of Dibenzopentalene from 2-Iodophenylacetylene. 
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Being inspired by this catalytic system, an extremely simple synthesis of dibenzopentalenes from 2-

bromoethynylbenzenes was reported. Treatment of 2-bromoethynylbenzene 25d with an equivalent of 

Ni(PPh3)2Cl2 and 1.5 equivalents of Zn at 80 ºC produced dibenzopentalene 1uu in 41% yield (Scheme 

23) [43]. Reaction of 25d with Ni(cod)2 and PPh3 at 50 °C afforded Ni complex 36, which was 

transformed into 1uu at 80 ºC. In the initial step, a generated intermediate Ni(0) complex Ni(PPh3)2 

therefore underwent oxidative addition to 25d to give 36. The yield of 1uu was improved to 46% in 

the presence of Ni(cod)2, PPh3 and Zn at 110 ºC. This method enabled the synthesis of a variety of 

dibenzopentalenes (1324% yields) (Scheme 24 and 25) [43]. It is noted that the electronic nature of 

substituents on the aromatic rings did not affect the formation of dibenzopentalenes. 

Scheme 23. Preparation of Dibenzopentalene with Ni(0) Catalyst. 

 

 

 

 

 

 

 

 

 

Scheme 24. Preparation of Functionalized Dibenzopentalenes with Ni(0) Catalyst. 

 

 

 

 

 

 

Scheme 25. Preparation of Diaryl-substituted Dibenzopentalenes with Ni(0) Catalyst. 
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five and three steps, respectively. Compounds 37 and 38 were subjected to standard Heck reaction 

conditions to afford indene derivative 39 in 53% yield (Scheme 26) [45]. Oxidative cyclization of 39 

occurred in the presence of FeCl3 to provide dibenzopentalene 1ab in 38% yield (Scheme 26) [45]. 

Scheme 26. Preparation of Dibenzopentalene through a Coupling Reaction of Stilbene and 

Tolane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Preparation of Dibenzopentalene Polymer by Electrochemical Polymerization 

Starting from diketone 2, thienyl-substituted dibenzopentalenes were synthesized by the classical 

method (Scheme 27) [15]. Diketone 2 reacted with thienyllithium or thienylmagnesium bromide to 

afford the corresponding adducts, which were treated with acid to provide thienyl-substituted 

dibenzopentalenes 1ac-1ae. When a cyclic voltammetric analysis of 1ac was carried out, the growth of 

a new redox system was observed upon scanning between 1.0 and 1.2 V and the electrode was 

modified, suggesting polymerization of 1ac on the electrode. The anodic study of the modified 

electrode between 1.0 and 1.5 V revealed that the original species on the modified electrode was 

further modified, perhaps due to intramolecular cyclization or polymerization through the benzene 

moiety (Scheme 28) [15]. The band gap of the resulting polymer was estimated to be about 2.2 V.  
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Scheme 27. Preparation of Thienyl-substituted Dibenzopentalenes from Diketone 2. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 28. Electrochemical Polymerization of Dibenzopentalene 1ac. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Aromaticity of Dibenzopentalenes 

To evaluate aromaticity of dibenzopentalene, current densities in -systems induced by external 

magnetic fields were calculated [46]. The current pattern of dibenzopentalene has three distinct regions, 

and the central paratropic ring current in the two five-membered rings is bordered by diatropic ring 

currents in the two benzene rings. The paratropic ring current in the central five-membered rings is 

derived from two -electrons in the HOMO, whereas the diatropic benzene ring currents arise from 

several orbitals that lie just below the HOMO. This regional character of the current patterns is 

consistent with NICS [47] values for individual rings: the NICS values of the five- and six-membered 

rings are 7.4 and 9.8 ppm, respectively.  
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9. Ionic Species of Dibenzopentalenes 

Redox behavior of dibenzopentalenes is of considerable interest because two-electron oxidation and 

reduction of dibenzopentalenes afford the corresponding 14 dications and 18 dianions, respectively, 

which are both expected to be aromatic. 

Treatment of dibenzopentalenes 1e and 1g with excess SbF5 in SO2ClF resulted in dark green and 

violet-purple solutions, respectively, attributed to the formation of dications 40 (Scheme 29) [48,49]. 

The 1H NMR spectra of the resulting solutions showed considerable downfield resonances, compared 

with those of the starting 1e and 1g, suggesting that dications 40 are aromatic. 

Scheme 29. Formation of Dications of Dibenzopentalenes. 

 

 

 

 

 

 

Dianion 26b of the parent dibenzopentalene 1g was synthesized by the reaction of 

dihydrodibenzopentalene 4a with butyllithium (Scheme 30) [48,49]. Although the H1 and H9 

resonated upfield, compared with those of 1g, the other protons on the benzene rings were deshielded, 

suggesting diatropic ring current over the perimeter of the framework. It is therefore concluded that 

26b should be regarded as a peripheral aromatic dianion. Dianion 26c of dibenzopentalene 1e was 

synthesized by the reaction of 1e with lithium, and a considerably aromatic character was observed 

(Scheme 30) [48,49]. 

Scheme 30. Formation of Dianions of Dibenzopentalenes. 

 

 

 

 

 

 

Very recently, the first report on the molecular structure of a dianion of a dibenzopentalene has 

appeared (Scheme 14) [33]. The X-ray crystallographic analysis of 26a revealed that the five-

membered rings contain nearly equalized CC bond lengths, whereas a slight bond alternation in those 

of the six-membered ring is found, suggesting preferable aromatic delocalization in the five-membered 

ring over benzenoid delocalization. Similar trends were also found in some benzannulated anions  

[50-56]. Dianion 26a was also synthesized by the reaction of the corresponding dibenzopentalene 1aa 

with lithium (Scheme 31) [57]. Oxidation of 26a occurred by treatment with iodine to provide 1aa.  
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Scheme 31. Reversible Redox Behavior of Dibenzopentalene 1aa. 

 

 

 

 

 

Dications and dianions are formed through the cation radical and the anion radical, respectively. 

The synthesis of cation radicals 41a and 41b of dibenzopentalenes were accomplished by the reactions 

of dibenzopentalenes 1e and 1g with aluminum trichloride, the formation of which was evidenced by 

ESR spectroscopy (Scheme 32) [58]. Respective anion radicals 42a and 42b of 1e and 1g were 

synthesized by the reactions of 1e and 1g with potassium (Scheme 33) [58]. 

Scheme 32. Formation of Cation Radicals of Dibenzopentalenes. 

 

 

 

 

 

 

Scheme 33. Formation of Anion Radicals of Dibenzopentalenes. 

 

 

 

 

 

 

Subsequent challenging tasks are to characterize molecular structures of cation radicals, anion 

radicals and dications of dibenzopentalenes. 

10. Reactions of Dibenzopentalenes 

Although a variety of dibenzopentalenes can now be synthesized, their reactivity has been explored 

very little. Very recently, unique reactions of a dibenzopentalene were reported. Dibenzopentalene 1aa 

reacted with methyllithium to quantitatively produce lithium 5-methyldibenzopentalenide 42, the 

structure of which was established by X-ray crystallographic analysis (Scheme 34) [57]. Since  

6,6-dimethylfulvene derivative reacted with methyllithium to give the corresponding lithium  

t-butylcyclopentadienide [59], 1aa reacted with methyllithium as a fulvene to give 43. The CC bond 

lengths of the cyclopentadienyl anion moiety differ slightly, in contrast to dilithium 

dibenzopentalenide 26a [33], which displays no alternation of the CC bonds in the five-membered 

ring. The six-membered ring adjoining the anionic five-membered ring also has different CC bond 
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lengths in the anion. On the other hand, remarkable alternation of the CC bonds is found in the 

cyclopentadiene ring of 43. Nucleus-Independent-Chemical-Shifts (NICS) values calculated at 1.0 Å 

above (12.5 ppm) and below (12.9 ppm) the cyclopentadienide ring [47,60] of the model compound 

of 43 are negative, suggesting aromatic character of the cyclopentadienide ring. 

Scheme 34. Reaction of Dibenzopentalene 1aa with Methyllithium. 

 

 

 

 

 

 

Dibenzopentalene 1aa reacted with bromine and iodine to provide the corresponding 

dihalodibenzopentalenes 1af and 1ag in very high yields (Scheme 35) [57]. Dihalodibenzopentalenes 

would be good starting compounds for further functionalization of dibenzopentalenes. 

Scheme 35. Reaction of Dibenzopentalene 1aa with Halogens. 

 

 

 

 

 

 

11. Summary and Outlook 

Dibenzopentalenes have long been known, and their unique redox behavior leading to 14 and 18 

aromatic species is well established. However, their chemistry is still limited because of the lack of 

versatile synthetic methods. Very recently, there have been reported several efficient methods for the 

synthesis of a wide variety of dibenzopentalenes, together with their unique reactions. It is therefore 

appropriate to cultivate a new chemistry of dibenzopentalenes, which would be applied as building 

blocks of new -extended sandwich complexes and redox-active materials. 
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