
Symmetry 2010, 2, 907-915; doi:10.3390/sym2020907

OPEN ACCESS

symmetry
ISSN 2073-8994

www.mdpi.com/journal/symmetry

Article

Study of Dynamical Chiral Symmetry Breaking in (2 + 1)
Dimensional Abelian Higgs Model
Jian-Feng Li 1, Shi-Song Huang 2, Hong-Tao Feng 3, Wei-Min Sun 1,4 and Hong-Shi Zong 1,4,?

1 Department of Physics, Nanjing University, Nanjing 210093, China
2 Department of Physics, Nanjing Normal University, Nanjing 210097, China
3 Department of Physics, Southeast University, Nanjing 211189, China
4 Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China

? Author to whom correspondence should be addressed; E-Mail: zonghs@chenwang.nju.edu.cn.

Received: 5 October 2009; in revised form: 10 April 2010 / Accepted: 15 April 2010 /
Published: 19 April 2010

Abstract: In this paper, we study the dynamical mass generation in the Abelian Higgs
model in 2 + 1 dimensions. Instead of adopting the approximations in [Jiang H et al., J.
Phys. A 41 2008 255402.], we numerically solve the coupled Dyson–Schwinger Equations
(DSEs) for the fermion and gauge boson propagators using a specific truncation for the
fermion-photon vertex ansatz and compare our results with the corresponding ones in
the above mentioned paper. It is found that the results quoted in the above paper remain
qualitatively unaffected by refining the truncation scheme of the DSEs, although there exist
large quantitative differences between the results presented in the above paper and ours. In
addition, our numerical results show that the critical number of fermion flavor Nc decreases
steeply with the the gauge boson mass ma (or the ratio of the Higgs mass mh to the gauge
boson mass ma, r = mh

ma
) increasing. It is thus easier to generate a finite fermion mass by

the mechanism of DCSB for a small ratio r for a given ma.
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1. Introduction

Quantum electrodynamics in 2+1 dimensions (QED3) has been extensively studied for over twenty
years. It has many features similar to quantum chromodynamics (QCD), such as spontaneous
chiral symmetry breaking in the massless fermion limit and confinement [1–13]. Moreover, it is
super-renormalizable, so it does not suffer from the ultraviolet divergence which are present in QED4.
Due to these reasons it can serve as a toy model of QCD. In parallel with its relevance as a tool to
gain insight into the aspects of QCD, QED3 is also found to be equivalent to the low-energy effective
theories of strongly correlated electronic systems. Recently, QED3 has been studied in high Tc cuprate
superconductors [14–23], quantum Heinsenberg antiferromagnets [24], and fractional quantum Hall
effect [25]. In particular, some authors have made progress in studying the property of graphene based
on QED3 [26–28].

Dynamical chiral symmetry breaking (DCSB) occurs when the massless fermion acquires a nonzero
mass through non-perturbative effects at low energy, but the Lagrangian keeps chiral symmetry when
the fermion mass is neglected. In a four-fermion interaction model [29] Nambu and Jona-Lasinio first
adopted the mechanism of DCSB to generate a nonzero mass for the fermion without using the Yukawa
type coupling φψψ. In 1988, Appelquist et al. [4] studied DCSB in massless QED3 with N fermion
flavors by solving the DSE for fermion self-energy in the lowest-order of 1/N expansion and found
DCSB occurs when N is less than a critical number Nc. Later Nash showed that the critical number
of fermion flavor still exists by considering higher order corrections and he obtained Nc = 128

3π2 [5]. In
1995, Maris solved the coupled DSEs with a set of simplified vertex functions and obtained the critical
number of fermion flavor Nc = 3.3 [7,8]. Soon after that, Fisher et al. [30] self-consistently solved a
set of coupled DSE and obtained N crit

c ≈ 4 by using more sophisticated vertex ansatz which satisfies
the Ward–Takahashi identity. Here it should be noted that all the above results hold under the condition
that the gauge boson is massless. Once a finite gauge boson mass ma is generated by Anderson–Higgs
mechanism, it weakens the strength of interaction and affects DCSB. QED3 with Abelian Higgs model
has been widely studied as the effective theory of the high Tc superconductors [17,18]. Recently,
Liu et al. [31–33] studied the DSEs for the fermion self-energy in Landau gauge in QED3 with Abelian
Higgs model and found that DCSB occurs only when the gauge boson mass ma is smaller than a critical
value. However, we note that in [31–33], the authors used the so-called nonlocal gauge function approach
to solve the nonlinear DSE where the wave function renormalization and the vertex correction are simply
absent (in connection to the use of the nonlocal gauge in QED3, one can see, e.g., [34]). Because of its
importance, this problem deserves further study. In this paper, instead of adopting the approximations
in [31–33], we numerically solve the coupled DSE for the fermion and gauge boson propagators of QED3

with Abelian Higgs model using a specific truncation for the fermion-photon vertex ansatz for a range
of finite gauge boson mass.
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2. Results and Discussions

In Euclidean space, the total Lagrangian of QED3 with N massless fermion flavors and N scalar
boson flavors is L=LF +LB [7,33], where

LF =
N∑

i=1

ψ̄i(6∂ + ie 66A)ψi +
1

4
F 2

ρν +
1

2ξ
(∂ρ Aρ)

2 (1)

LB =
N∑

i=1

[
|(∂µ − ieAµ)φi|2 + µ2|φi|2 + λ|φi|4

]
(2)

Here LF contains the coupling between massless Dirac fermions and the U(1) gauge field. In Abelian
Higggs model LB is added to describe the additional interaction between the complex scalar fields and
the gauge field, which will change the gauge boson propagator. The 4×1 spinor ψi represents the fermion
field, the 4 × 4 γµ matrices obey the Clifford algebra, {γµ, γν} = 2δµν and i = 1, · · · , N are the flavor
indices. For physical reasons, the number of flavors of fermion or scalar boson N equals to 2, and ξ is the
gauge parameter. The bare propagator S0 = 1

iγ·p and the full fermion propagator is S = 1
iγ·pA(p2)+B(p2)

,
where A(p2) is the wave-function renormalization and B(p2) is the fermion self-energy function. The
full fermion propagator satisfies the DSE

S−1(p) = iγ · p + e2
∫ d3k

(2π)3
γρS(k)Γν(p, k)Dρν(q) (3)

where q = p − k. In QED3 with Abelian Higgs model the gauge field couples to both the fermion field
and the scalar boson field. Πµν(q) = ΠF

µν(q) + ΠB
µν(q) is the total vacuum polarization tensor and the

full inverse gauge boson propagator is

D−1
µν (q) = D(0)−1

µν (q) + Πµν(q) (4)

where D(0)−1
µν (q) is the free inverse gauge boson propagator. The gauge boson propagator in Landau

gauge is

Dµν(q) =
1

q2[1 + Π(q)] + m2
a

(δµν −
qµqν

q2
) (5)

Π(q) = ΠF (q) + ΠB(q) (6)

where ΠF (q) and ΠB(q) are the polarization function from the fermion part and the boson part,
respectively.

Next we decompose the scalar field as follows:

φ(x) =
v + h(x) + iϕ(x)√

2
(7)

For µ2 < 0, in Anderson–Higgs model the nonzero vacuum expectation value 〈φ〉0 =
√
−µ2

2λ
= v√

2
. In

fact, a nonzero 〈φ〉0 induces the spontaneous breaking of gauge symmetry and the gauge boson acquires
a nonzero mass ma via the Anderson–Higgs mechanism. However, the finite gauge boson mass will
suppress the occurrence of DCSB. Now the boson Lagrangian can be written in the form:

LB =
1

2
(∂µh)2 +

1

2
(∂µϕ)2 +

1

2
e2(v + h)2A2

µ +
1

2
e2ϕ2A2

µ + eϕAµ∂µh − e(v + h)Aµ∂µϕ

−λ

4
(h4 + ϕ4 + 4v2h2 + 4vh3 + 4vhϕ2 + 2h2ϕ2) (8)



Symmetry 2010, 2 910

The mass of gauge boson is ma = ev and mh =
√

2λv. ¿From these two mass scales we obtain
the Ginzburg–Landau parameter r = mh

ma
. In high temperature superconductors r is generally about

100 [35]. The one-loop vacuum polarization ΠB(q) has been calculated by evaluating four Feynman
diagrams [33,35] and the result is

ΠB =
e2

4πq2
[ma − mh +

ma

q2
(m2

h − m2
a) +

mh

q2
(m2

a − m2
h)] +

e2

4π

(q2 + m2
h − m2

a)
2 − 4m2

aq
2

2q5
ζ (9)

where ζ = arctan
q2+m2

a−m2
h

2mhq
+ arctan

q2+m2
h−m2

a

2maq
.

In order to obtain a closed system of coupled DSEs which can be solved by iteration method, one
should specify the fermion-photon vertex function. In the literature, there are several attempts to
determine the form of the fermion-photon vertex [36–46], for instance, the Ball–Chiu (BC) [45] and
Curtis–Pennington (CP) vertex [39]. In this paper we shall follow [8] to choose the vertex ansatz
Γν(p, k) = 1

2
[A(p2) + A(k2)]γν (the BC1 vertex). This choice has the advantage that the equations

are simplified significantly and it already contains all qualitative features of the solution employing the
CP/BC vertex in the infrared region, as was demonstrated by the numerical calculations given in [30].
Based on the above discussion, we obtain the coupled DSEs with gauge boson mass ma and Higgs mass
mh [47,48]:

A(p2) = 1 +
1

p2

∫ d3k

(2π)3

A(p2) + A(k2)

A2(k2)k2 + B(p2)

A(k2)(p · q)(k · q)/q2

[q2(1 + Π(q2)) + m2
a]

(10)

B(p2) =
∫ d3k

(2π)3

B(k2)[A(p2) + A(k2)]

[A2(k2)k2 + B2(k2)][q2(1 + Π(q2)) + m2
a]

(11)

Π(q2) = N
∫ d3k

(2π)3

A(k2)A(p2)[A(p2) + A(k2)]

q2[A2(k2)k2 + B2(k2)]

[2k2 − 4k · q − 6(k · q)2/q2]

[A2(p2)p2 + B2(p2)]
(12)

It is well known that one can obtain two types of solution by iterating the above coupled DSEs, the
Nambu solution and the Wigner solution. If Equations (10-12) has a nontrivial solution, i.e., the Nambu
solution, then the fermions can acquire a nonzero mass by DCSB. In DCSB phase (N < Nc, the fermion
mass function M(p2) = B(p2)

A(p2)
> 0) the attractive force between a pair of fermion and anti-fermion

becomes weak with ma increasing.
Here it is interesting to look at the quantitative impact of refining the truncation scheme used in this

paper. In order to show a comparison of our result with that of the bare vertex approximation, in Figure 1,
taking the N = 1 case as an example, we draw the curves of the mass function versus p2 for mh = 0.001

and r = 20 for both the bare vertex and the BC1 vertex ansatz. It can be seen that for both the bare
vertex and the BC1 vertex ansatz, the mass function almost remains constant for small p2, and decreases
monotonously with p2 increasing after p2 reaches a certain value. In the whole range of p2, the mass
function obtained using the BC1 vertex is much larger than that obtained using the bare vertex. This
shows that the dressing effect of the fermion-photon vertex is very important in the study of dynamical
mass generation in the Abelian Higgs Model in 2 + 1 dimensions. In addition, due to the fact that
increasing gauge boson mass weakens the attractive force between a pair of fermion and antifermion,
the larger infrared value of the mass function for the case of BC1 ansatz implies that the critical gauge
boson mass for the case of BC1 ansatz should be larger that the one for the case of bare vertex.
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Figure 1. The mass function M(p2) versus p2 at r = mh

ma
= 20 and mh = 0.001 for N = 1

case calculated using both the bare vertex and the BC1 vertex ansatz.

Figure 2. Dependence of the number of fermion flavor Nc on ma for several values of the
ratio r = mh

ma
.

In Figure 2, the variation of Nc on ma for several values of the ratio r is shown. From the
obtained numerical results one finds that DCSB is completely suppressed when ma exceeds a critical
value mcrit

a for a fixed number of fermion flavor N (here the mass terms are scaled by α = Ne2). From
Figure 2 one finds that Nc decreases monotonically with the gauge boson mass ma increasing for fixed
value of r and it decreases monotonically with the Ginzburg–Landau parameter r increasing for fixed
value of ma. It can be seen that the corresponding critical number of fermion flavor Nc is about 2.4
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when the gauge boson mass ma tends to zero. So the originally massless fermion acquires a dynamical
mass (the physical number of fermion flavor N = 2 < 2.4). But in Figure 2 the Nc − ma curve is
steeper and for the same value of Nc and r, ma is much larger than the value of [33]. In fact, for
mh = 0.001 and N = 2, we find that the critical gauge boson mass mc0

a is too small and DCSB can be
hardly observed when we numerically solve the coupled DSEs by means of iteration method using the
bare vertex ansatz. Here we note that QED3 theory (and its generalization to the Abelian Higgs model)
with N = 2 is employed as an effective continuum theory for the 2D quantum antiferromagnetic (Neel)
ordering corresponding to dynamical fermion mass generation [49–52]. So a reliable value of the critical
number of fermion flavors is important for the study of dynamical fermion mass generation and chiral
symmetry breaking.

3. Conclusions

In this paper, the DSE for the fermion self-energy in QED3 with Abelian Higgs model is studied.
We numerically solve the coupled DSEs by means of iteration method using the BC1 vertex ansatz and
compare our result with that obtained using the bare vertex. It is found that the mass function obtained
using the BC1 vertex ansatz is much larger than the one obtained using the bare vertex. This shows
that the dressing effect of the fermion-photon vertex is very important in the study of dynamical mass
generation in the Abelian Higgs model in 2+1 dimensions. It is also found that the gauge boson mass ma

suppresses the critical number of fermion flavor Nc for a fixed ratio r = mh

ma
. When ma exceeds a critical

value mcrit
a , DCSB will be completely suppressed. One the other hand, the gauge boson mass is reduced

rapidly as r increases. These results imply that for a fixed value of ma, the smaller is the ratio r, the
easier is it to generate a finite fermion mass by the mechanism of DCSB. The above results qualitatively
accord with the conclusion of Liu et al. [33]. Finally, we note that the BC1 vertex ansatz employed in
our calculation does not satisfy the Ward–Takahashi identity when the dynamical mass function B(p2) is
present in the fermion propagator. In a more reliable calculation the CP [39] vertex should be employed.
This work will be done in the future.
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