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Abstract: An account of symmetry is very fruitful in studies of quantum spin systems.
In the present paper we demonstrate how to use the spin SU(2) and the point symmetries
in optimization of the theoretical condensed matter tools: the exact diagonalization, the
renormalization group approach, the cluster perturbation theory. We apply the methods
for study of Bose-Einstein condensation in dimerized antiferromagnets, for investigations
of magnetization processes and magnetocaloric effect in quantum ferrimagnetic chain.
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Anything that works well will be used in progressively
more challenging applications until it fails.

Generalized Peter principle.

1. Introduction

First treatments of symmetry of magnetic materials started in the 1950s were based on a rather
straightforward expansion of crystallographic space groups, taking into account the antisymmetric
operations introduced in Heesch’s pioneer work [1]. An observation that a symmetry of magnetic
materials is related with a crystallographic lattice as well as with a mutual orientation of magnetic
moments results in Shubnikov’s theory of ”‘black-white”’ symmetry [2]. In the theory, the list of
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elementary symmetry operations, namely rotations and mirror rotations, is expanded by the operation
of spin inversion R̂, which changes a spin direction to an opposite one. Building closed group sets from
this extended list one recover point magnetic groups, magnetic lattices and space magnetic groups [3–6].

By the beginning of 70s it was realized that Shubnikov’s groups are not sufficient to describe
symmetry of magnets due to the following limitations [7]. (i) Sometimes, Shubnikov’s groups
overestimate a number of basic spin vectors, i.e., give incomplete symmetry description since some
symmetry operations are missed (like in the case of CrCl2). (ii) In general, atomic and magnetic
structures can not be simultaneously described by a given Shubnikov’s group. The Landau-Lifshitz’s
relationship between the magnetic M and space G groups [4], G = lim1′→1M , is violated in some cases,
for example, in α-Fe with a ferromagnetic order. (iii) Magnets with a spiral magnetic order are out of
scope of the Shoubnikov’s groups. It concerns as well partially ordered magnetic structures (for example,
longitudinal spin-wave order) and textures with modulated magnetic moments.

Despite that the concept of color magnetic groups [8] enables to overcome these problems,
alternative theoretical schemes invoking no special magnetic groups turn out to be more fruitful. A
systematic analysis of magnetic structures in crystals based on representation theory of space groups
has been developed by Izyumov and Naish [9]. The theory uses the basic assumption of Landau’s
symmetry theory of phase transitions, namely, a phase transition to the low-symmetry phase occurs
according to one of irreducible representations of the high-symmetry (paramagnetic) phase [10]. The
subsequent steps of the theoretical approach may be sketched as follows. (i) Given the wave vector of
magnetic structure, usually determined from neutron magnetic scattering data, one find the reducible
magnetic representation of the space group built from localized pseudovector atomic functions. These
pseudovectors correspond to atomic local moments. (ii) The reducible magnetic representation is
expanded over irreducible representations of the given space group. (iii) Basic functions of the
constituent irreducible representations of the space group built from localized pseudovector atomic
functions realize possible magnetic structures in the low-symmetry phase.

In all the above theoretical schemes, the atomic spin (magnetic moment) is considered as an axial
classical vector (not as a quantum mechanical operator) with a given orientation in the crystallographic
frame. Quantum mechanical realization of Shubnikov’s ”‘black-white”’ groups can be reached within
Wigner’s corepresentation theory [11], where the spin inversion operator R̂ is replaced for the time
inverse non-unitary operator Θ̂. A magnetic symmetry group includes both unitary and non-unitary
operators [12]. In this case, an application of the group theory methods is based on the usual theorems
provided all representations are substituted for corepresentations. The approach turns out to be effective
for symmetry classifications of excitons in the antiferromagnetically ordered molecular crystals [13,14].

Although there is a principle difference between the group theory methods discussed above, some of
them use the magnetic cell concept whereas others operate a chemical cell, all these schemes assume
an existence of long-range magnetic order. The assumption is valid as long as quantum effects are
ignored. However, the quantum fluctuations are noticeable even in the case of three-dimensional
antiferromagnets, where they lead to a reducing of spin projections onto a quantization axis. In one-
(1D) and two-dimensional (2D) magnetic systems the fluctuations begin to dominate and destroy a
long-range order (Mermin-Wagner theorem) [15]. In addition, in many cases an intrinsic symmetry
of low-dimensional systems can not be described by the one-site order parameter (local moment) and
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more complex mathematical forms are needed to feature a possible magnetic ordering (for example,
in dimerized spin chains and 2D systems with a hidden scalar chirality). As well we note that
Izyumov-Naish’s method is based on Landau’s theory of second order phase transitions, which are absent
in 1D and 2D magnetic systems.

An interest in low-dimensional magnetic systems has not calmed down over the last 30 years. Being
initially stipulated by Haldane’s conjecture for integer-spin chains [16] and the discovery of HTSCs
with layered structures [17], it is nowadays supported by impressive progress in a chemical design
of low-dimensional magnetic materials including single molecule magnets, single chain magnets, spin
ladders etc. [18]. An adaptation of the group theory methods to the more challenging applications is
highly required.

A constructive way, in our opinion, is to use the spin-rotational SU(2) and the point-group symmetries
in a combination with numerical methods which have been developed in the past. Besides an invoking of
the symmetries results in an obvious reduction of computational requirements, i.e., a need of hardware
resources and computation time, an additional classification of quantum states elevates the symmetry
adapted methods in studies of physical phenomena.

Numerical standard methods in the field, such as quantum Monte-Carlo (QMC), exact diagonalization
(ED) [17], and density matrix renormalization group (DMRG) [19] are able to give essentially exact
results on limited size systems and form a versatile methodological triad in simulations of model
Hamiltonians. Even though these techniques have had spectacular successes in calculating ground state
energies and many other properties of 1D and 2D quantum spin systems [20–23] there is a problem with
an utilizing of symmetries and good quantum numbers of the Hamiltonian, which may be exploited to
thin out Hilbert space by decomposing it into a sum of sectors. Common symmetries and conservation
laws encountered in spin systems are: (i) Ising or XY symmetry (magnetization conservation
Sz

tot=const); (ii) point group symmetry (parity, angular momentum conserved); (iii) full SU(2)

symmetry (S2
tot conserved). Among these symmetries only the first is usually exploited in numerical

calculations. The full SU(2) spin symmetry is rather hard to implement, since it requires efforts similar
to the diagonalization of the actual Hamiltonian to construct the eigenstates of S2

tot. An implementation
of nonabelian SU(2) spin symmetry based on Clebsch-Gordan transformations and elimination of
quantum numbers via the Wigner-Eckart theorem was performed for the interaction round a face (IRF)
models in the framework of the IRF-DMRG method [24]. This technique has been successfully applied
to the spin-1/2 Heisenberg chain and, later, to the spin 1 and 2 Heisenberg chains [25]. The performant
DMRG method conserving a total spin quantum number has been suggested by McCulloch and
Gulasci [26,27]. An application of SU(2) symmetries for the matrix product method (MPM) closely
related to the DMRG [28,29] gives a rotationally invariant formulation valid for spin chains and
ladders [29,30]. Along these lines much efforts has been put into the development of an efficient
numerical diagonalization technique in an area of magnetism of single molecule magnets. The using of
the irreducible tensor operator approach based on the spin SU(2) symmetry have proved its effectiveness
in an evaluation of the energy levels, thermodynamic and spectroscopic properties of high-nuclearity
metal clusters [31–33].

As for the lattice point symmetry, only few attempts have been undertaken to combine the full
spin rotational symmetry with point-group symmetries, and these applications are mostly limited by
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magnetic molecules [34,35]. An implemention of this symmetry leads to an additional reducing of
the dimensionality of the problem and yields a labeling of energy levels needed for spectroscopic
classification. The energy levels are enumerated by the values of the total spin as well as by an irreducible
representation (irrep) of the cluster point group. Such a classification can be done if the Hamiltonian
remains invariant under certain permutations of spin centers dictated by the point-group symmetry of
the molecule. The point group symmetry in high-nuclearity spin clusters is more general since it is
applicable to any arbitrary spin Hamiltonian whereas the SU(2) spin symmetry may be exploited only
for isotropic spin Hamiltonians.

The aim of the paper is to illustrate how the symmetry concepts can be applied to the study of
the many-body magnetic systems and what the main advantages are that one can gain. The infinite
systems, namely, the spin-1/2 antiferromagnet on a two-dimensional square lattice, the two-dimensional
dimerized spin system, the spin-1/2 chains with alternative exchange and the ferrimagnetic chain,
are chosen to illustrate the approaches and methodology in problems related with low-dimensional
magnetism such as an optimization of renormalization group (RG) scheme (Section 2), studies of
magnetocaloric effect (MCE) (Section 3) and magnetization processes (Section 4), Bose-Einstein
condensation (BEC) in dimerized spin systems (Section 4) and elementary excitations in spin
chains (Section 5).

2. Two-Dimensional Isotropic Heisenberg Spin-s System

A numerous modifications of the DMRG are originated from the pioneering work by White [19,36].
These methods were used to solve many problems that would have been intractable with any other
approaches. The DMRG was originally formulated from the renormalization group language of Wilson’s
numerical RG [37,38]. Below we present a finite cluster solver based on real-space renormalization
group (RSRG) scheme which allows to exploit both the continuous nonabelian SU(2) symmetry and
discrete symmetry of the lattice point group in application to isotropic two-dimensional spin-S systems.
As an example illustrating features of our method we consider the spin-1/2 Heisenberg antiferromagnet
on a square lattice. The treatment begins by dividing a cluster into a central spin and its environment. In
the course of RSRG iterations the environment increases and it is determined how coupling between the
central spin and the environment varies.

In the first step one must identify the cluster. Care should be taken to ensure that the cluster
has the same point-group symmetry as the lattice. A calculation of non-frustrated antiferromagnetic
systems requires bipartite environment of the central site since a choice of the non-bipartite environment
deteriorates an accuracy [39] (the case of this violation will be illustrated in the example of the cluster√

13 ×
√

13). For frustrated systems, when one cannot operate a biparticity, the method holds relevance
if the frustrating interactions possess SU(2) symmetry.

The cluster Hamiltonian
Ĥ = J

∑
n~δ

~Sn
~Sn+~δ = Ĥu + V̂ (1)

is composed of the term V̂ = J ~S0
∑
~δ

~S0+~δ describing interactions of the central spin ~S0 with the nearest

neighbors at distances ~δ and rest terms denoted as the Hamiltonian of the ”environment” Ĥu. Since,
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by construction, the cluster retains a lattice point symmetry, its states |iSMΓµ〉 with the energies EiSΓ

are labeled by the cluster total spin S with the third component M and by the irreducible representation
Γµ of the cluster point group. Different states with the same values SM and Γµ are distinguished by
the index i. In addition we need to consider the operator O1A1

q1 =
∑
~δ

(
S0+~δ

)1

q
as a double irreducible

tensor which transforms according to identity representation A1. The same arguments enable us to use
the irreducible form of the central spin operator (S0)

1
q ≡ (S0)

1A1

q1 . The part V̂ may be written as the inner
product

V̂ = J
∑
q

(−1)q

 A1 A1 A1

1 1 1

 (S0)
1A1

q1 O1A1
−q1 ≡

[
(S0)

1A1 × O1A1

]0A1

01
,

where

 A1 A1 A1

1 1 1

 = 1 is the Clebsch-Gordan coefficient of the cluster point group [40].

Let us suppose that we have found the eigenvalues EiuSuΓu and the eigenstates of the environment
Hamiltonian Ĥu in the form |iuSuMuΓuµu〉. The basis functions of the full cluster are obtained by the
addition rule of spin angular momentum

|iuSuΓu; s; SMΓuµu〉 =
∑
µu,σ

 Su s S

Mu σ M

 |iuSuMuΓuµu〉 |sσ〉 , (2)

where [. . .] is a Clebsch-Gordan coefficient, hereinafter we use that of given [41], and |sσ〉 is the wave
function of the central spin. Since the state |sσ〉 is invariant under all transformations of the point
symmetry group, the cluster basis functions transform like that of the environment according to the same
irreducible representations.

The calculation of matrix elements for the Hamiltonian (1) with the help of the Wigner-Eckart’s
theorem yields (see Appendix A [39])〈

iuSuΓu; s; SMΓuµu

∣∣∣Ĥ∣∣∣ i′uS ′
uΓ

′
u; s; S

′M ′Γ′
uµ

′
u

〉
=

= EiuSuΓuδiu,i′uδSu,S′
u
δΓu,Γ′

u
δµu,µ′

u
δS,S′δM,M ′ + J(−1)S′

u+S+1/2

 Su s S

s S ′
u 1

 δS,S′δM,M ′

× 〈s ‖s‖ s〉
〈
iuSuΓu

∥∥∥O1A1

∥∥∥ i′uS
′
uΓ

′
u

〉
δΓu,Γ′

u
δµu,µ′

u
, (3)

where {...} is a 6j-symbol. The first RME is 〈s ‖s‖ s〉 =
√

s(s + 1)(2s + 1) and the latter may be
obtained if the environment eigenstates are known (see subsection A). The energy per bond is then
calculated as

εiSΓu =
1

z

EiSΓu −
∑
iuSu

EiuSuΓu

∣∣∣βiSΓu
iuSuΓu

∣∣∣2
 =

1

z

(
EiSΓu −

〈
E

(env)
iSΓu

〉)
, (4)

where z is the number of nearest-neighbors of the central spin. The eigenfunctions

|iSMΓµ〉 =
∑
iuSu

βiSΓ
iuSuΓu

|iuSuΓ; s; SMΓµ〉 , (Γµ = Γuµu) (5)

and the energy levels EiSΓ are determined by direct diagonalization of the cluster Hamiltonian H

[Equation (3)]. The values εiSΓ should be regarded as an approximation of the energy spectrum in
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the thermodynamical limit, whereas the energy EiSΓ divided per bond number is much less appropriate
for this.

It is important to note that from Equation (3) it follows that to build the cluster target state |iSMΓµ〉
we need only to know the states |iuSuMuΓuµu〉 of the environment with the quantum numbers |S − s| ≤
Su ≤ S + s and Γuµu = Γµ.

The most important quantity typically measured in numerical simulations is the ground-state
staggered magnetization Mc. The quantum mechanical observable for z-projection of the central spin is
given as follows

〈iSMΓµ |Sz
0 | iSMΓµ〉 = (−1)1+S+s M

√
2S + 1

S(S + 1)
〈s ‖S‖ s〉

∑
iuSu

(−1)Su
∣∣∣βiSΓ

iuSuΓu

∣∣∣2
 S 1 S

s Su s

 ,

(6)
where the identity (see B.3 [39]) is used. The staggered magnetization Mc is determined as

M2
c = lim

|~R|→∞
3

∣∣∣〈Sz(~R)Sz(0)
〉∣∣∣ ,

where factor 3 arises from rotational symmetry in spin space. At long distances
∣∣∣〈Sz(~R)Sz(0)

〉∣∣∣ ≈
〈Sz(0)〉2 that yields our estimate of the full root-mean-square staggered magnetization per
spin Mc =

√
3 〈Sz

0〉
2.

According to Equation (A.1 [39]), spin-correlation function in the states of A1-symmetry, the ground
state symmetry as shown below, is determined as

〈
iSMA1

∣∣∣Sz
0S

z
j

∣∣∣ iSMA1

〉
=

1

3

〈
iSMA1

∣∣∣~S0
~Sj

∣∣∣ iSMA1

〉

=
1

3zf

∑
iuSu

∑
i′uS′

u

βiSA1
iuSuA1

βiSA1
i′uS′

uA1
〈s ‖S‖ s〉

〈
iuSu

∥∥∥S1A (rj)
∥∥∥ i′uS

′
u

〉
(−1)s+S+S′

u

 Su s S

s S ′
u 1

 , (7)

where zf is the lattice coordination number. In this calculation it is convenient to introduce the double
irreducible tensor S1A

q1 (rj) =
∑

j (Sj)
1
q summing spins at distance rj , which transforms according to

identity representation A1. One can see that O1A1
q1 = S1A

q1 (δ) .

As mentioned above, the lattice point-group symmetry should be conserved with increasing cluster
size. The requirement is put into a practical computational scheme by the following algorithm: (i) At
step N we have the eigenvalues E

(N)
iuSuΓu

and eigenvectors |iuSumuΓuµu〉(N) of the environment. Make
a regular symmetry conserving expansion in the cluster size by adding sites from the next coordination
shell. (ii) Using a scheme of coupling of angular momenta we build the set |iISImI〉 of states with total
spin SI and third component mI for the part that is being attached to the environment. The index iI

labels other possible quantum numbers. (iii) In general case, these functions form a basis of reducible
representation of the cluster point group. Based on the projection operator technique, one build basic
functions |iISImIΓIµI〉 transforming according to irreducible representations ΓIµI . (iv) Using a scheme
of coupling of angular momenta build a new set |iISImIiIISIImII ; SumuΓuµu〉(N+1) of states associated
to the extended environment, where the notation |iIISIImIIΓIIµII〉 = |iuSumuΓuµu〉(N) is introduced.
An interaction between the N -th step environment and the part added to it can be conveniently written
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through the irreducible tensors U1tuγ and W 1t0γ built from spin operators of the ”old” and ”new” added
parts, respectively,

V = J
∑
tut0

∑
γν

∑
q

(−1)q

 γ γ A1

ν ν 1

 U1tuγ
qν W 1t0γ

−qν .

The indices tut0 label different tensors of the same symmetry. The matrix elements of the extended
(N + 1)-th step environment is

〈iISImIiIISIImII ; SumuΓuµu |Hu| i′IS ′
Im

′
Ii

′
IIS

′
IIm

′
II ; S

′
um

′
uΓ

′
uµ

′
u〉 = E

(N)
iuSuΓu

δSuS′
u
δmum′

u
δΓuΓ′

u
δµuµ′

u

+J
∑

t0tuγ

F (ΓIΓIIΓ; Γ′
IΓ

′
IIγ) (−1)S′

I+SII+Su

 SI SII Su

S ′
II S ′

I 1


×

〈
iISIΓI

∥∥∥U1tIγ
∥∥∥ i′IS

′
IΓ

′
I

〉 〈
iIISIIΓII

∥∥∥W 1tIIγ
∥∥∥ i′IIS

′
IIΓ

′
II

〉
. (8)

The derivation of Equation (8), the definition of the F sums from Clebsch-Gordan coefficients of the
point group, and the RMEs of the operators involved in Equation (8) are given in Appendix A and
Appendix B [39], respectively.

At final step, we diagonalize (8) and find the eigenvalues E
(N+1)
iuSuΓu

and eigenvectors

|iuSumuΓuµu〉(N+1) =
∑

αiuSuΓu
iISIΓI iIISIIΓII

×

 SI SII Su

mI mII mu

  ΓI ΓII Γu

µI µII µu

 |iISImIΓIµI〉 |iIISIImIIΓIIµII〉 .

The iteration is closed by recalculating RMEs of the irreducible tensors W 1tIIγ in the basis of the
extended environment (see Appendix A). Note that following the scheme we will in some cases form
intermediate clusters, unsuitable for calculations of local results, with a non-bipartite environment.

An example: spin-1/2 antiferromagnet on a square lattice

The spin-half antiferromagnet on a square lattice represents an optimal playground to study the
strength and limitations of the method. To implement the algorithm, we need first to build wave functions
of the environment which are predetermined by the lattice point symmetry.

To perform calculations we start with the cluster of minimal size
√

5 ×
√

5. The sequence of clusters
involved in the calculations are shown in Figure 1. Within the smallest cluster, the central spin interacts
with the nearest environment consisting of the spins Sα1 , Sβ1 , Sγ1 , Sη1 . The spin wave functions of the
environment with the total spin number Su and the third component Mu may be written as follows∣∣∣∣12 1

2
(Sα1β1)

1

2

1

2
(Sγ1η1)SuMu

〉

=
∑

mα1 ,mβ1
,mγ1 ,mη1

∑
mα1β1

,mγ1η1

 1/2 1/2 Sα1β1

mα1 mβ1 mα1β1

  1/2 1/2 Sγ1η1

mγ1 mη1 mγ1η1

  Sα1β1 Sγ1η1 Su

mα1β1 mγ1η1 Mu


× |1/2mα1〉 |1/2mβ1〉 |1/2mγ1〉 |1/2mη1〉 .

In such a description, all allowed configurations are comprised by a set |00; 00〉, |11; 00〉, |01; 1M〉,
|10; 1M〉, |11; 1M〉, |11; 2M〉, where we have dropped the spin 1/2 arguments for notation convenience.
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Figure 1. Clusters used in the calculations.
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It is easy to see that the functions |Sα1β1Sγ1η1 ; SuMu〉 form (in common case) a basis of reducible
representation of the group D4 (for details see Appendix C [39])

ĝ |Sα1β1Sγ1η1 ; SuMu〉 = D
(Su)
S′

α1β1
S′

γ1η1
,Sα1β1

Sγ1η1
(ĝ)

∣∣∣S ′
α1β1

S ′
γ1η1

; SuMu

〉
.

The matrices D
(0)
κ,κ′(ĝ) (the upper index denotes the spin Su) with the multiindex κ = {Sα1β1Sγ1η1} are

readily determined and read

D
(0)
κ,κ′(E) = D

(0)
κ,κ′(C2

4) = D
(0)
κ,κ′(σ

′

v) = D
(0)
κ,κ′(σ

′′

v ) =

 1 0

0 1

 ,

D
(0)
κ,κ′(C4) = D

(0)
κ,κ′(C3

4) = D
(0)
κ,κ′(Cx

2 ) = D
(0)
κ,κ′(C2

4) =

 1/2 −
√

3/2

−
√

3/2 −1/2

 .

The functions |00; 00〉, |11; 00〉 form a basis of this two-dimensional representation. Still another
representation of D4 can be generated by means of the functions |01; 1M〉, |10; 1M〉 and |11; 1M〉

D
(1)
κ,κ′(E) =


1 0 0

0 1 0

0 0 1

 , D
(1)
κ,κ′(C4) =


−1/2 −1/2 1/

√
2

−1/2 −1/2 −1/
√

2

−1/
√

2 1/
√

2 0

 ,

D
(1)
κ,κ′(C2

4) =


0 1 0

1 0 0

0 0 −1

 , D
(1)
κ,κ′(C3

4) =


−1/2 −1/2 −1/

√
2

−1/2 −1/2 1/
√

2

1/
√

2 −1/
√

2 0

 ,

D
(1)
κ,κ′(Cx

2 ) =


1/2 1/2 1/

√
2

1/2 1/2 −1/
√

2

1/
√

2 −1/
√

2 0

 , D
(1)
κ,κ′(C

y
2 ) =


1/2 1/2 −1/

√
2

1/2 1/2 1/
√

2

−1/
√

2 1/
√

2 0

 ,
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D
(1)
κ,κ′(σ

′′

v ) =


−1 0 0

0 −1 0

0 0 1

 , D
(1)
κ,κ′(σ

′

v) =


0 −1 0

−1 0 0

0 0 −1

 .

In a similar way we find the matrices D(2)
κ,κ(ĝ) in the basis |11; 2M〉

D(2)
κ,κ(ĝ) = 1 (∀ĝ ∈ D4).

The representations D(S) are the direct sums of the irreducible representations D(0) = D(0A1) ⊕ D(0B2),

D(1) = D(1B1) ⊕ D(1E), D(2) = D(2A1). The basis functions of these irreducible representations are
given by a similarity transformation

|SuMu; Γµ〉 =
∑

Sα1β1
,Sγ1η1

T̂
(Su)
Sα1β1

Sγ1η1 ;Γµ |Sα1β1Sγ1η1 ; SuMu〉 , (9)

and the matrix T̂
(Su)
Sα1β1

Sγ1η1 ;Γµ = T̂Sα1β1
Sγ1η1Su

′;SuΓuµuδSu,S′
u

found with the aid of the projection-operator
technique reads (for details see Appendix D [39])

|00; A11〉 |00; B21〉 |1M ; B11〉 |1M ; E1〉 |1M ; E2〉 |2M ; A11〉
|00; 00〉

√
3

2
1
2

0 0 0 0

|11; 00〉 −1
2

√
3

2
0 0 0 0

|01; 1M〉 0 0 1√
2

1
2

1
2

0

|10; 1M〉 0 0 1√
2

−1
2

−1
2

0

|11; 1M〉 0 0 0 1√
2

− 1√
2

0

|11; 2M〉 0 0 0 0 0 1

Given the environment eigenfunctions |SuMu; Γuµu〉 with the eigenvalues ESuΓu
, the RMEs of the

double irreducible tensor O1A1 = Sα1 + Sβ1 + Sγ1 + Sη1 can be computed straightforwardly using
the Wigner-Eckart theorem and the similarity transformation (9) γ Γ′ Γ

ν µ′ µ

∗ 〈
SΓ

∥∥∥O1γ
∥∥∥ S ′Γ′

〉

=
∑

S12,S34

∑
S′

12,S′
34

T̂ ∗
S12S34S;SΓµT̂S′

12S′
34S′;S′Γ′µ′

〈
S12S34; S

∥∥∥O1γ
ν

∥∥∥ S ′
12S

′
34; S

′
〉

, (10)

where the indices α1, β1, γ1, η1 are correspondingly denoted by the numbers 1-4.
To calculate the RME that comes into the right-hand side of Equation (10) one has to rewrite O1γ

qν

through the spin operators and employ their expressions for the RMEs of the spin operators

〈S12S34; S ‖S1‖S ′
12S

′
34; S

′〉 = (−1)1+S12+S34+S′
12+S′

[S12, S
′
12, S, S ′]

1/2

×

 S ′
12 1 S12

1/2 1/2 1/2


 S ′ 1 S

S12 S34 S ′
12

 〈1/2 ‖S‖ 1/2〉 δS34,S′
34

, (11)

〈S12S34; S ‖S2‖S ′
12S

′
34; S

′〉 = (−1)1+2S12+S34+S′
[S12, S

′
12, S, S ′]

1/2

×

 S ′
12 1 S12

1/2 1/2 1/2


 S ′ 1 S

S12 S34 S ′
12

 〈1/2 ‖S‖ 1/2〉 δS34,S′
34

, (12)
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〈S12S34; S ‖S3‖S ′
12S

′
34; S

′〉 = (−1)1+S12+2S′
34+S [S34, S

′
34, S, S ′]

1/2

×

 S ′
34 1 S34

1/2 1/2 1/2


 S ′ 1 S

S34 S12 S ′
34

 〈1/2 ‖S‖ 1/2〉 δS12,S′
12

, (13)

〈S12S34; S ‖S4‖S ′
12S

′
34; S

′〉 = (−1)1+S12+S34+S′
34+S [S34, S

′
34, S, S ′]

1/2

×

 S ′
34 1 S34

1/2 1/2 1/2


 S ′ 1 S

S34 S12 S ′
34

 〈1/2 ‖S‖ 1/2〉 δS12,S′
12

. (14)

Since the operator O1A1 coincides with that of the environment total spin Ŝu, it turns out that the
matrix elements

〈
SuΓu

∣∣∣O1A1

∣∣∣ S ′
uΓ

′
u

〉
are diagonal

〈
SuΓu

∣∣∣O1A1

∣∣∣ S ′
uΓ

′
u

〉
=

√
Su(Su + 1)(2Su + 1)δSu,S′

u
δΓu,Γ′

u
.

As a consequence, one may check that this property holds for the Hamiltonian of the total cluster〈
SuΓu;

1

2
; SMΓuµu

∣∣∣Ĥ∣∣∣ S ′
uΓ

′
u;

1

2
; S ′M ′Γ′

uµ
′
u

〉

= J(−1)S′
u+S+1/2

 Su 1/2 S

1/2 S ′
u 1


√

3

2
Su(Su + 1)(2Su + 1)δS,S′δM,M ′δΓu,Γ′

u
δµu,µ′

u
δSu,S′

u

Table 1. Energies ESΓ and εSΓ

SΓ 1
2
A1

1
2
B1

1
2
B2

1
2
E 3

2
A1

3
2
B1

3
2
E 5

2
A1

ESΓ 0 −J 0 −J −3
2
J 1

2
J 1

2
J J

εSΓ 0 −1
4
J 0 −1

4
J −3

8
J 1

8
J 1

8
J 1

4
J

A direct calculation shows that the ground state belongs to the Hilbert space sector with S = 3/2 and
Γ = A1. Hence, only the environment state with SΓ = 1A1 is needed to find the ground state energy
(see Table 1).

Let us now consider the next step, an expansion of the current environment block due to the next
coordination sphere of radius

√
2. After an addition of four spins Sa, Sb, Sc, Sd, the cluster becomes a

square of size 3 × 3 with the bipartite environment of the central site (Figure1). The basis associated
with the added part is ∣∣∣∣12 1

2
(Sab)

1

2

1

2
(Scd)SIMI

〉

=
∑

ma,mb,mc,md

∑
mab,mcd

 1/2 1/2 Sab

ma mb mab

  1/2 1/2 Scd

mc md mcd

  Sab Scd SI

mab mcd MI


× |1/2ma〉 |1/2mb〉 |1/2mc〉 |1/2md〉 . (15)
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Repeating the basic steps in the approach we obtain the symmetry adapted basis |SIMI ; ΓIµI〉. The
matrix of corresponding similarity transformation has the form

|00; A11〉 |00; B11〉 |1M ; B21〉 |1M ; E1〉 |1M ; E2〉 |2M ; A11〉
|00; 00〉

√
3

2
1
2

0 0 0 0

|11; 00〉 −1
2

√
3

2
0 0 0 0

|01; 1M〉 0 0 1√
2

0 1√
2

0

|10; 1M〉 0 0 1√
2

0 − 1√
2

0

|11; 1M〉 0 0 0 1 0 0

|11; 2M〉 0 0 0 0 0 1

The environment Hamiltonian includes only interactions between the first and second coordination
spheres

Ĥu = J
[
~Sα1

(
~Sd + ~Sa

)
+ ~Sβ1

(
~Sa + ~Sb

)
+ ~Sγ1

(
~Sb + ~Sc

)
+ ~Sη1

(
~Sc + ~Sd

)]
. (16)

We now introduce the cluster irreducible tensors W 1Γ
qµ and U1Γ

qµ transforming according to
representations Γµ of the point symmetry group D4 (for details see Appendix D [39])

U1A1
q1 =

1√
2

(Saq + Sbq + Scq + Sdq) , U1B2
q1 =

1√
2

(Saq − Sbq + Scq − Sdq) ,

U1E
q1 =

1√
2

(Saq + Sbq − Scq − Sdq) , U1E
q2 =

1√
2

(Saq − Sbq − Scq + Sdq) ,

W 1A1
q1 =

1√
2

(Sα1q + Sβ1q + Sγ1q + Sη1q) , W 1B1
q1 =

1√
2

(Sα1q − Sβ1q + Sγ1q − Sη1q) ,

W 1E
q1 = (Sα1q − Sγ1q) , W 1E

q2 = (Sη1q − Sβ1q) (17)

and then rewrite Equation (16) as

Hu = J
∑
γν

∑
q

(−1)q

 γ γ A1

ν ν 1

 U1γ
qµ W 1γ

−qµ = J
∑
γ

[
U1γ × W 1γ

]0A1

01
. (18)

The RMEs of the irreducible operators that appear in Equation (8) can be obtained exactly from the
result (10)

〈
SIΓI

∥∥∥U1A1

∥∥∥ S ′
IΓ

′
I

〉
=

1√
2
〈SI ‖S‖SI〉 δSI ,S′

I
δΓI ,Γ′

I
, (19)

〈
SIIΓII

∥∥∥W 1A1

∥∥∥ S ′
IIΓ

′
II

〉
=

1√
2
〈SII ‖S‖SII〉 δSII ,S′

II
δΓII ,Γ′

II
,

〈
SIΓI

∥∥∥U1E
∥∥∥ S ′

IΓ
′
I

〉
=



0A1 0B1 1B2 1E 2A1

0A1 0 0 0
√

2 0

0B1 0 0 0 −
√

6 0

1B2 0 0 0 −
√

6 0

1E −1
√

3 −
√

3 0 −
√

5

2A1 0 0 0
√

10 0


,
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〈
SIIΓII

∥∥∥W 1E
∥∥∥ S ′

IIΓ
′
II

〉
=



0A1 0B2 1B1 1E 2A1

0A1 0 0 0
√

2 0

0B2 0 0 0
√

6 0

1B1 0 0 0 −
√

6 0

1E −1 −
√

3 −
√

3 0 −
√

5

2A1 0 0 0
√

10 0


.

To compute matrix elements of the Hamiltonian Hu we construct the basis

|iISIΓI iIISIIΓII ; SuMuΓuµu〉

=
∑

mI ,mII

∑
µI ,µII

 SI SII Su

mI mII Mu

  ΓI ΓII Γu

µI µII µu

 |iISImIΓIµI〉 |iIISIImIIΓIIµII〉 (20)

formed from the eigenstates |iISImIΓIµI〉 and |iIISIImIIΓIIµII〉 of the ”new” and ”old” added
parts, correspondingly. The expression for the matrix Hu is similar to Equation (8) with
EiISIΓI

= EiIISIIΓII
= 0. Applying exact diagonalization to the Hamiltonian Hu one can then find

the eigenfunctions

|iuSuΓuµu〉 =
∑

αiuSuΓu
iISIΓI ;iIISIIΓII

|iISIΓI iIISIIΓII ; SuMuΓuµu〉

and the energy spectrum EiuSuΓu of the environment. By using the recursion relation (for details see
Appendix B [39])〈

iuSuΓu

∥∥∥O1A1

∥∥∥ i′uS
′
uΓ

′
u

〉
= δΓu,Γ′

u

∑
iI ,SI ,Γ

∑
i′II ,S′

II ,Γ′
II

∑
iII ,SII ,ΓII

αiuSuΓu
iISIΓI ;iIISIIΓII

α
i′uS′

uΓ′
u

iISIΓI ;i′IIS′
IIΓ′

II

× (−1)1+SI+S′
II+Su [Su, S

′
u]

1/2

 Su 1 S ′
u

S ′
II SI SII

 〈
iIISIIΓII

∥∥∥O1A1

∥∥∥ i′IIS
′
IIΓ

′
II

〉
(21)

one finds the RMEs in the environment basis |iuSuA1〉 that come into the matrix of the total cluster (3).
The formulas (3,4,5) allow us to obtain any of possible 54 square cluster states. Our calculation shows

that the ground state belongs to the Hilbert space sector with S = 1/2 and Γ = A1. Hence, only the
environment states with SΓ = 0A1,1A1 are needed for the evaluation of the ground state energy. Below
we summarize the results obtained for this particular case.

Using Equation (8) and the explicit expressions for the nonzero sums of Clebsch-Gordan coefficients
of the point group D4 (see Appendix A [39])

F (A1A1A1; A1, A1, A1) = F (EEA1; A1A1E) = 1,

F (EEA1; EEA1) = 1, F (A1A1A1; EEE) = 1/2,

we obtain

Ĥu
(0A1)

=


0 − 1√

3
J 0

− 1√
3
J −J −

√
5
3
J

0 −
√

5
3
J −3J


in the basis of the states |0A10A1; 00A1〉 , |1E1E; 00A1〉 , |2A12A1; 00A1〉. The diagonalization of
Ĥu

(0A1)
yields three states of the 0A1 symmetry (see Table 2)
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Table 2. Environment states of symmetry 0A1

iu αiu0A1
0A10A1

αiu0A1
1E1E αiu0A1

2A12A1
Eiu0A1

1 0.071 0.449 0.890 −3.651 J

2 0.569 0.715 −0.406 −0.726 J

3 −0.819 0.535 −0.205 0.377 J

As for the Ĥu-operator with Su = 1, we have the following matrix representation, with the same
considerations as for the Ĥu

(0A1)
-operator,

Ĥu
(1A1)

=


0 0 J 0

0 0 J 0

J J −1
2
J −

√
5

2
J

0 0 −
√

5
2

J −5
2
J


in the basis |0B11B1; 1MA1〉 , |1B20B2; 1MA1〉 , |1E1E; 1MA1〉 , |2A12A1; 1MA1〉. The states of
1A1 symmetry are listed in Table 3.

Table 3. Environment states of symmetry 1A1

iu αiu1A1
0A31A3

αiu1A1
1A40A4

αiu1A1
1E1E αiu1A1

2A12A1
Eiu1A1

1 0.153 0.153 −0.478 −0.851 −3.128 J

2 −0.470 −0.470 0.566 −0.487 −1.202 J

3 −0.505 −0.505 −0.672 0.196 1.330 J

4 −0.707 0.707 0 0 0

By using the recursion relation (21) with the starting value (2), one finds the RMEs in the environment
basis |iuSuA1〉. Plugging them into Equation (3) we get the target states

∣∣∣i1
2
MA1

〉
[see Equation (5)] of

the cluster and their energies Ei 1
2
A1

(i = 1..7). The number of states involved in determining the cluster
ground state equals 7 (see Table 4).

Table 4. Data on the ground state of the cluster 3 × 3.

βg
1 0A1

βg
2 0A1

βg
3 0A1

βg
1 1A1

βg
2 1A1

βg
3 1A1

βg
4 1A1

Eg

−0.712 0.044 0.010 −0.695 0.0048 −0.090 0.011 −4.749

Now we list the results for observables. The energy per bond found with the help of Equation (4)
is εg = −0.3442 J . This result may be compared to those results of QMC [23] εg = −0.3347J ,
and DMRG εg = −0.32679J for lattice of size 20 × 20 and for number of DMRG states 150 [22].
(Extrapolation of the DMRG results in the infinite-lattice limit yields εg = −0.3321J). The best
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available dressed cluster method (DCM) [42], coupled cluster method (CCM) [43] and real-space
renormalization group with effective interactions (RSRG-EI) [44] results are −0.33486J, −0.33308J,

and −0.33409J , respectively. Using (6) we get the ground-state expectation value of the z component
of the central spin 〈Sz

0〉0 = 0.173 and the staggered magnetization M =
√

3 〈Sz
0〉

2
0 = 0.299. For

comparison, the extrapolated QMC result for the lattice magnetization M = 0.3070. We also provide an
estimate of the spin-spin correlation functions (7)

〈Sz
0S

z
r=1〉 = −0.115,

〈
Sz

0S
z
r=

√
2

〉
= 0.073.

These estimates should be compared with the known results -0.1116 and 0.0637, correspondingly [45].
We have made a preliminary calculations by using the small cluster 3 × 3 and one can see that an

accuracy of the results is still insufficient. At further step, the procedure is repeated and the environment
block grows by adding the coordination sphere of radius 2. When the new spins ~Sα2 , ~Sβ2 , ~Sγ2 , ~Sη2

of the sphere are added, the cluster transforms into the rhombus of size
√

13 ×
√

13. The cluster
has the non-bipartite environment, hence, it is instructive to study this case to examine the effect of
non-biparticity.

The Hamiltonian of the new environment decomposes as

Ĥu = Hu(0) + J
(
~Sα1

~Sα2 + ~Sβ1
~Sβ2 + ~Sγ1

~Sγ2 + ~Sη1
~Sη2

)
. (22)

Hu(0) contains all interactions within the ”old” environment, and the second term describes all couplings
between this part and the added sites.

The irreducible tensors built from the added spins are the same as those of the first coordination sphere
(17)

W 1A1
q1 =

1√
2

(Sα2q + Sβ2q + Sγ2q + Sη2q) , W 1B1
q1 =

1√
2

(Sα2q − Sβ2q + Sγ2q − Sη2q) ,

W 1E
q1 = (Sα2q − Sγ2q) , W 1E

q2 = (Sη2q − Sβ2q) . (23)

One can then cast the Hamiltonian (22) in a more amenable form

Ĥu = Ĥu(0) +
1

2
J

[
U1A1 × W 1A1

]0A1

01
+

1

2
J

[
U1B1 × W 1B1

]0A1

01
+

1√
2
J

[
U1E × W 1E

]0A1

01
,

where U1γ are given by

U1A1
q1 =

1√
2

(Sα1q + Sβ1q + Sγ1q + Sη1q) , U1B1
q1 =

1√
2

(Sα1q − Sβ1q + Sγ1q − Sη1q) ,

U1E
q1 = (Sα1q − Sγ1q) , U1E

q2 = (Sη1q − Sβ1q) . (24)

The matrices formed from the RMEs of W 1γ tensor coincide with (2). To find those of U1γ tensor we
use Equation (B.5) from Ref. [39]. The expressions mentioned (19) are used to initialize the calculations.

From direct calculations one can show that the quantum numbers S = 5/2 and Γ = A1 are attached
to the ground state of the rhombus. This state is formed from 41 environment states with the symmetry
SΓu = 2A1 and 22 states of symmetry SΓu = 3A1. Numerical diagonalization gives the cluster ground
state energy Eg(

5
2
A1) = −5.779J that yields the ground-state energy per bond εg = −0.30925 J in the
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thermodynamic limit. If we compare this result with that of QMC, we see that the agreement becomes
worse. Nevertheless, the conclusions made for the square cluster 3 × 3 hold: (i) both the ground state
of the environment and that of the total cluster have the lattice point symmetry A1. (ii) The largest
weight (is of the order 0.993) into the sum of diagonal elements in the density matrix comes from three
lowest-lying 2A1 states and one state of symmetry 3A1, whereas the total number of states is 63.

Monitoring energies per bond εiSΓ for the total cluster spectrum EiSΓ, we found that the minimal value
εmin ≈ −0.3229 J is reached for the lowest state of symmetry 3

2
A1, however, E(3

2
A1) > Eg = E(5

2
A1).

A similar situation, when a minimal energy per bond belongs to a higher lying state, has been early
observed in DMRG study of antiferromagnetic chains [19]. Despite the number of sites in the cluster√

13×
√

13 is greater than that of in the cluster 3×3, we see that the result for εmin deteriorates compared
to the QMC value −0.3347J . Close inspection allows us to suggest that this is because we are working
on the cluster with a non-bipartite environment.

To proceed with increasing cluster size and satisfy the biparticity requirement we should take the
square cluster 5× 5 in the next step. For the 24-site environment of the cluster, an exact-diagonalization
calculation of the total spectrum is not possible at present and so, to move on to the next-larger system,
we have to elaborate a procedure for determining the states giving the best approximation to true
environment states. To solve the problem and implement the condition of bipartite environment we take
a system in the form of ”decorated cross” obtained from the former cluster

√
13 ×

√
13 by adding four

spins ~Sα3 , ~Sβ3 , ~Sγ3 , ~Sη3 (Figure 1). The form makes equal a number of sites in both sublattices, though
it incorporates 8 sites that are being attached to the cluster by single lattice bonds. At the same time,
exact diagonalization of the cluster

√
17 ×

√
17 is allowed, hence we compare the exact diagonalization

results with those obtained from a symmetry based truncation procedure and analyze a truncation error
on a number of states kept. Since the cluster increasing is similar to that used in the previous step, we
present only the results of calculations. The ground state of the extended cluster environment has the
symmetry 0A1. The total number of states with the same symmetry is 194. Together with 439 1A1-states
of the environment they form a ground state of the total cluster labeled by the symmetry numbers 1

2
A1.

Results for the ground state energy per bond ε = −0.3304, the staggered magnetization m = 0.305

and the spin-spin correlation functions 〈Sz
0S

z
r=1〉 = −0.1101,

〈
Sz

0S
z
r=

√
2

〉
= 0.0615 agree well with the

mentioned ED and QMC results and are much better than those obtained for the square cluster 3 × 3. A
deviation from the ED result is found for 〈Sz

0S
z
r=2〉 = 0.0169. This discrepancy arises from finite size

effects and an imperfect topology of the cluster.
We now describe the low-energy spectrum of the environment. As the dynamics of Néel order

parameter is the one of a free rotator, the low-energy levels scale as E(S) ∼ S(S + 1)/N , where
the inertia of that rotator is proportional to the number of sites [46,47]. The environment lowest-energy
levels (tower of states) belonging to different irreducible representations of the lattice point group are
shown in Figure2 for different S sectors. The SU(2) breaking due to long-range Néel order appears as a
set of A1-states, lying off from other levels, with an energy scaling as E(S) ∼ S(S + 1).

In the remainder of this section we describe a version of the truncation procedure. The main idea will
be illustrated on an example of the ground states properties. An inspection of results for the current and
previous clusters reveals that one have to take the lowest-lying environment eigenstates both in the 0A1

and 1A1 sectors. As for the number of kept states it seems to be most simple to take M states equally
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from the both subspaces, albeit the choice may not be optimal. To prove that this concept works we
recalculate the observables found above on various number of envronment states kept (see Table 5). As
can be seen from Figure 3 the convergence of the results is exponentially fast in M . Merely keeping 100
basis states may be as efficient as keeping of all 633 environment states intact. We regard the resulting
better than 0.01% agreement for ε and m as support for the efficiency of our truncation procedure.

Figure 2. The lowest-energy spectrum of the environment for the cluster
√

17×
√

17 on the
square lattice. The SU(2) symmetry breaks and a long-range Néel order appears as a set of
A1-states with an energy scaling as E(S) ∼ S(S + 1) (dashed line). The symbols represent
the irreducible representations of the different eigenstates.

0 1 2 3 4 5 6
-7,5

-7,0

-6,5

-6,0

-5,5

-5,0

E

S(S+1)

A1
A2

B2

B1

E

Point Gr. Rep.

Table 5. Convergence of the ground state properties vs number of environment states kept.

M(0A1) M(1A1) E0/J ε/J m 〈Sz
0S

z(1)〉
〈
Sz

0S
z(
√

2)
〉

1 1 −7.9010 −0.2410 0.354897 −0.080333 0.065647

5 5 −8.1018 −0.3136 0.304148 −0.104533 0.071420

10 10 −8.1282 −0.3238 0.304928 −0.107933 0.073201

20 20 −8.1378 −0.3279 0.305707 −0.109300 0.073872

50 50 −8.1425 −0.3301 0.305101 −0.110033 0.074247

100 100 −8.1429 −0.3303 0.305187 −0.110100 0.074289

194 194 −8.1430 −0.3304 0.305187 −0.110133 0.074300

3. Magnetocaloric Effect in Ferrimagnetic Chains

The magnetocaloric effect, i.e., a temperature change induced by an adiabatic change of an external
magnetic field was discovered in iron by Warburg [48]. Adiabatic demagnetization of paramagnetic salts
was the first method to reach temperatures below 1 K.
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Figure 3. The cluster ground state energy E, the energy per bond ε, and the staggered
magnetization m convergence for the

√
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17 cluster vs number of environment states
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Recently, MCE in quantum spin systems attracts a lot of attention. The interest is mainly motivated by
universal behavior of quantum phase transitions induced by an applied magnetic field [49,50]. Another
reason is that the magnetocaloric effect is enhanced by geometric frustration [51,52]. An unusual MCE
is also predicted for non-frustrated quantum ferrimagnetic chains [53].

The magnetization process of the (S, s) ferrimagnetic alternating spin chains is of interest because
of possible quantization phenomena detected as a plateau in the magnetization curve. According to
Lieb-Schultz-Mattis theorem [54,55], a necessary condition for the plateau is

S̃ − m = integer,

where S̃ and m are the sum of spins over all sites and the magnetization in the unit period, respectively.
For the ferrimagnetic spin chains this means that there is the magnetization plateau m = S − s

in the ground state and higher plateaux with m = S − s + 1, S − s + 2, ..., S + s. It was
argued that the ground-state plateau has a quantum origin and it is convenient to introduce the
composite spin picture to present the quantum mechanism of the plateau magnetization on the base of
Affleck-Kennedy-Lieb-Tasaki valence-bond-solid (VBS) states as has been suggested for Haldane spin
chains [56]. As applied to the spin (S, s) ferrimagnet this means that the system behaves like combination
of spin-2s antiferromagnet and spin (S − s) ferromagnet [57]. Therefore, one may expect a crossover
in a magnetocaloric behavior of the (S, s) ferrimagnetic spin chains at low temperatures. Indeed, a
magnetic field tuning results in a gap opening for the ferromagnetic excitations, related with the spin
(S − s) ferromagnetic constituent, in a small-field regime that will be accompanied by an increasing
of temperature in an adiabatic magnetization process. Larger fields cause a breaking of the ground
VBS state, related with the spin-2s antiferromagnetic constituent, due to condensation of the triplet
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Figure 4. Construction of the superblock from two blocks of size N = 4 and one central
site. The latter has the spin-1 value. The spin-5/2 and spin-1 are noted by odd and even
numbers, respectively.

L R

0 1 2 3 4-1-2-3-4

excitations. It is expected that in the vicinity of the transition an accumulation of entropy will result in
an enhanced MCE as found for a class of geometrically frustrated antiferromagnets [51].

Below, we consider the enhanced MCE in the example of the (5/2, 1) ferrimagnetic model
considered previously in the study of molecule-based heterospin magnets [Mn(hfac)2BNOR]
(R=H, F, Cl, Br) [58,59]. Our goal is to calculate the entropy S at the temperature T and the magnetic
field H invoking the formalism of SU(2) group.

The Hamiltonian of the ferrimagnetic (S, s) chain reads

H = J
N∑

j=1

(
~Sj · ~sj + ~sj · ~Sj+1

)
(25)

and describes two kinds of spins S = 5/2 and s = 1 alternating on a chain with antiferromagnetic
exchange coupling J > 0 between nearest neighbors.

Let us consider a finite-size cluster with 2N + 1 sites as the superblock formed by a left block BL, a
central site • and another block BR (Figure4). The cluster Hamiltonian

H = HL + HR + Hint, (26)

is composed of the terms HL(HR) including all couplings within the left (right) block. The rest term
Hint describes interaction of the central spin with the nearest neighbors

Hint = J ~S0

(
~S1 + ~S−1

)
.

A Hilbert space of the superblock BL • BR can be written as follows. Form eigenvectors the
”environment” BL ⊗ BR of the central site

|ilSlirSr; SuMu〉 =
∑

ml,mr

 Sl Sr Su

ml mr Mu

 |ilSlml〉 |irSrmr〉 (27)

classified with the total spin angular momentum Su and the corresponding third component Mu. The
states of the left and right blocks are given by the set |ilSlml〉 and |irSrmr〉, respectively, with the total
angular momentum S and the third component m, where the index i labels other possible quantum
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numbers. The basis functions of the full cluster are obtained by the addition rule of spin angular
momentum

|ilSlirSr, SuS0; SM〉 =
∑

Mu,m0

 Su S0 S

Mu m0 M

 |ilSlirSr; SuMu〉 |S0m0〉 , (28)

where |S0m0〉 is the wave function of the central spin.
The calculation of matrix elements for the Hamiltonian (26) with the help of the Wigner-Eckart’s

theorem [41] yields

〈ilSlirSr, SuS0; SM |H| i′lS ′
li
′
rS

′
r, S

′
uS0; S

′M ′〉 = (EilSl
+ EirSr) δil,i

′
l
δSl,S

′
l
δir,i′rδSr,S′

r
δSuS′

u
δSS′δMM ′

+ J (−1)S′
u+S0+S

 Su S0 S

S0 S ′
u 1

 〈S0 ‖S0‖S0〉 〈ilSlirSrSu ‖S1 + S−1‖ i′lS
′
li
′
rS

′
rS

′
u〉 δSS′δMM ′ (29)

where {...} is a 6j-symbol. The first RME is 〈S0 ‖S0‖S0〉 =
√

S0(S0 + 1)(2S0 + 1) and the latter may
be obtained if the environment eigenstates are known (see below). A finding of observables is performed
by the way described in the previous Section. The energy per bond is then calculated as

εiS =
1

2

(
EiS −

∑ ∣∣∣αiS
ilSlirSr;Su

∣∣∣2 (EilSl
+ EirSr)

)
. (30)

The eigenfunctions
|iSM〉 =

∑
αiS

ilSlirSr;Su
|ilSlirSr, SuS0; SM〉 (31)

and the energy levels EiS are determined by direct diagonalization of the cluster Hamiltonian H

[Equation (29)]. The values εiS with the inherited cluster quantum numbers eliminate finite-size effects
and should be regarded as an approximation to the energy spectrum of the infinite chain.

The quantities needed to calculate a magnetocaloric effect are the sublattice magnetizations in the
basis |iSM〉 of the spin chain. The magnetization of the central site is

〈iSM |Sz
0 | iSM〉 = M 〈S0 ‖S0‖S0〉

√
2S + 1

S (S + 1)
(−1)1+S0+S

×
∑
iuSu

(−1)Su
(
αiS

iuSu

)2

 S 1 S

S0 Su S0

 , (32)

where M is the third component of the chain, S0 is the value of the central spin.
The magnetization of the other sublattice is

〈iSM |Sz
1 | iSM〉 = M

√
2S + 1

S (S + 1)
(−1)1+S0+S

×
∑
iuSu

∑
i′uS′

u

(−1)Su αiS
iuSu

αiS
i′uS′

u

 S 1 S

S ′
u 1 Su

 〈iuSu ‖S1‖ i′uS
′
u〉 . (33)

The observables of the magnetization per block in the |iSM〉 states

〈SB〉iSM = 〈Sz
0〉iSM + 〈Sz

1〉iSM . (34)
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In the course of sequential iterations one should organize an iteration scheme of a cluster size
increasing. To perform calculations we start with the minimal left (right) block consisting of two
spins (S1, S2). The energies of the block are ES = J/2 [S(S + 1) − S1(S1 + 1) − S2(S2 + 1)] with
S1 − S2 ≤ S ≤ S1 + S2. The RMEs of the spins S1, S2 in the basis of the total spin S can be computed
using the Wigner-Eckart theorem

〈
S1S2; S

∥∥∥A1(1)
∥∥∥ S ′

1S
′
2; S

′
〉

= (−1)1+S1+S2+S′
[S, S ′]

1/2

 S 1 S ′

S ′
1 S2 S1

 〈
S1

∥∥∥A1(1)
∥∥∥ S ′

1

〉
δS2S′

2
,

(35)〈
S1S2; S

∥∥∥A1(2)
∥∥∥ S ′

1S
′
2; S

′
〉

= (−1)1+S1+S′
2+S [S, S ′]

1/2

 S 1 S ′

S ′
2 S1 S2

 〈
S2

∥∥∥A1(2)
∥∥∥ S ′

2

〉
δS1S′

1
,

(36)
where the irreducible tensors A1(1) and A1(2) act on the spin 1 and 2, respectively. This yields
together with 〈Sγ ‖S‖Sγ〉 =

√
Sγ(Sγ + 1)(2Sγ + 1) (γ = 1, 2) the (2S + 1) × (2S + 1) matrices〈

S1S2; S
∥∥∥S1(2)

∥∥∥ S ′
1S

′
2; S

′
〉

.
At further step, the procedure is repeated for a larger block of four spins with the Hamiltonian

H4 = J
(
~S1

~S2 + ~S2
~S3 + ~S3

~S4

)
.

It is convenient to consider H4 as a pair of interacting two-spin blocks H4 = Hl + Hr + V , where the
indices l and r are related to the (1,2) and (3,4) pairs, respectively. The total spins of the pairs are denoted
as Sl and Sr. The basis functions of the four-spin cluster are obtained by the addition rule of spin angular
momentum. The matrices Hl and Hr are diagonal in the basis, a calculation of matrix elements for the
block interaction V is performed with the aid of the formula for the scalar product of two irreducible
tensors [41]. This yields the result for the Hamiltonian H4

〈SlSr; SM |H4|S ′
lS

′
r; S

′M ′〉 = (El + Er) δSlS
′
l
δSrS′

r
δSS′δMM ′

+ J (−1)S′
l+Sr+S

 Sl Sr S

S ′
r S ′

l 1

 δSS′δMM ′ 〈S1S2; Sl ‖S2‖S1S2; S
′
l〉 〈S1S2; Sr ‖S1‖S1S2; S

′
r〉 . (37)

The energy levels EiS and eigenfunctions

|iSM〉 =
∑

αiS
SlSr

|SlSr; SM〉 (38)

are determined by the direct diagonalization of the Hamiltonian (37).
The iteration is closed by recalculating RMEs of the boundary spins 1 and 4 in the basis (38). Using

the relationship

〈iS ‖S1‖ i′S ′〉 =
∑
SlSr

∑
S′

l
S′

r

αiS
SlSr

αi′S′

S′
l
S′

r
〈SlSr; S ‖S1‖S ′

lS
′
r; S

′〉

we get with the aid of Equations (35,36)

〈iS ‖S1‖ i′S ′〉 =
∑

SlSrS′
l

αiS
SlSr

αi′S′

S′
l
Sr

[S, S ′]
1/2

(−1)1+Sl+Sr+S′

 S 1 S ′

S ′
l Sr Sl

 〈S1S2; Sl ‖S1‖S1S2; S
′
l〉 ,
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〈iS ‖S4‖ i′S ′〉 =
∑

SlSrS′
r

αiS
SlSr

αi′S′

SlS′
r
[S, S ′]

1/2
(−1)1+Sl+S′

r+S

 S 1 S ′

S ′
r Sl Sr

 〈S1S2; Sr ‖S2‖S1S2; S
′
r〉 .

The procedure may be iteratively repeated for a larger size (either 6 or 8) block of blocks.
We apply the resulting algorithm to the ferrimagnetic (5/2,1) cluster as shown in Figure4, where the

sites with even and odd numbers correspond to spins with S = 1 and S = 5/2, respectively. Monitoring
the energy per bond εg [Equation (30)] and sublattice magnetizations [Equations(32,33)] in the ground
state, we increase a size of blocks to reach values comparable with those found by the spin-wave theory
(SWT) [60] and the MPM [58,59]. For the system under study, whose correlation length is so small as
to be comparable to the unit-cell length, the results are achieved with the 9-site cluster (N = 4): εg =

−5.900 J vs −5.899 J (SWT) and −5.903 (MPM), 〈Sz
0〉g = −0.788 vs −0.769 (SWT), 〈Sz

1〉g = 2.270

vs 2.269 (SWT). In the calculation, the ground state has the spin S = 5 in agreement with Lieb-Mattis
theorem [61], then possible values Su = 4, 5, and 6. In addition, we note that an account of the lattice
point symmetry splits Hilbert space into even and odd states, however, the division is a time consuming
operation which is not justified for the 9-site cluster.

Figure 5. Curves of constant entropy for the (5/2,1) ferrimagnetic chain on large scales.
The values of the cluster entropy S measured in units kB are shown by numbers at the end
of each line.
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When performing a calculation of the magnetocaloric effect (dT/dH)S via the cluster energies
EiSM(H) = EiS − MH obtained through an exact diagonalization the strong isoentrope wigglings at
low temperatures cannot be avoided (see inset in Figure6), since the maximum level spacing of the finite
cluster is of order of temperature. This shortcoming can be partly overcome by using an information
about the eigenvalues εiS (30) and the observables of the magnetization per block in the |iSM〉 states

〈SB〉iSM = 〈Sz
0〉iSM + 〈Sz

1〉iSM , (39)

where the sublattice magnetizations are determined by Equations(32,33). The isoentrope curves may be
found by considering the block partition function Z(T,H) =

∑
iSM exp [− (εiS − H 〈SB〉iSM) /T ].
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The adiabatic magnetization curves of the (5/2,1) ferrimagnetic chain are found from a direct
numerical solution of S(H,T ) = const (Figure5). This way turns out to be more stable for small
temperatures and fields. Care should be taken to ensure S ≤ kB log [(2S + 1)4(2s + 1)5] ≈ 12.66 kB

for the 9-site cluster, or for the entropy per block S/N ≤ 2.81 kB that corresponds to the upper value
S/N=kB log [(2S + 1)(2s + 1)] ≈ 2.89 kB in the thermodynamical limit.

Figure 6. Curves of constant entropy for the (5/2,1) ferrimagnetic chain on small scales.
The values of the cluster entropy S measured in units kB are shown by numbers at the end
of each line. The tilt near the putative quantum critical point is shown by the arrow. Inset:
isoentropy curve (S = 1.0 kB) calculated with the cluster energies EiSM exhibits strong
finite-size features.

The results are presented in Figure6 and demonstrate that the isentropes exhibit the expected behavior
and they are tilted towards the point H = Hc (the field destroying the ground state plateau) with
a minimum in its vicinity. As argued [49,50] the behavior is expected for systems where the finite
temperature entropy landscape is determined by an underlying quantum phase transition. A detailed
analysis of the quantum criticality is performed [53].

4. Bose-Einstein Condensation in Two-Dimensional Spin-1 Dimerized System

A possibility to study BEC with low-dimensional magnetic materials predicted theoretically twenty
20 years ago [62] gave rise to intense experimental researches in the field. The analogy between the spins
and the bosons becomes evident for antiferromagnets where spins form dimers with a spin-singlet ground
state [63]. Originally, the attention was mainly focused on spin-1/2 systems, where excitations inside
each dimer (triplons) were regarded as bosons with hard-core repulsion, i.e., no more than one boson
was presented on a single dimer. The analogy enables to treat spin systems as that of interacting bosons
whose ground state is determined by the balance between kinetic energy and repulsive interactions [64].
If the repulsion dominates the bosons form a superlattice and a finite energy cost is needed to create
an additional particle. This exhibits itself as a jump in chemical potential versus boson number, in the
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spin language, as a plateau in magnetization curve versus magnetic field at rational fraction of saturated
magnetization. Recently, magnetic weakly coupled dimer system with S = 1 moments attracted a lot
of attention [65,66]. The field behavior of magnetization in the system of antiferromagnetically weakly
coupled S = 1 dimers can be described as BEC of magnons by mapping the spin-1 system into a gas of
semi-hard-core bosons [67].

The organic compound F2PNNNO is an example of spin-one dimer based magnetic
insulator [68]. This is 2D Heisenberg system with a singlet ground state, in which S = 1 dimers interact
antiferromagnetically [68,69]. The field magnetization process shows two-step saturation behavior
that is a rare example of observing a plateau in a two-dimensional system. The intermediate plateau
corresponds to the half value of saturation magnetization. The consistent calculation of susceptibility
and magnetization for the finite-size cluster with imposed periodic conditions yields the following
estimations of antiferromagnetic exchange couplings 2J0 = 67.5 K, 2J1 = 7.5 K, i.e., the system can be
regarded as a real 2D dimerized spin-one system. Apparently, the quantum antiferromagnet F2PNNNO
offers an opportunity to verify a relevance of semi-hard core boson model for description of dimerized
system.

The Hamiltonian of weakly interacting spin-one dimers on a 2D lattice depicted in Figure 7 is given
by

HS = J0

∑
i

~Si1
~Si2 + J1

∑
〈iα,jᾱ〉

~Siα
~Sjᾱ, (40)

where J0 is the coupling inside the i-th dimer, J1 is the strength of the exchange interaction between
the dimers located on the bonds 〈i, j〉. The indices α, ᾱ mark S = 1 spins that enter into the
interacting dimers, namely, ᾱ = 1,2 provided α = 2,1, respectively. Both types of the interactions are
antiferromagnetic J0,1 > 0, and the regime of weakly interacting dimers, |J0| À |J1|, is considered.
The Heisenberg model has been previously suggested to explain some thermodynamical properties of
F2PNNNO [68]. Numerical calculations based on the Hamiltonian (40) via exact diagonalization of
small clusters and their comparison with experimental data prove its relevance for the ratio |J1/J0| ¿ 1.

To get the energy spectrum, finite-size clusters composed of N = 10 and N = 18 sites are selected. In
a choice of the cluster care should be taken to ensure that the lattice point group symmetry is hold. Since
intra-dimer interactions are the strongest, the cluster should contain whole dimers and not break them
into parts. To mark sites inside the cluster, chessboard-like notations will be used, where site positions
along the x axis are marked by numbers whereas positions along the y axis are denoted by Latin letters.

To find eigenfunctions of the cluster that inherit the total cluster spin as a quantum number, we should
develop a consecutive procedure for adding spin moments. It is convenient to break the cluster in several
parts. Following the strategy of building a cluster used [39], one should identify the central dimer (center)
and its environment. The center is composed of c3 and d3 sites whereas another sites are embodied into
environment.

The Hamiltonian of the central dimer has the form Hc = J0
~Sc3

~Sd3, whereas the interaction between
the center and its environment is given by

Vce = J1
~Sc3

(
~Sc2 + ~Sc4

)
+ J1

~Sd3

(
~Sd2 + ~Sd4

)
. (41)
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The environment consists of four parts, namely of two dimers, left (l) and right (r) ones, with the
Hamiltonians

Hl = J0
~Sc1

~Sd1, and Hr = J0
~Sc5

~Sd5, (42)

respectively, as well as two fork-like parts, i.e., the down and upper ones, with the corresponding
Hamiltonians

Hdown = J0

(
~Sb2

~Sc2 + ~Sa3
~Sb3 + ~Sb4

~Sc4

)
+ J1

~Sb3

(
~Sb2 + ~Sb4

)
, (43)

Hup = J0

(
~Sd2

~Se2 + ~Se3
~Sf3 + ~Sd4

~Se4

)
+ J1

~Se3

(
~Se2 + ~Se4

)
. (44)

The interaction between the left/right dimers and the fork-like parts is presented as

Venv = J1

(
~Sc2

~Sc1 + ~Sd2
~Sd1 + ~Sc4

~Sc5 + ~Sd4
~Sd5

)
. (45)

The Hamiltonian of the entire cluster gathers all the above terms

H = Hc + Vce + {Hl + Hr + Hdown + Hup + Venv} . (46)

Figure 7. The 18-site cluster used in numerical calculations. The environment of the central
dimer consists of two ”fork”-like parts (up and down), and the left (l) and the right (r) dimers.
The intra-dimer J0 and the inter-dimer J1 interactions are shown by solid and dotted lines,
respectively.
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There are three states of dimer, an elementary block of the cluster, with total spin Sdm = 0 (singlet),
Sdm = 1 (triplet), and Sdm = 2 (quintiplet). The energies of the states are E0 = −2J0, E1 = −J0,
E2 = J0, respectively, and the eigenstates are obtained via the common rule of addition of moments

|11; SdmMdm〉 ≡ |SdmMdm〉 =
∑
σ1σ2

 1 1 Sdm

σ1 σ2 Mdm

 |1σ1〉 |1σ2〉 . (47)

To increase the size of cluster, RMEs of the operators S(1) and S(2), that constitute the dimer, calculated
within the basis (47), are needed

〈
Sdm ‖S(1)‖S

′

dm

〉
= (−1)1+S′

dm

√
(2Sdm + 1)(2S ′

dm + 1)

 Sdm 1 S ′
dm

1 1 1

 〈1 ‖S‖ 1〉 , (48)

〈
Sdm ‖S(2)‖S

′

dm

〉
= (−1)1+Sdm

√
(2Sdm + 1)(2S ′

dm + 1)

 Sdm 1 S ′
dm

1 1 1

 〈1 ‖S‖ 1〉 , (49)

where the RME 〈1 ‖S‖ 1〉 =
√

6.
The fork-like part includes three interacting dimers. It is convenient to build the basis of this fragment

according to the scheme (2 + 4) + 3 of moment addition, i.e., combining of ”prong” dimer functions
is followed by adding ”handle” function. As a result, basic functions with total spin Sdown of the down
fork-like part have the form

|(S2S4) S24, S3; SdownMdown〉 =
∑

M2M3M4M24

 S2 S4 S24

M2 M4 M24

  S24 S3 Sdown

M24 M3 Mdown


× |S2M2〉 |S3M3〉 |S4M4〉 , (50)

where S2, S3 and S4 are spins of dimers composed of the b2 and c2 sites, etc. Within the basis, the
Hamiltonian (43) is presented by the block diagonal 141 × 141 matrix. The blocks are marked by total
spin Sdown = 0, 1, . . . , 6 values. A diagonalization of Hdown matrix yields the spectrum EidownSdown

and
eigenfunctions

|idownSdownMdown〉 =
∑

S2S3S4S24

αidownSdown

(S2S4)S24,S3
|(S2S4) S24, S3; SdownMdown〉 ,

where idown index distinguishes basic functions with the same total Sdown spin. The results for the upper
fork-like part can be obtained the same way provided the site c4 is substituted for d2, and c2 is changed
by d4 etc. The assembly of the cluster part is completed by calculations of RMEs [see Equation (80) in
Appendix B].

The next step, we construct the spin functions of the non-interacting parts, i.e., of the left and of the
right dimers

|SlSr; SlrMlr〉 =
∑

MlMr

 Sl Sr Slr

Ml Mr Mlr

 |SlMl〉 |SrMr〉 , (51)

where Slr = 0, 1 . . . , 4, and upper and lower fork-like parts

|iupSupidownSdown; SudMud〉 =
∑

MupMdown

 Sup Sdown Sud

Mup Mdown Mud

 |iupSupMup〉 |idownSdownMdown〉 ,

(52)
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where Sud = 0, 1 . . . , 12, and add them together to build the basis of environment for the central dimer

|(iupSupidownSdown) Sud, (SlSr) Slr; SenvMenv〉

=
∑

MudMlr

 Sud Slr Senv

Mud Mlr Menv

 |iupSupidownSdown; SudMud〉 |SlSr; SlrMlr〉 . (53)

RMEs of spin operators required to build the Hamiltonian of environment are shown in Appendix B [see
Equations(81-84)]. Note, that a number of the states (53) is too much to avoid the truncation procedure
(see below).

Matrix elements of environment Hamiltonian Henv = Hl +Hr +Hdown +Hup +Venv are listed below〈
(iupSupidownSdown) Sud, (SlSr) Slr; SenvMenv|Henv|

(
i′upS

′
upi

′
downS

′
down

)
S ′

ud, (S
′
lS

′
r) S ′

lr; S
′
envM

′
env

〉
=

(
EiupSup + EidownSdown

+ ESl
+ ESr

)
×δiup,i′up

δSup,S′
up

δidown,i′
down

δSdown,S′
down

δSud,S′
ud

δSl,S
′
l
δSr,S′

r
δSlr,S′

lr
δSenv,S′

env
δMenv,M ′

env

+ J1δSenv,S′
env

(−1)Senv+S′
ud+Slr

 Sud Slr Senv

S ′
lr S ′

ud 1

 δMenv,M ′
env

(54)

×
{
〈SlSr; Slr ‖Sc1‖S ′

lS
′
r; S

′
lr〉

〈
iupSupidownSdown; Sud ‖Sc2‖ i′upS

′
upi

′
downS

′
down; S

′
ud

〉
+ 〈SlSr; Slr ‖Sd1‖S ′

lS
′
r; S

′
lr〉

〈
iupSupidownSdown; Sud ‖Sd2‖ i′upS

′
upi

′
downS

′
down; S

′
ud

〉
+ 〈SlSr; Slr ‖Sc5‖S ′

lS
′
r; S

′
lr〉

〈
iupSupidownSdown; Sud ‖Sc4‖ i′upS

′
upi

′
downS

′
down; S

′
ud

〉
+ 〈SlSr; Slr ‖Sd5‖S ′

lS
′
r; S

′
lr〉

〈
iupSupidownSdown; Sud ‖Sd4‖ i′upS

′
upi

′
downS

′
down; S

′
ud

〉}
.

The terms in {. . .} include the product of RMEs given by Equations(81,82) for spins that enter into the
left/right dimers and by Equations (83,84) for the constituents of the fork-like parts.

After finding environment eigenvalues EienvSenv and eigenfunctions

|ienvSenvMenv〉 =
∑

βienvSenv

(iupSupidownSdown)Sud,(SlSr)Slr
|(iupSupidownSdown) Sud, (SlSr) Slr; SenvMenv〉 ,

(55)
one calculate RMEs for the environment spins that directly interact with the central dimer, within the
basis (see [Equation (85)]).

As the final step of the diagonalization procedure one build the basis of entire cluster

|ienvSenv, Sc; SM〉 =
∑

MenvMc

 Senv Sc S

Menv Mc M

 |ienvSenvMenv〉 |ScMc〉 ,

and determine matrix elements of the cluster Hamiltonian (46)

〈ienvSenv, Sc; SM |H|i′envS
′
env, S

′
c; S

′M ′〉 = (EienvSenv + ESc) δienv,i′env
δSenv,S′

env
δSc,S′

c
δS,S′δM,M ′

+J1 (−1)S+S′
env+Sc

 Senv Sc S

S ′
c S ′

env 1

 δS,S′δM,M ′
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×

〈Sc ‖S(1)‖S ′
c〉

∑
k=c2,c4

〈ienvSenv ‖Sk‖ i′envS
′
env〉 + 〈Sc ‖S(2)‖S ′

c〉
∑

k=d2,d4

〈ienvSenv ‖Sk‖ i′envS
′
env〉

 ,

(56)
where RMEs are previously derived [see Equations(48-49) and Equation (85)]. Numerical
diagonalization of the matrix (56) yields target spectrum EiS and eigenfunctions

|iSM〉 =
∑

γiS
SenvMenv,Sc

|SenvMenv, Sc; SM〉 . (57)

The classification of eigenstates of parts we used to gather the total cluster according to irreducible
representations of SU(2)-group enables us to organize truncation procedure inside sectors of Hilbert
space that arise at consecutive steps of the algorithm. A possibility to carry out calculations within
reduced basis is feature of the algorithm that relates it with other renormalization group methods.

We hold the following strategy of truncation procedure to build target states that are obtained after
combining two parts of lattice. For given spin-S sector a certain amount of states having the lowest
energies are kept. Thus each group of |iS〉 states is presented in reduced basis. We truncate the basis of
two ”fork”-like parts before combining them into a larger lattice segment. This is not the only way to do
so, for example one can truncate the basis of environment after combining the ”fork”-like parts, but the
former is easier to perform.

We tested several realizations of truncation procedure either by simply controlling a number of vectors
retained in the reduced basis or by monitoring a genealogy of the target spin-S state through the triangle
rule, i.e., only states that contribute into the target state are taken into account. The last approach gives
an opportunity to keep more vectors in the basis due to omitting of redundant states. Moreover, the
highest-spin cluster states, i.e., those with S ≥ 15 in our problem, are treated exactly. The size of
truncated basis was chosen equal to either 64 or 121 for the scheme without taking genealogy of the
target state into account, and it varies from 12 till 352, being dependent on the total spin S, for the
”genealogical” scheme.

An accuracy of truncation procedure is controlled by monitoring an energy of the lowest state within
each spin sector. The variation of this observable computed through the both schemes does not normally
exceed 1-2% (a maximum discrepancy of order 6% is reached only in the S-8 sector) that provides
an evidence for the correctness of constructed basis, which exhibits almost no dependence on the used
truncation procedure. The results that we present below are obtained within the ”genealogical” scheme.

Another feature of the algorithm is combining central unit (one site or dimer) with its environment at
the final step. The procedure does not depend on the structure of environment and looks similar for any
cluster. However, the information about quantum numbers of the environment states enables to simplify
calculations substantially at this stage of the algorithm. Indeed, for given spin-S sector of Hilbert space
of entire cluster one should pick out only those environment eigenfunctions which spins Su obey the rule

|Su − Sc| ≤ S ≤ Su + Sc.

Using of truncation procedure results in basises composed maximum from 4–5 thousand states. To
control accuracy of the procedure, results obtained for the 18-site system are compared with those for
the 10-site system. The smaller cluster enables to handle the complete basis without any truncation. The
10-site system is embedded into bigger cluster and consists of the following parts: the central dimer
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c3, d3 and neighbor dimers b2, c2, b4, c4, d2, e2 and d4, e4. Apparently, a construction of environment
requires two consecutive steps (i) addition of dimers b2, c2 and b4, c4 as well as d2, e2 and d4, e4

ones according to Equation (51) followed by calculation of RMEs according to Equations (81,82);
(ii) construction of the environment states from upper and lower parts built previously and calculation
of RME of the environment spins that interact directly with the central dimer. The entire cluster
Hamiltonian is obtained through (56). The biggest Hilbert space dimension (2025 × 2025) is reached in
S-2 sector. Numerical results for the supplementary cluster are listed in Table 6 for comparison. Note
that one should compare energy values with the same magnetization per dimer (See Figure 8).

The results of energy spectrum calculation for two N = 10 and N = 18 clusters are listed in
Table 6, where minimal energy Emin within each spin-S sector along with energy per dimer ε̃ =

2Emin/N are given. The magnetization per dimer is determined by m = 2S/N . Both N = 10 and
N = 18 dependencies ε̃ (m) are shown together in Figure 8. Points for both clusters lay on the same
curve, i.e., finite-size effects can be ignored which is expected for the regime of a small dimer-dimer
interaction J1 ¿ J0.

Figure 8. Plot of the lowest energy per dimer ε̃ (m) vs m for the N = 10 and N = 18

clusters. The cusp is seen at m = 1.

A remarkable feature of the curve is the cusp in the middle, i.e., at m = 1. Independent fitting of both
parts by the quadratic form ε(m) = ε2m

2 + ε1m + ε0 jointed in the point yields ε2 = 0.190 ± 0.018,
ε1 = 0.828 ± 0.019, and ε0 = −2.0073 ± 0.0040 for lower part of the curve (0 < m < 1) together with
ε2 = 0.200 ± 0.058, ε1 = 1.4578 ± 0.018, and ε0 = −2.629 ± 0.014 for upper part (1 < m < 2).

Based on N = 18 case data we build a dependence of jumps Emin when the total spin S changes
from 0 till 18, or the dimer magnetization varies from 0 till 2 (Figure 9) One can see that the values of
jumps are approximately J0 for S ≤ 9 and they increase by a factor of 2 as S ≥ 10. It means that the
energy of the total system of weakly interacting dimers changes with an increase of magnetic field due
to local excitations inside separate dimers. Indeed, for the single S = 1 dimer the spectrum consists of a
singlet, a triplet, and a quintuplet. The energy difference between the singlet and the triplet is J0 while
the difference between the quintuplet and the triplet is 2J0.
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Figure 9. Plot of the changes ∆Emin versus the dimer magnetization m. A distinct jump is
seen at m = 1.

0

A standard way to describe magnetization process at T = 0 is to define E
(S)
min(N) as the lowest energy

of the Hamiltonian (40) in the spin-S subspace for the finite system of N elementary dimers. Applying
magnetic field B leads to the Zeeman splitting of energy levels E

(S)
min(B) = E

(S)
min − SB, and therefore,

the level crossing occurs at values BS = E
(S+1)
min (B) − E

(S)
min(B) when the field is increasing. These

level crossings correspond to jumps of value 1/N in magnetization at zero temperature, until the fully
polarized state with magnetization per dimer msat = 2N/N = 2 is reached at value of the magnetic field
Bsat = E

(2N)
min (B)−E

(2N−1)
min (B). The calculation performed for N/2 = 9 dimers yields the magnetization

points presented in Figure 10 and reveals the appearance of the ground state plateau as well as the plateau
at one-half of the saturation value.

To guarantee the validity of the magnetization curve we use the approach developed by Sakai and
Tahakashi [70] to recover the m(B) dependence in thermodynamical limit. In this case the condition for
crossover fields transforms into B = ε′(m), where ε is the energy per dimer. The plateau boundaries
are determined by the derivatives in the special points: (i) B1 = ε′(+0) is related with the end of the
ground state plateau; (ii) B2 = ε′(1 − 0) and B3 = ε′(1 + 0) correspond to the beginning and the end of
intermediate plateau, respectively; (iii) B4 = ε′(2− 0) marks an emergence of saturation magnetization.

Treating the energy spectrum results in linear dependences relevant to the sectors between plateaus ε′(m) = 0.83 + 0.38 m, 0 < m < 1,

ε′(m) = 1.46 + 0.40 m, 1 < m < 2,
(58)

that yields immediately B1 = 0.83 J0, B2 = 1.21 J0, B3 = 1.86 J0, and B4 = 2.26 J0. Values
normalized to the saturation field Bsat are listed in Table VII and exhibit a reasonable agreement with
the experimental data for F2PNNNO system. A comparison of finite cluster calculations with those of
thermodynamical limit (58) is given in Figure 10. One can see that both methods come to the close
results.

Note that the method we used for numerical calculations is intrinsically two-dimensional one whereas
the previous numerical study of the system [68] dealt with essentially one-dimensional ”folded chain”
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cluster. The regions between the plateaus of the magnetization curve exhibit a behavior closer to linear
one instead of the S-shape forms obtained earlier.

Table 6. Numerical results of the lowest energy Emin and the energy ε̃ per dimer in the
spin-S subspaces for N = 10 and N = 18 clusters.

S Emin(N = 10)/J0 ε̃ (N = 10) Emin(N = 18)/J0 ε̃ (N = 18)

0 −10.0334 −2.0067 −18.0336 −2.0037

1 −9.1853 −1.8371 −17.1431 −1.9048

2 −8.2123 −1.6425 −16.2529 −1.8059

3 −7.1978 −1.4396 −15.2935 −1.6993

4 −6.1430 −1.2286 −14.3205 −1.5912

5 −4.9344 −0.9869 −13.3164 −1.4796

6 −2.9787 −0.5957 −12.2745 −1.3638

7 −0.9610 −0.1922 −11.1879 −1.2431

8 1.0849 0.2170 −10.0260 −1.1140

9 3.1588 0.6318 −8.8335 −0.9815

10 5.4418 1.0883 −6.8807 −0.7645

11 −4.8994 −0.5444

12 −2.8795 −0.3199

13 −0.8172 −0.0908

14 1.2815 0.1424

15 3.4533 0.3837

16 5.6844 0.6316

17 7.960 0.8844

18 10.3254 1.1473

Table 7. Values of the magnetic field special points compared with the experimental
data [68].

Bi/Bsat i = 1 i = 2 i = 3 i = 4

Theory 0.37 0.53 0.82 1

Experiment 0.33 0.53 0.89 1

The data presented in Figure 9 enable to introduce the boson picture. For J1 ¿ J0 the low energy
subspace of spin Hamiltonian (40) consists of the singlet, the Sz = 1 component of the triplet, and the
Sz = 2 component of the quintuplet. It is convenient to identify the triplet state with the presence of
a bosonic particle (triplon), the quintiplet state as a pair of bosons (quintuplon), and the singlet state as
an absence of bosons. Then, the boson model is formulated via the semi-hard core bosonic operators gi
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and g†
i with the extended Pauli’s exclusion principle g† 3

i = 0, i.e., more then two bosons per site are
forbidden [71,72]. According to this study, the magnetization curve shown in Figure 10 can be
interpreted as tuning of boson density by applied magnetic field. At small chemical potential, the lowest
energy is achieved by empty states, i.e., those where all dimers are in the singlet state (boson vacuum).
For B > B1 a finite density of bosons (triplons) emerges in the ground state and contributes into
Bose-superfluid (BS) phase. The triplon excitations are mobile due to weak interdimer coupling. The
density (magnetization) increases monotonically as a function of magnetic field until B2, where transition
to charge ordering (CO) phase comes up. This corresponds to the boson concentration n = 0.5, when
the triplons crystallize in a superstructure pattern (Figure 11). The fractional plateau requires strong
boson interactions in comparison to the kinetic energy. At B > B3 the filling increases monotonically in
resulting BS phase (quintiplon condensation) until the ground state transforms into Mott insulating (MI)
phase with two bosons per dimer at B > B4.

Figure 10. Plot of m versus B obtained via B = ε′(m). The dots mark values found through
the diagonalization algorithm.
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5. Cluster Perturbation Theory

In last ten years, the quantum cluster methods became effective tool in studies of lattice quantum
models. Nowadays they are widely applied along with the ED and QMC methods. The various modern
cluster methods, i.e., the variational cluster perturbation theory (VCPT) [73], the cluster theory of
dynamical mean field [74], the method of dynamical cluster approximation [75], deal with a lattice
cluster of finite size embedded into the infinite lattice, where the cluster environment is modeled either
by auxiliary fields, or by heat bath additional degrees of freedom. In contrast to conventional mean field
theory, these methods are dynamical and completely account of correlation effects [76].
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Figure 11. The low energy subspace of the single dimer spectrum in the presence of a
magnetic field. Boson superlattice patterns corresponding to the charge-ordered and Mott
insulating phases are shown above.
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Figure 12. Spin-1/2 chains with the alternative exchange couplings: J1 < 0 and J2 > 0 (a);
J1 > 0 and J2 > 0 (b).
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J1 J1J2
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b

The simplest of the cluster methods is the cluster perturbation theory (CPT) [77–79], which is a
constituent part of the contemporary VCPT. Below, we consider an extension of the theory to quantum
spin system. We calculate the magnon spectral function for two spin-1/2 chains with the Hamiltonian

H = J1

N/2∑
i=1

S2i−1S2i + J2

N/2∑
i=1

S2iS2i+1.

The Hamiltonian includes two types of alternative exchange couplings between the nearest neighbors
(Figure 12). In the limit |J2/J1| ¿ 1, the first chain belongs the class of Haldane systems with a
gap in the spin-wave excitation spectrum (it is equivalent to spin-1 antiferromagnet at J1 → ∞). The
second chain is the dimerized spin-1/2 chain which is of interest due to possible observation of BEC in
low-dimensional magnetic materials [62,64].
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The both compounds has a singlet ground state, however in the first case we deal with a Haldane liquid
phase, i.e., the liquid with antiferromagnetic order without positional order. In the liquid the hidden order
is featured by non-local string order parameter. Elementary excitations presents singlet-triplet excitations
(spinon) traveled along the chain. In the second case elementary excitations are the local singlet-triplet
excitations (triplon) localized inside the dimers. These excitations can be mapped onto boson particles
either with an intersite attraction (J2 < 0) or repulsion (J2 > 0).

Figure 13. L = 4 cluster decomposition of the spin chain.

n + 1n1-n

1 2 3 4 1 2 3 4 1 2 3 4

The main idea of the cluster perturbation theory is to divide the lattice into a superlattice of identical
clusters. As a next step one should calculate the spin Green function within the each cluster. Interactions
between the clusters are perturbatively treated. The Lanczos algorithm based on the information about
a ground state of the cluster is a conventional way to calculate the cluster Green function [17]. An
alternative way to get the quantity is to use Lehmann’s representation based on the cluster energy
spectrum and wavefunctions.

The Hamiltonian treated in the CPT can be splitted in two parts

H = H0 + V, (59)

where
H0 =

∑
R

H0
R

is the sum of cluster Hamiltonians,

V =
∑

R,R′
V R,R

′

ab SRaSR′
b

is the sum of intercluster interactions. Here, a and b mark spins inside the cluster, for example, a and b

equal to either 1 or 4 as shown in Figure 13. In this case, V R,R
′

ab is the exchange coupling between spin
a of the cluster R and spin b of the cluster R′

.
Firstly, we describe how to calculate the cluster Green function Ĝab by means of SU(2) group

formalism [80]. In an absence of anisotropic terms in a Hamiltonian, the elementary excitation spectrum
is determined by Matsubara’s pair Green function of transversal

G−+
ab (τ) = −1

2
〈T̂ S−

a (τ)S+
b (0)〉, (60)

and longitudinal fluctuations

Gzz
ab(τ) = −〈T̂ (Sz

a(τ) − 〈Sz
a〉) (Sz

b (0) − 〈Sz
b 〉)〉 = −〈T̂ Sz

a(τ))Sz
b (0)〉. (61)
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We took into account that in the singlet ground state 〈Sz
a,b〉 = 0.

At zero temperature Lehmann’s representation of the Green function (60) is given by

G−+
ab (ω) =

∑
m

〈0|Ŝ−
a |m〉〈m|Ŝ+

b |0〉
ω + iη − Em + E0

, (62)

where |0〉 and |m〉 are the wave functions of the ground and excited cluster states with the energies E0

and Em, respectively.
According to Wigner-Eckart theorem the matrix elements in Lehmann representation (62) have the

form

〈0|Ŝ−
a |m〉 = (−1)0−0

 0 1 1

0 −1 1

〈0
∥∥∥Ŝa

∥∥∥ m〉 =
1√
3
〈0

∥∥∥Ŝa

∥∥∥ m〉, (63)

where m marks the cluster excited states of spin 1. Then the cluster Green function is simplified to

Ĝab(ω) =
1

3

∑
m

〈0
∥∥∥Ŝa

∥∥∥ m〉〈m
∥∥∥Ŝa

∥∥∥ 0〉
ω + iη − Em + E0

. (64)

To obtain the cluster energies Em and the RMEs the exact diagonalization method with an account of
SU(2) symmetry can be used [81]. We briefly sketch the recursion scheme to calculate the RMEs of
spins at the positions a and b.

At given step of iterations the cluster consists of two blocks of n sites, i.e., left (l) and right (r) ones.
To start the iterations, it is reasonably to take a pair of dimers whose eigensystem is easily determined.
By using the angular momentum addition rule the basis functions of the entire system are constructed

|(ilSl, irSr)SM〉 =
∑

mlmr

 Sl Sr S

ml mr M

|ilSlml〉|irSrmr〉, (65)

where il(ir) indicates the states of the left (right) block with the same quantum numbers Sl, ml (Sr, mr).
The Hamiltonian matrix of the interaction blocks is built through Wigner-Eckart theorem

〈(ilSl, irSr); SM |Ĥ|(i′lS
′
l , i

′
rS

′
r); S

′
M

′〉 =

= (EilSl
+ EirSr)δilSl,i

′
l
S
′
l
δirSr,i′rS′

r
δS,S′δM,M ′+

+J2(−1)S
′
l +Sr+S

 Sr Sl S

S
′
l S

′
r 1

δS,S′δM,M ′ 〈ilSl||Sln||i
′
lS

′
l〉〈irSr||Sr1||i

′
rS

′
r〉.

(66)

The corresponding eigenfunctions are easily found

|iSM〉 =
∑

ilSlirSrmlmr

αiS
ilSlirSr

|(ilSl, irSr)SM〉. (67)

The RME of the block edge spins Sr1 and Sln interacting directly with each other have been determined
at the previous iteration step.

We apply repeatedly Wigner-Eckart theorem and calculate the RMEs within the basis of the extended
cluster of the length 2n. For the sites a = 1, . . . n that enter in the left part we obtain

〈iS||Sa||i
′
S

′〉 =

= [S, S
′
]1/2(−1)1+S

′ ∑
αiS

ilSlirSr
αi

′
S
′

i
′
l
S
′
l
i′rS′

r
δi′r,ir

δS′
r,Sr

(−1)Sl+Sr

 S 1 S
′

S
′
l Sr Sl

〈ilSl||Sa||i
′
lS

′
l〉.

(68)
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The corresponding results for the sites a = n + 1, . . . 2n at the right parts are given by

〈iS||Sa||i
′
S

′〉 =

= [S, S
′
]1/2(−1)1+S ∑

αiS
ilSlirSr

αi
′
S
′

i
′
l
S
′
l
i′rS′

r
δi

′
l
,il

δS
′
l
,Sl

(−1)Sl+S
′
r

 S 1 S
′

S
′
r Sl Sr

〈irSr||Sa−n||i
′
rS

′
r〉,

(69)

where [S] = 2S + 1.
Following the same route it can be demonstrated that the Green function of the longitudinal

fluctuations (61) differs from the expression (64) only by sign. Without anisotropic interactions this is
explained by degeneration of the triplet states over the spin projections. The fact differs singlet magnets
from systems with ordered local moments. In the last case relevant excitations at low temperatures are
spin waves described by the Green function of the transversal fluctuations. A contribution of longitudinal
spin excitations becomes noticeable at a critical region, i.e., near a temperature of magnetic ordering.

In an approximation of the nearest neighbors the interaction term is given by the complex L × L

matrix

V̂ R,R
′

ab = J2

(
δa,Lδb,1δR′

,R+1
+ δa,1δb,LδR′

,R−1

)
,

that has the Fourier transform

V̂ab(Q) = J2

(
δa,Lδb,1e

iQLa + δa,1δb,Le−iQLa
)

(70)

in the reduced Brillouine zone BZΓ (Brillouine zone of the superlattice). Here, a and La are lattice
constants of the initial lattice and superlattice, respectively.

An account of the interaction within the perturbation theory yields the ”dressed” Green function

Ĝab(Q, ω) =

[
Ĝ(ω)

1 − V̂ (Q)Ĝ(ω)

]
ab

. (71)

Equation (71) is given in the mixed representation of the real space inside the cluster and of the reciprocal
space for the intercluster distances. The Fourier representation in terms of wave vectors k of the initial
Brillouine zone BZγ is more preferable. To reach this the wave vector k is decomposed as follows

k = K + Q, (72)

where Q belongs to the reduced Brillouine zone BZΓ, and the vector K does to the reciprocal superlattice
Γ∗.

A transition to the translationally invariant Green function is given by the transformation

GCPT(k, ω) =
1

L

L∑
a,b=1

Gab(Q, ω)e−ik(ra−rb), (73)

where Gab(k, ω) is invariant under the translations K within the reciprocal superlattice.
The spectral function of elementary excitations is determined as follows [79]

A(k, ω) = −2 lim
η→0+

ImGCPT(k, ω + iη),
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and the corresponding density of states equals to

N (ω) =
1

N

∑
k

A(k, ω),

where N is a number of lattice sites.
Firstly, we present the CPT calculations for the cluster composed of 4 sites. To get peaks of finite

width we take η=0.01. The wave vector k varies within a half of the Brillouine zone k ∈ [0, π/a]. The
vector Q ∈ [0, π/4a] belonging to the reduced Brillouine zone can be found through Equation (72),
where K is one of the reciprocal superlattice vectors {0, π/4a, π/2a, 3π/4a}.

Figure 14. A(k, ω) and N (ω) for the cluster consisting of 4 dimers. The exchange couplings
are J1 = −1 and J2 = 0.07.
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The plot (Figure 14) of the spectral function A(k, ω) of the first type chain (Figure 12a) demonstrates
an appearance of two spinon branches in the excitations spectrum of Haldane’s antiferromagnetic liquid
regime (J2/J1 = −0.07). The corresponding density of states possesses two-peak structure.

The case of the dimerized chain (Figure 12b) results in another picture of the spectral function
(Figure 15). There is only one dispersionless branch of singlet-triplet excitations around ω ≈ J1

corresponding to excitations of bosonic type localized inside the dimer. The maximum of the intensity
A(k, ω) falls on the BZ edge. The density of states exhibits one-peak structure.

Being related with an infinite chain the results for the spectral function and the density of states contain
finite-size effects since the Green function Ĝ(ω) is built for a finite cluster. To elucidate finite-size effects
we repeat the CPT calculations for a cluster of bigger size, and taking, for example, the chain of the first
type. For the case L = 8 the result of such calculations is presented in Figure16. Despite an appearance
of subtleties in the density of states, a direct comparison of the spectral functions A(k, ω) for the clusters
of L = 4 and L = 8 sizes demonstrates that the size-effects can be ignored.
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Figure 15. A(k, ω) and N (ω) for the cluster consisting of 4 dimers. The exchange couplings
are J1 = 1 and J2 = 0.07.

Figure 16. A(k, ω) and N (ω) for the cluster consisting of 8 dimers. The exchange couplings
are J1 = −1 and J2 = 0.07.
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In conclusion, we emphasize that a relevant description of spectral properties within the perturbation
theory must be supported by a small parameter of the theory. In our case, the ratio J2/(J1L), where L

is the cluster length, plays the role of the small quantity. As a result, an increasing of the inter-dimer
interaction J2 must be accompanied by a simultaneous increasing of a minimal cluster size. This may
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invoke the SU(2) symmetry based procedure of a basis truncation similar to those used in the previous
Sections.

6. Conclusion

In summary, the main results of the quantum mechanical applications of the symmetry concepts in
low-dimensional magnetism are reviewed. The treatment is based on the irreducible tensor operator
technique and the group-theoretical classification provided both the SU(2) spin-symmetry and the
lattice point symmetry. The flexibility of the method was demonstrated for several one-dimensional
and two-dimensional spin models. The use of the symmetries allows to essentially reduce the matrices
of Hamiltonians and facilitate evaluation of the excitation spectrum and thermodynamic properties of
low-dimensional magnets. The group-theoretical classification might be crucial for efficient truncation
of Hilbert space in algorithms based on real-space renormalization group procedure. The applications
clearly exhibit that the symmetry concepts are indispensable in the field of low-dimensional magnetism.
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Appendix A

The systematic increasing cluster size requires an iterative procedure to compute the reduced matrix
elements of the double irreducible tensors U1γ or W 1γ (acting on the states with indices I and II ,
respectively) in the basis

|iSmΓµ〉 =
∑

αiSΓ
iISIΓI ; iIISIIΓII

 SI SII S

mI mII m

  ΓI ΓII Γ

µI µII µ

 |iISImIΓIµI〉 |iIISIImIIΓIIµII〉 .

(74)
with aid of the Wigner-Eckart theorem. On the other hand one can use the basis of states (74) to obtain〈

iSmΓµ
∣∣∣W 1γ

qν

∣∣∣ i′S ′m′Γ′µ′
〉

=
∑

αiSΓ
iISIΓI ; iIISIIΓII

αi′S′Γ′

iISIΓI ; i′IIS′
IIΓ′

II
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×
∑

mImIIm
′
II

 SI SII S

mI mII m

  SI S ′
II S ′

mI m′
II m′

 (−1)SII−mII

 SII 1 S ′
II

−mII q m′
II



×
∑

µIµIIµ
′
II

 γI ΓII Γ

µI µII µ

∗  ΓI Γ′
II Γ

µI µ′
II µ

  γ Γ′
II ΓII

µ µ′
II µII

∗ 〈
iIISIIΓII

∥∥∥W 1γ
∥∥∥ i′IIS

′
IIΓ

′
II

〉
(75)

The sum over mI , mII and m
′
II is performed with the aid of the formula

∑
χψρ

(−1)p−ψ+q−χ+r−ρ

 p a q

ψ α −χ

  q b r

χ β −ρ

  r c p

ρ γ −ψ



=

 a b c

−α −β −γ

  a b c

r p q

 (76)

The sum of three Clebsch-Gordan coefficients of the lattice point group in turn can be transformed as
follows ∑

µIµIIµ
′
II

∑
ν̄µ̄′

 ΓI ΓII Γ

µI µII µ

∗  ΓI Γ′
II Γ′

µI µ′
II µ̄′

  γ Γ′
II ΓII

ν̄ µ′
II µII

∗

δνν̄δµ′µ̄′

=
∑

µIµIIµ
′
II

∑
ν̄µ̄′

 ΓI ΓII Γ

µI µII µ

∗  ΓI Γ′
II Γ′

µI µ′
II µ̄′

  γ Γ′
II ΓII

ν̄ µ′
II µII

∗ ∑
Γ̄µ̄

 γ Γ′ Γ̄

ν µ′ µ̄

∗  γ Γ′ Γ̄

ν̄ µ̄′ µ̄



=
∑
Γ̄µ̄

 γ Γ′ Γ̄

ν µ′ µ̄

∗ ∑
µIµIIµ

′
II

∑
ν̄µ̄′

 ΓI ΓII Γ

µI µII µ

∗  ΓI Γ′
II Γ′

µI µ′
II µ̄′

  γ Γ′
II ΓII

ν̄ µ′
II µII

∗  γ Γ′ Γ̄

ν̄ µ̄′ µ̄


After permutation of the first and second columns in the third Clebsch-Gordan coefficient the sum

over projections µI , µII , µ
′
II , ν̄, and µ̄′ is easily performed that gives immediately 6Γ symbol [82]

∑
Γ̄µ̄

 γ Γ′ Γ̄

ν̄ µ̄′ µ̄

∗  γ Γ′
II ΓII

ΓI Γ Γ′

 δΓΓ̄δµµ̄ ε (ΓIΓ
′
IIΓ

′) , (77)

where we use the symmetry property of the Clebsch-Gordan coefficients Γ1 Γ2 Γ

µ1 µ2 µ

 = ε (Γ1Γ2Γ)

 Γ2 Γ1 Γ

µ2 µ1 µ

 ,

and the sign ε (Γ1Γ2Γ) = ±1 depends on the point group.
The reduced matrix element can be computed using (75,77) that yields the results〈

iSΓ
∥∥∥W 1γ

∥∥∥ i′S ′Γ′
〉

=
∑

αiSΓ
iISIΓI ; iIISIIΓII

αi′S′Γ′

iISIΓI ; i′IIS′
IIΓ′

II
(−1)1+SI+S′

II+S [S, S ′]
1/2

×

 S 1 S ′

S ′
II SI SII

 〈
iIISIIΓII

∥∥∥W 1γ
∥∥∥ i′IIS

′
IIΓ

′
II

〉  γ Γ′
II ΓII

ΓI Γ Γ′

 ε (ΓIΓ
′
IIΓ

′) , (78)

and 〈
iSΓ

∥∥∥U1γ
∥∥∥ i′S ′Γ′

〉
=

∑
αiSΓ

iISIΓI ; iIISIIΓII
αi′S′Γ′

i′IS′
IΓ′

I ; iIISIIΓII

× (−1)1+SI+SII+S′
[S, S ′]

1/2

 S 1 S ′

S ′
I SII SI

 〈
iISIΓI

∥∥∥U1γ
∥∥∥ i′IS

′
IΓ

′
I

〉  γ Γ′
I ΓI

ΓII Γ Γ′

 , (79)

where [S] ≡ (2S + 1).
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Appendix B

The RMEs for spins on c2 and c4 sites computed in the basis of eigenfunctions of the Hamiltonian
Hdown are given by the 141 × 141 matrix〈

idownSdown

∥∥∥Sc2(c4)

∥∥∥ i′downS
′

down

〉
=

∑
S2S3S4S24

∑
S′

2S′
3S′

4S′
24

αidownSdown

(S2S4)S24,S3
α

i′downS′
down

(S′
2S′

4)S′
24,S′

3

×
〈
(S2S4) S24, S3; Sdown

∥∥∥Sc2(c4)

∥∥∥ (S ′
2S

′
4) S ′

24, S
′
3; S

′
down

〉
. (80)

The RMEs that enter into expression are calculated according to the rules

〈(S2S4) S24, S3; Sdown ‖Sc2‖ (S ′
2S

′
4) S ′

24, S
′
3; S

′
down〉

= (−1)S2+S4+S3+S24+S′
24+S′

down [S24, S
′
24, Sdown, S

′
down]

1/2

×

 S24 1 S ′
24

S ′
2 S4 S2


 Sdown 1 S ′

down

S ′
24 S3 S24

 〈11; S2 ‖S(2)‖ 11; S ′
2〉 δS4S′

4
δS3S′

3
,

〈(S2S4) S24, S3; Sdown ‖Sc4‖ (S ′
2S

′
4) S ′

24, S
′
3; S

′
down〉

= (−1)S2+S′
4+S3+2S24+S′

down [S24, S
′
24, Sdown, S

′
down]

1/2

×

 S24 1 S ′
24

S ′
4 S2 S4


 Sdown 1 S ′

down

S ′
24 S3 S24

 〈11; S4 ‖S(2)‖ 11; S ′
4〉 δS2S′

2
δS3S′

3
.

The RMEs for spins on the sites c1 (d1) are given by the 19×19 matrix built in the basis of functions,
which are constructed from the ”left” and the ”right” dimers Equation (51)〈

SlSr; Slr

∥∥∥Sc1(d1)

∥∥∥ S ′
lS

′
r; S

′
lr

〉

=
√

(2Slr + 1)(2S ′
lr + 1)(−1)1+Sl+Sr+S′

lr

 Slr 1 S ′
lr

S ′
l Sr Sl

 〈11; Sl ‖S(1(2))‖ 11; S ′
l〉 δSrS′

r
. (81)

The RME for spins on the c5 (d5) sites are calculated as follows〈
SlSr; Slr

∥∥∥Sc5(d5)

∥∥∥ S ′
lS

′
r; S

′
lr

〉

=
√

(2Slr + 1)(2S ′
lr + 1)(−1)1+Sl+S′

r+Slr

 Slr 1 S ′
lr

S ′
r Sl Sr

 〈11; Sr ‖S(1(2))‖ 11; S ′
r〉 δSlS

′
l
. (82)

The RMEs of spin operators on sites c2(d2), c4(d4) calculated on the eigenfunctions of the upper and
down parts form the 73789 × 73789 matrices.〈

iupSupidownSdown; Sud

∥∥∥Sc2(c4)

∥∥∥ i′upS
′
upi

′
downS

′
down; S

′
ud

〉
=

√
(2Sud + 1)(2S ′

ud + 1)(−1)1+Sup+S′
down+Sud

×

 Sud 1 S ′
ud

S ′
down Sup Sdown

 〈
idownSdown

∥∥∥Sc2(c4)

∥∥∥ i′downS
′

down

〉
δiupi′up

δSupS′
up

, (83)
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〈
iupSupidownSdown; Sud

∥∥∥Sd2(d4)

∥∥∥ i′upS
′
upi

′
downS

′
down; S

′
ud

〉
=

√
(2Sud + 1)(2S ′

ud + 1)(−1)1+Sup+Sdown+S′
ud

×

 Sud 1 S ′
ud

S ′
up Sdown Sup

 〈
iupSup

∥∥∥Sd2(d4)

∥∥∥ i′upS
′

up

〉
δidowni′

down
δSdownS′

down
. (84)

The RMEs of spin operators on sites c2(d2), c4(d4) are calculated on eigenfunctions of environment.
The dimension of these matrices determines by dimension of truncated basis of environment

〈ienvSenv ‖Sk‖ i′envS
′
env〉 =

∑
βienvSenv

(iupSupidownSdown)Sud,(SlSr)Slr
β

i′envS′
env

(i′upS′
upi′

down
S′

down)S′
ud

,(S′
l
S′

r)S′
lr

×
〈
(iupSupidownSdown) Sud, (SlSr) Slr; Senv ‖Sk‖

(
i′upS

′
upi

′
downS

′
down

)
S ′

ud, (S
′
lS

′
r) S ′

lr; S
′
env

〉
, (85)

where k = c2(d2), c4(d4) and〈
(iupSupidownSdown) Sud, (SlSr) Slr; Senv ‖Sk‖

(
i′upS

′
upi

′
downS

′
down

)
S ′

ud, (S
′
lS

′
r) S ′

lr; S
′
env

〉

=
√

(2Senv + 1)(2S ′
env + 1)(−1)1+Sud+Slr+S′

env

 Senv 1 S ′
env

S ′
ud Slr Sud


×

〈
iupSupidownSdown; Sud ‖Sk‖ i′upS

′
upi

′
downS

′
down; S

′
ud

〉
δSlS

′
l
δSrS′

r
δSlrS′

lr
. (86)
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