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Abstract: We present a review of novel techniques developed by our research group to 

improve quantitative assessment of human movement, especially assessments related to 

symmetric and asymmetric gait patterns. These new methods use motion capture data of 

the lower limb joints (e.g., joint and body segment angular position and/or velocity, or joint 

center locations) and include: (1) Regions of Deviation (ROD) analysis, (2) complexity and 

variability of phase portraits, and (3) multivariate shape-alignment and decomposition. We 

provide example demonstrations of these techniques using data from infants, typical and 

atypically developing children, simulated injuries of a knee or ankle, and wheelchair 

propulsion. 

Keywords: gait; symmetry; complexity and variability; biomechanics; joint motion; 
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1. Introduction 

Healthy, adult gait is often characterized as a bilateral symmetrical behavior, and such symmetry is 

advantageous because it increases energetic efficiency [1]. This symmetrical pattern is not found in the 

initial stages of walking, rather young infants move in an asymmetric fashion, eventually acquiring 

adult like patterns around 5 years of age [2]. The symmetrical pattern in older children and adults is 

often broken, however, due to pathology, disease, or injury. While there has been a large body of 

research examining healthy gait and various forms of pathological or injured gait, at present there are 

few tools designed to quantitatively measure deviations from symmetrical gait and to track changes in 

deviations over time. The goal of the present paper is to outline a number of procedures developed by 

our research group to quantitatively assess deviations from symmetry and to track changes in 

symmetry over time. We begin with a brief review of past work examining symmetry in human gait, 

and then provide an overview of the tools that we have been developing. In this later section, we 

review examples from our research to highlight the use of these tools. 

1.1. Gait Symmetry 

Human gait is often assumed to be symmetrical with right and left sides performing identical 

motions. While this assumption is often made for simplicity or to facilitate increased data collection 

[3–5], the assumption is rarely tested [6]. The majority of studies of human gait asymmetries have 

concentrated in two main areas: (1) determining if asymmetries exist in normal human gait (often 

interpreting these asymmetries in light of strength or laterality; see [6] for review), and (2) determining 

the magnitude and locations of asymmetries in individuals with gait pathologies or prostheses [7–9].  

A more limited number of studies have addressed issues of asymmetry during recovery from injury 

[10–12]; however, most have done so using relatively simple statistical techniques (e.g., nonparametric 

analyses or simple ANOVA), as well as visual interpretation of the temporal effects using graphs 

[10,12,13]. Furthermore, most of these studies have analyzed only univariate descriptors of gait  

[7–9,11,14–24] which offer limited insight into gait complexity and the covariation in movement 

patterns across limbs. 

Asymmetry in the gait of able-bodied subjects has been identified in several previous studies. While 

there are debates over the appropriate thresholds or methods for defining asymmetry [6], variables 

such as stride and step lengths [17,25], as well as ranges of joint motion [24], and velocity profiles 

[26,27] have all been observed to differ between sides of the body. In the majority of these studies, the 

sample sizes were moderate to small, and more work is necessary to assess the levels of asymmetry 

that characterize the lower limb movements during routine activities such as walking in healthy 

individuals, as well as the asymmetries that characterize the gait of injured individuals. In addition, the 

causes of these asymmetries in healthy and injured individuals are poorly understood and more 

research into the functional, anatomical and motor control factors that underlie asymmetries need to be 

explored in greater detail [6]. For example, while some studies have found differences in ground 

reaction force (GRF) characteristics and limb motions between sides of the body [28], more work is 

necessary to determine how these asymmetries are the product of subtle deviations in limb length, or 

physiological asymmetries in strength or laterality, i.e., limb preference [16,29]. In order to effectively 
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assess the inter-relationships between multiple variables, more complex multivariate statistical 

techniques are required. 

1.2. Multivariate Analyses of Human and Animal Gait and Motion 

The goal of multivariate methods is to examine inter-relationships between multiple variables. 

However, these methods have been applied to only a small number of studies of gait in humans or 

animals [30–35], and in all of these investigations, principal components analysis (PCA) has been the 

only multivariate technique that was applied. This dimensional reduction technique uses mathematical 

procedures to combine correlated variables into a smaller number of uncorrelated components, while 

maximally retaining the data variance. This approach has been used for assessing covariation in GRF 

parameters, demonstrating that peak vertical and medial-lateral forces are correlated, while anterior-

posterior (braking and propulsive) loads vary independently [35]. Williams et al. [34] have also 

demonstrated that asymmetries in GRF can distinguish veterinary (equine) gait pathologies. Sadeghi 

et al. [31–33,36] have used these techniques to evaluate unilateral and asymmetric patterns of muscle 

powers at the hip and knee in several subject populations, and they have proved useful for 

distinguishing asymmetries in muscular control of the hips during level walking in healthy subjects 

[31], as well as for discriminating the muscle powers used by older and younger subjects [32]. Only 

one study used PCA to integrate different kinds of data [30]. These authors used both 

electromyographic and kinematic data to understand the coordination between muscle activity and 

back motion in individuals with low back pain. From our review of this literature, it is clear that PCA 

and other multivariate techniques (i) can be effective for discriminating the factors that underlie 

complex motions and actions in gait, and (ii) are grossly underutilized in analyses of motion. 

Great potential exists for the use of these techniques to characterize correlated patterns of 

movement (and the control of movement) across joints within limbs, to characterize normal levels of 

asymmetry, and to characterize the patterns of movement and asymmetry that are common to different 

acute and chronic injury. The results of PCA are highly dependent upon the choice of rotational criteria 

(e.g., [37]). This issue needs to be systematically evaluated before this technique can be shown to be 

clinically relevant. Furthermore, we are unaware of any studies that have used multivariate techniques 

to quantitatively track the recovery of injury through time. 

1.3. Need for New Analysis Tools 

While limb motions during human gait have been studied for nearly 170 years [38], the techniques 

that are commonly used to quantitatively describe limb motion are extremely simplistic and are either 

(i) unable to capture the complexity of human movement, (ii) unable to quantitatively assess 

covariation in joint posture within and between limbs, or (iii) difficult for clinical practitioners to relate 

to patient populations. The lack of analytical complexity is illustrated by the fact that the most 

common descriptors of gait are univariate measures such as stride and step length, and the durations of 

stance and swing phases of gait [7–9,11,14–23]. While these measures accurately describe the phase 

durations and limb displacements, they fail to capture the complex angular displacements of limb 

motion. In addition, quantitative assessments of joint angles are typically conducted at single discrete 

and easily defined points in time (e.g., heel-strike, mid-stance and toe-off), or examine individual joint 
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angles displayed through a gait cycle. But again such measures fail to capture the nature of motion that 

occurs between these discrete temporal events, or the effects of one joint on another, respectively. 

Assessing covariation in limb movements has been attempted by using angle-angle phase portraits 

[39,40]. This technique is a useful visual tool for qualitative assessment of limb movements and gait 

pathologies. However, the popularity and clinical applicability of this method has waned, in part due to 

the lack of appropriate methodologies for quantitatively comparing phase portraits of different 

individuals or limbs. Fourier analyses of the phase shapes has been attempted [41], however, the 

resulting Fourier coefficients are sample dependent and difficult for clinicians to relate to their 

patients. Quantification of the kinematic and kinetic parameters for all limb segments and joints 

throughout an entire stride would permit both a more holistic representation of limb movement, as well 

as more clinically useful results that identify the nature of the asymmetry and the relative time that it 

occurs during a stride. Furthermore, the quantifying patterns of covariation in joint motion and 

asymmetry would be useful for clinical diagnosis of gait pathologies. 

Techniques are needed that capture the fact that limb movements during gait are spatio-temporally 

complex, even during steady-state, constant speed locomotion. Each limb segment and joint undergoes 

a cyclic pattern of flexion, extension and to a lesser extent, rotation, abduction and adduction during 

each stride. Furthermore, the energetic cost of moving the limbs depends upon joint postures and 

segmental accelerations [42], so the movements or loads at one joint will have consequences both for 

the other joints of the ipsilateral limb as well as the motions and loads in the contralateral limb (i.e., 

physical therapists refer to such functional interdependence as the “kinetic chain” [43–48]). Most 

current tools for gait analysis are not designed to capture these complex and coupled behaviors. 

The statistical tools that are currently used to describe gait, and gait asymmetry focus primarily on 

single joints, or use relatively simple measures of motion (e.g., stride and step length). These measures 

are unable to capture the dynamic aspects of gait such as simultaneous movements or asymmetries at 

multiple joints that occur at different times throughout a complete gait cycle or stride. Understanding 

the patterns of correlated joint movements across the limbs is particularly important for analyses of 

asymmetric gait, because unilateral pathologies at a single joint may have long lasting negative 

consequences on the range or speed of motion that are possible at other joints within the same limb, as 

well as joints in the uninjured limb. 

2. New Tools for Capturing the Multivariate and Dynamic Nature of Gait 

For the past few years, we have been focusing on developing new tools to assess gait, with a special 

focus on assessing deviations from symmetry. The focus on deviations from symmetry is derived from 

the assumption that symmetrical gait is not only indicative of healthy movement patterns, but that 

asymmetric gait can be indicative of less healthy movement patterns. Over time, the increased forces 

and torques placed on certain joints and muscles due to asymmetric gait may perturb the musculo-

skeletal system ultimately leading to further declines in gait and movement capabilities. 

The fundamental assumption of our work is that characterization of gait pathologies (i.e., 

description of the differences in movement patterns and control strategies from normal healthy gait) 

and analyzing changes in movement characteristics due to aging, disease or interventions can be 

achieved by investigating spatiotemporally correlated kinematic and kinetic patterns across the limbs. 
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In this review, a number of techniques that our group has developed will be described that characterize 

the spatiotemporally complex and coupled nature of gait in a variety of different populations. The 

ultimate goal of these methods is to provide insight into control mechanisms that underlie gait 

pathology, to characterize the patterns of interrelationships among movement patterns, and to better 

capture potential changes in the locomotor system over time. 

Techniques that can identify patterns of interrelationships of joint motion, identify the times during 

a gait cycle that are most deviant from healthy motion, or better summarize the multivariate nature of 

gait data have the greatest potential to provide the most clinically relevant results. To date, we have 

created a number of tools that focus on complex shape analytic methods. These include (1) Region of 

Deviation Analysis (ROD), (2) complexity and variability analysis of phase portraits, and (3) 

multivariate shape-alignment and decomposition. These techniques were developed using a series of 

different data sets including previously published data on gait ontogeny [49], a set of motion capture 

data of typically and atypically developing older children [50], and motion capture data that simulated 

injuries which restrict joint range of motion to either the right knee or ankle [51–53]. These later 

studies involved controlled experiments with healthy individuals that were fitted with an external brace 

to immobilize the desired joint to mimic asymmetrical joint impairment. 

2.1. Regions of Deviation Analysis (ROD) 

We developed a technique that we refer to as Regions of Deviation (ROD) analysis to provide 

quantitative metrics to describe and compare motion patterns in gait [51]. This approach can be used to 

evaluate deviations in symmetry between bilateral joints or deviation of an individual joint relative to 

healthy normative behavior. ROD analysis consists of two measures: Symmetry Regions of deviation 

(SROD) and Individual Regions of Deviation (IROD). 

SROD analysis can be used to quantify deviations from symmetry and to determine when bilateral 

joint angle pairs demonstrate asymmetric behavior. In the case of an injury, SROD values are 

calculated from the angular difference between the affected and unaffected sides of a given joint 

computed over one gait cycle. These bilateral joint angle differences are then averaged over the total 

number of cycles for an experimental trial. The averaged difference is then compared to normative 

joint motion. Figure 1 provides an example of this approach using data that we collected from ten 

healthy young male subjects with or without a brace on the right knee to simulate an injury that would 

severely restrict the knee’s range of motion. 

To perform the SROD procedure for a given test condition (i), e.g., healthy or injured, the bilateral 

angular difference between the affected (right) and unaffected (left) sides of a given joint (j) was first 

computed over one gait cycle, , ,

i i i

j j A ffe c te d j U n a ffe c te dθ θ θ∆ = − . Negative values indicate smaller 

values for the affected side, suggesting asymmetry in movement. In our initial study using bracing 

[51], this calculation was repeated for test data collected while the subject walked on a treadmill during 

three-minute trials of normal (unbraced) walking or walking with a brace on the right ankle or knee 

(i.e., 100+ gait cycles per test condition). These bilateral joint angle differences were then averaged 

over the total number of cycles ( i

j
θ∆ , where •  indicates ensemble average over a number of 

samples). For a given subject, this averaged difference was then compared to normative joint motion, 
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i.e., average ( NormUB

j

,θ∆ ) and standard deviation (
NormUB

jSD
,

) for the unbraced data of all test subjects 

(Equation 1). 
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Figure 1 illustrates graphically the technique for determining SROD values for the hip of a single 

subject during a trial when the right knee was braced and the knee’s range of motion was restricted. 

Note that hip motion, especially of the right hip, was also affected by bracing of the right knee, such 

that there was substantial deviation from bilateral symmetry throughout most of the gait cycle. 

Figure 1. Example of SROD data for hip joint movement resulting from a single individual 

wearing a knee brace (KB) that restricts movement of the right knee. These data are 

compared to ensemble-averaged group mean and standard deviation values during normal 

unbraced (UB) walking. (Adapted from [51].) 
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Individual ROD (IROD) analysis determines the magnitude and timing of asymmetric behavior of 

individual joints throughout the gait cycle. To perform this procedure, for a given joint, the averaged 

joint angle over multiple gait cycles was first determined i

j
θ . This subject-specific averaged joint 
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angle was then compared to the average and standard deviation values of the same joint as computed 

from the normative healthy group ,UB Norm

j
θ  and (

,UB Norm

jSD ), respectively (Equation 2). Figure 2 

illustrates graphically how IROD values were determined for the affected hip of one subject during the 

knee-braced condition. 

 

( )

( )

, ,

, ,

, , , ,

,

,

0,

where: , 

[Unbraced (UB), Knee Braced (KB), 

i UB Norm UB Norm i

j j j j

i UB Norm UB Norm i

j j j j

i

j

UB Norm UB Norm UB Norm UB Norm

j j j j

SD INorm

IROD SD INorm

INorm INorm

INorm SD INorm SD

i

θ θ θ

θ θ θ

θ

θ θ

+

−

− +

+ −

 − + >



= − − <


≤ ≤


= + = −

∈ Ankle Braced (AB)]

[RAnkle, RKnee, RHip, LAnkle, LKnee, LHip]j ∈

 (2) 

Figure 2. Example of IROD data for right hip joint movement for a single individual 

wearing a knee brace on the right knee compared to ensemble-averaged group mean and 

standard deviation values during normal unbraced walking. (Adapted from [51].) 
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Preliminary work with this technique has allowed quantification of deviations in bilateral joint pair 

symmetry and individual joints by examining peak amplitude and timing differences in angular joint 

kinematic time series data when comparing unbraced and knee or ankle braced data [51]. While 

traditional measures (e.g., maximum range of motion) grossly detected asymmetries due to bracing, 

this analysis identified significant regions of asymmetry. That is, this method can identify where in the 

gait cycle the movement pattern deviates from a symmetric one. 

The original ROD methodology allowed quantification of deviations in bilateral joint pair 

symmetry and individual joints by examining peak amplitude and timing differences in angular joint 

kinematic time series data. We recently refined this approach to use sequential t-tests to quantify 

locations in the gait cycle that are significantly different [54]. By examining whether observed 

symmetry differences due to impairment were significantly different from normal throughout the entire 

gait cycle, it is possible to get a sense of the true regions for which the movement patterns deviated 

from normal. 
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We recently demonstrated this method on canine gait data of healthy and injured Labrador 

Retrievers without and with unilateral cranial cruciate ligament deficiency in the hind limb [55]. This 

last study illustrates that this approach can be extended to evaluate variations in the symmetry of 

quadruped gait. This study also successfully demonstrated how the new method expanded analysis 

outside of predetermined areas of interest such as peak differences, thus identifying regions of 

significant variation from normal throughout the gait cycle. Further focusing on asymmetry 

magnitudes between limbs, rather than only assessing unilateral group means, may provide new insight 

into abnormal gait patterns. This work suggests that these sections (regions) during gait should be 

examined more thoroughly. These significant times and asymmetry magnitudes can then help 

researchers and clinicians understand the mechanisms involved in gait pathology and compensation. 

2.2. Complexity and Variability of Phase Portraits 

Planar phase portraits have been used to represent graphically the changes in joint angular position 

versus velocity over each gait cycle. Generally, these representations approximate elliptical shapes. 

Figure 3 shows example phase portraits from our work examining the influence of bracing a knee joint 

(adapted from data published in [52]). Researchers have generally described differences in phase 

portrait shapes, such as those shown in the figure qualitatively. However, qualitative assessment 

provides little diagnostic value and may not reflect significant differences in movement patterns. For 

this reason, we have been developing metrics to quantify changes in the variability and complexity of 

consecutive phase portraits generated by a specific body segment while doing repetitive cyclic 

movement. We have used this approach to examine symmetry between the movement patterns of the 

right and left lower limb [49,50,52]. 

Figure 3. Phase portraits of right thigh during normal unbraced and braced walking over 

four cycles. Values for complexity (# harmonics) and variability (drift and area)  

for 20 consecutive gait cycles for 20 healthy male subjects, derived from results in [52]. 

++

++++

++

# harmonics: 195 ± 22

Drift: 0.51 ± 0.19

Area: 0.0042 ± 0.0030

-- Exp data
• Fourier fit
+ Cycle centroid

-- Exp data
• Fourier fit
+ Cycle centroid

# harmonics: 210 ± 21*

Drift: 0.65 ± 0.14*

Area: 0.0062 ± 0.0026*

* Different from unbraced 

(p < 0.025)
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Variability measures were based on the fluctuation in phase portrait centroid location between 

individual consecutive gait cycles. The variability of the centroid (i.e., the mean of all (x, y) data points 

for a given gait cycle, quantifies the inconsistency (or consistency) of phase portrait cycle location 

throughout a trial. Inter-cycle variability was assessed by measures used to quantify the fluctuations of 

the phase portrait centroid over consecutive gait cycles (i.e., centroid area and centroid drift). These 

measures were adapted from traditional center of pressure stabilogram analyses [56]. Centroid area 

was defined as the bivariate 95% confidence ellipse area swept out by the centroids over multiple 

consecutive gait cycles. The area measure gives a combined measure of the bivariate variability 

around the mean centroid. Centroid drift was defined as the path length or total point-wise Cartesian 

distance that the centroid traveled on the phase plane over the multiple gait cycles. Drift quantifies the 

distance that the centroid travels during the multiple gait cycles. 

To quantify complexity, we assessed the frequency content of the phase portraits. In previous 

studies, we quantified complexity by computing a point-wise sum of squared errors (SSE) between a 

“full” and “reduced” elliptical Fourier analysis (EFA) fit for each trial [49,50]. The full fit included a 

high number of harmonics (500) to more completely describe the shapes, while the reduced fit was 

computed with a lower number of harmonics (e.g., 10). In our more recent research [52], data was 

collected while 20 healthy young male subjects walked on a treadmill during three-minute trials of 

normal (unbraced) or right knee-braced walking. EFA was performed on 20 consecutive gait cycles for 

each limb segment using a custom-modified version of an existing MATLAB elliptical Fourier program 

[57], based on the methodology of Kuhl and Giardina [58]. Phase portrait data were first fit using  

a 500 harmonic elliptical Fourier series (“full fit”). All fits were computed with 200 points per cycle, 

i.e., 4000 points per trial. 

Complexity was identified by the number of harmonics needed in the Fourier series to describe the 

shape of the full fit (Figure 3). This was done by first computing the “maximum” error between the full 

fit and worst possible fit (zero-order fit, i.e., mean centroid), and then finding the minimum number of 

harmonics to reduce the maximum error by 99.9%. To allow the complexity measures to control for 

size differences between phase portraits and be more comparable across individuals and body 

segments, we determined the number of harmonics necessary to achieve a certain (high) percentage of 

the full fit. A reduced fit eliminating 99.9% of maximum error was used because it was the lowest 

(statistically motivated) value that characterized most of the full fit shape features. 

First, the maximum error was calculated as the SSE between the full fit and zero-order fit  

(average centroid): 

 
( ) ( )( )2 2

, ,
1

max

n

full i c full i c

i

x x y ySSE
=

− −+=∑
 (3) 

where (xfull,i, yfull,i) is the i
th

 point on the full fit curve, (xc, yc) is the average centroid (zero-order fit) 

over the multiple gait cycles for the given trial, and n is number of data points in the phase portrait 

time series. Next found the smallest number of harmonics, j, (reduced-order fit) was determined  

which satisfied: 
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where point (xj,i, yj,i) is the i
th

 point on a reduced fit curve of j harmonics. That is, j was increased and 

the preceding was repeated until (4) was satisfied, i.e., until the error between the full- and j-harmonic 

fit was less than 0.1% of the maximum error: 

 max0.001jSSE SSE≤ ∗
 (5) 

The minimum integer j satisfying (5) then defines the complexity metric. A larger integer value of j 

suggests a more complex motion shape since more harmonics (higher frequencies) are needed to 

accurately describe more complex shapes. 

We have also used this approach to quantify changes in complexity and variability in the gait of 

infants over the first few months of independent walking [48] and to quantify whether patterns of 

complexity and variability differ across the right and left side in children with developmental 

coordination disorder (DCD) [50]. In many cases, with populations such as this group, asymmetries in 

movement are described qualitatively [59]. By examining the absolute value of the difference in 

complexity and variability across the two sides using analysis of variance techniques to examine our 

complexity and variability measures, we were able to show that children with DCD exhibit 

significantly larger variation in the movement patterns of their right and left lower limbs than typically 

developing children [50]. We were also able to show that this increased pattern of variability occurred 

primarily in the stance phase of gait. This observation, linked with other known problems with balance 

control in this population, enable us to make new insights in to the control of movement and suggest 

new directions for potential interventions with children with gait difficulties. Our work with the 

application of these Fourier-based metrics has allowed us to better quantify complexity and variability 

in phase portrait shapes, and to quantitatively assess how deficiencies in motor control can affect  

gait symmetry. 

2.3. Shape-alignment and Decomposition Analyses 

Gait cycle shapes (e.g., the spatial displacement of a joint center over the course of a gait cycle 

(Figure 4)) can also be used to characterize motion in the lower limbs. Each “shape” can be 

represented by a time-ordered series of events that are comparable across subjects. These events may 

be kinematically defined (e.g., heel-strike, mid-stance, lift-off, mid-swing) or they may be more 

generally described as percentages of the gait cycle. These events can then be used as “landmarks” to 

compare motion to patterns of different groups using tools developed for the analysis of static shapes 

[60–64]. We are developing new techniques based on a combination of a superimposition and 

alignment techniques (Procrustes Analysis [PA] and Generalized Procrustes Analysis [GPA]) and a 

multivariate dimensional reduction technique (Parallel Factor Analysis [PARAFAC]) to characterize 

different gait perturbations [53]. GPA is an iterative procedure for translating, rotating, and scaling a 

set of shapes to determine the best alignment using a least-squares criterion [65,66]. GPA can be used 

to determine the consensus movement trajectory for multiple gait cycles for a particular research 

subject’s joint or for a population of subjects. In contrast, PA is a non-iterative procedure for optimally 

aligning landmark-based shapes [67]. We use this approach to determine the optimal alignment 

between any individual’s motion patterns and the normal consensus [53]. Following optimal 

alignment, the shape differences between the individual and consensus can be defined by a matrix of x 
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and y residuals between the landmarks on the individual and consensus trajectories. Variance in these 

residuals can be parsimoniously assessed using PARAFAC. This method is ideally suited to the given 

task since it can simultaneously decompose data collected in three or more modes, where each mode is 

believed to cause some systematic variation in the data [68]. Examples of data modes include  

subjects, % gait cycle, injury status, and side of the body, among others. Like PCA, PARAFAC allows 

for the extraction of components that explain the variation of the entire system of conditions under 

study. However, PARAFAC is more advantageous than PCA, because PARAFAC overcomes the 

problems of rotational indeterminacy inherent in PCA and because PARAFAC can simultaneously 

incorporate more data modes [68]. Thus, PARAFAC could produce solutions that enable a better 

understanding of the complex interrelationships between lower limb impairments and deviations from 

healthy symmetric gait patterns. 

Figure 4. Average (over subjects) gait cycle shapes in the non-braced (black dotted), knee-

braced (red solid), and ankle-braced (blue dashed) conditions after alignment with GPA 

consensus. The symbols square, star, triangle, circle, and diamond represent 20%, 40%, 

60%, 80%, and 100% of the gait cycle, respectively. 

 

 

In order to determine how particular gait perturbations cause deviations from normal motion, we 

analyzed the normal unbraced, right ankle-braced, and right knee-braced data from [51]. Twenty-one 

gait cycles were obtained for each of 10 subjects for each condition. Each gait cycle was transformed 

to contain 100 data points starting with heel-strike. We determined separate GPA consensus shapes 

based on all normal gaits for the knee and ankle motion patterns. Separate GPA consensus trajectories 

were calculated for the right and left sides for each of these conditions (Figure 4). GPA was further 

used to calculate the overall consensus shape for normal (non-braced) knee and ankle motion patterns. 

These consensus shapes were then used as a reference for allignment of each individual’s right and left 

normal, knee braced and ankle-braced shapes by GPA. We used PA for these comparisons between 

individual and overall normal consensus trajectories [53]. Following the optimal PA alignment, the 

shape differences between the individual trajectories and the corresponding consensus was described 
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by a series of 100 x and 100 y residuals (i.e., 1 x and 1 y residual for the comparison of each of  

the 100 landmarks), which were analyzed by PARAFAC. In our application, PARAFAC was used to 

identify and quantify residual patterning that systematically varied in three modes: brace, affected vs. 

unaffected side of the body, between-subject variation, and temporal variation over the gait cycle. In 

particular, PARAFAC distinctively identified key times during the gait cycle that were most affected 

by the impairment. By identifying the key times, changes in magnitude of the trajectories at these 

times were determined. 

In this paper, we present a sample of our results to demonstrate the utility of our method for 

identifying asymmetries in limb motion. Figure 5 illustrates the effect of the knee brace on ipsilateral 

and contralateral ankle motion. Component 1 distinguishes the braced right ankle motion from the 

normal and contralateral braced ankle profiles. Component 2 mostly describes further differences (in 

symmetry) between normal ankle movement patterns as well as distinguishing the motion of the 

unbraced left ankle from normal motion profiles. Normal (non-braced) motion shows only a small 

amount of asymmetry, while the motion patterns of the right and left ankles for the braced condition 

are vastly different. Idealized motion trajectories are shown in Figure 5 to illustrate the effect of the 

knee brace on the ipsilateral and contralateral ankle motion. 

Figure 5. Condition weights for the effect of wearing a right knee brace on ankle motion 

patterns. KB = knee brace, NB = no brace. R and L indicate right and left sides, 

respectively. Idealized motion trajectories are shown to aid interpretation. Dotted  

line = normal, Solid = braced. Symbols follow Figure 4. 

 

 

One of the principal advantages of PARAFAC is that it allows identification of the time points 

during the gait cycle that are most responsible for explaining the effect of gait perturbations.  

Figure 6 illustrates the magnitude and direction of the residual deviations for the ankle motion when 

individuals wear a knee brace on the right side compared to the normal non-braced condition. Wearing 

the knee brace results in a flatter motion profile for the ankle. During stance phase (i.e., along the 

bottom of the idealized profile), the braced trajectory is slightly elevated relative to normal; while 
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during swing phase, the braced trajectory does not extend as far upward as the normal profile. The 

magnitude of this effect is illustrated in the plots of x and y residuals. For example at 80% of the gait 

cycle (denoted by circles in Figure 6), the y coordinate shows high negative weights along  

component 1, while the x residual shows positive weights along component 1. Component 2 explains 

the effect of the right knee brace on the contralateral ankle motion (Figure 5). The perturbation here 

largely results in an increase in the height of the ankle during swing, as noted by the high positive y 

residuals on component 2. 

Figure 6. Percent gait cycle (%GC) weights for x and y residuals. Symbols follow  

Figures 4 and 5. 

 

 

In summary, our analyses with GPA, PA and PARAFAC have revealed that gait cycle shapes 

associated with various lower limb impairments (ankle or knee braces worn on one side of the body) 

can be meaningfully characterized and distinguished from healthy (unbraced) motion patterns [53]. 

This technique has great potential for application to other gait data, particularly higher-order shapes 

(velocity and acceleration profiles) that provide more insight into the control strategies that underlie 

the observed motion patterns. This technique shows promise in enabling us to detect how one limb or 

joint may influence other parts of the system. 

2.4. Application beyond Gait: Manual Wheelchair Propulsion 

The approaches we have described can be used to quantify a wide range of movement patterns that 

follow a cyclical pattern. For example, we have begun to expand our research program to the 

examination of manual wheelchair propulsion utilizing the metrics that we have developed [70]. There 

are a number of similarities between over ground walking and manual wheelchair propulsion. For 

instance, similar to gait, in wheel chair propulsion there are symmetric motions of the right and left 

arms during locomotion. Likewise in wheel chair propulsion hand contact transmits forces that are 

ultimately transmitted to the ground in a manner that is analogous to heel contact. Finally, in wheel 

chair propulsion the release point in which the hand releases from the wheel is analogous to toe-off in 
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walking. Obviously, there are differences between wheelchair propulsion and human gait as well as 

similarities, we provide this example primarily to show another type of movement pattern that can be 

examined using our techniques. 

Movements, such as wheelchair propulsion result from a complex interplay of control processes 

operating at unique timescales. Ultimately, the interaction of control processes lead to dynamic 

fluctuations in motor output. Theoretically, movements that result from a greater interaction of control 

processes are more complex. As such it is maintained that variability and complexity in motor output 

provides novel information concerning its underlying control [71]. Moreover, it has been suggested 

that as individuals develop proficiency in a motor skill their output becomes less variable and more 

complex [72]. Although there has been considerable work examining manual wheelchair propulsion, 

there has been a lack of research examining variability in wheelchair propulsion and how it changes 

with various parameters including expertise. 

In an ongoing study, we rely on phase-portrait representations of upper arm limb segments to 

quantify complexity and variability during manual wheelchair propulsion [71]. Inter-cycle complexity 

and variability have been assessed by quantifying fluctuations in the upper arm phase portraits over 

multiple propulsion cycles at a range of speeds. This research study utilized the metrics presented 

above [52] to quantify changes in the variability and complexity of motion patterns brought about by 

manual wheelchair propulsion experience. These pilot data suggest that slower speeds resulted in more 

complex and less variable motion patterns. It is possible that these metrics will provide  

novel information concerning whether or not pathology (e.g. neuromuscular disease, shoulder  

dysfunction, etc.) influences these metrics. 

3. Conclusions 

With the advent of computerized motion capture technology, it is possible to record body 

movements during specific tasks such as walking, running, etc. However, most current methods for 

analyzing these data primarily examine discrete events, focus primarily on single joints, or use 

relatively simple measures of motion (e.g., stride and step length). Thus, these approaches fail to 

exploit the richness of the motion capture data for providing better understanding of these complex 

motion patterns.  

Walking is a spatiotemporally complex behavior. Each body segment is connected to another 

segment, and each body motion thus is coupled to the others during walking. Restrictions to any joint 

should cause correlated responses in other joints within the same (ipsilateral) and contralateral limbs. 

This effect is often seen in impaired gait compensation strategies that are caused by trauma or 

pathology, such as leg injuries or stroke. Physical development across the lifespan also results in 

changes in movement strategies, from crawling to initial walking to mature walking to aged walking. 

Yet few analysis tools have been developed that can quantitatively characterize these changes or 

differences in movement patterns. 

3.1. Advantages of New Methods 

We have recently developed a number of techniques to examine the complex interactions between 

body segments and joints used while walking. This work has led to techniques based on shape 
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analysis, multivariate statistics, Fourier analysis, time normalization and temporal cross-correlation 

that can better identify changes in movement symmetry, timing, and coupling [49–54,69,70,73–75]. 

In this paper, we present three techniques that we have developed for quantitative characterization 

of complex motion patterns that may demonstrate symmetry or asymmetry. These techniques have 

been developed to characterize regions or periods of deviation in joint symmetry, quantify the 

complexity and variability of phase portrait shapes, and explore multivariate alignment and 

decomposition of gait shapes derived from joint center locations [49–54]. 

Regions of Deviation (ROD) analysis can provide better understand changes/differences in the 

timing and magnitude of joint kinematics in terms of bilateral symmetry and individual joint behavior. 

The original ROD technique allowed statistical quantification of deviations by examining peak 

amplitude and timing differences in kinematic time series data (joint angular position) [51] We have 

recently enhanced the approach by using piecewise t-tests throughout the gait cycle to better identify 

all of the deviant locations over the gait cycle [54]. We are currently exploring opportunities to apply 

this technique to different gait parameters (such as joint kinetics), and assessment of changes  

in gait behavior while recovering from lower limb injury (ankle sprains) or surgical intervention  

(knee meniscectomy). 

Phase-portrait representations of limb segments can be used quantify the complexity and variability 

of motions. This method allowed us to quantify differences in phase portraits of lower limb segments 

(as opposed to lower limb joints). This technique has been found to be effective at distinguishing group 

differences and providing insight into the complexity and variability of these movement patterns 

through inter-subject and inter-cycle differences. To quantify complexity, we assessed the frequency 

content of the phase portraits. We used a Fourier-based approach to examine changes in gait 

complexity by quantifying the behaviors of the near elliptical angular phase portraits for the lower limb 

segments. Inter-cycle variability was assessed by quantifying fluctuations of the phase portrait centroid 

over multiple gait cycles, similar to traditional stabiliogram analyses of standing balance data. 

Variability was characterized by the drift and confidence area generated by the inter-cycle excursion of 

the phase portrait centroid. We used different iterations of this technique to examine gait differences 

due to child development [49], children with Developmental Coordination Disorder [50], and 

controlled joint mobility (using knee bracing) [52]. 

Gait cycle shapes, such as the spatial (x, y) displacement of a joint center over a gait cycle, can also 

be used to understand how particular gait perturbations cause asymmetries and deviations from normal 

motion. We expect that different lower limb impairments will result in different deviations from 

normal (i.e., healthy) gait cycle shapes. Using a multi-step process, Generalized Procrustes Analysis 

(GPA) was used first to construct a consensus healthy normative shape for each joint center’s 

displacement trajectory. Normal and perturbed motion profiles were then compared using Procrustes 

Analysis (PA) to obtain a matrix of residual differences for each pair of landmarks on the normal and 

perturbed trajectories. Finally, Parallel Factor Analysis (PARAFAC) was used to decompose 

deviations from the GPA consensus for both the healthy and perturbed data simultaneously. By 

simultaneously analyzing the data from various different experimental conditions, PARAFAC allows 

for the extraction of factors (or components) that are common to the entire system of conditions under 

study. Thus, PARAFAC produces solutions that lead to a better understanding of the complex 

interrelationships between lower limb impairments and deviations from healthy gait patterns. We have 
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found that PARAFAC can be quite effective in identifying components that distinguish perturbed 

motion profiles from normal healthy ones, and identifying the timing, magnitude and direction of the 

spatial deviations that are most responsible for explaining these deviations [53]. 

The three techniques that we have presented can be used for examining a variety of complex motion 

patterns in different subject or patient populations. All three techniques provide methods for 

quantitatively comparing motion patterns between groups with different characteristics and within an 

individual overtime. They all can be used to quantify differences from a normal pattern that are due to 

disease or injury and can be used to assess the effectiveness of interventions and treatments. However, 

the particular technique to be used will be determined by the research or clinical question to be 

addressed, the number of gait cycles or trials that can be collected, and the data acquisition capabilities 

present in the laboratory or clinic. For these techniques to be most useful in clinical settings more 

affordable motion capture systems must be developed, a larger normal reference data set for general 

comparison needs to be established, these techniques need to be translated in to easy-to-use software, 

and further research must be conducted to determine how deviations from a normal pattern are related 

to underlying biomechanical and anatomical properties. This last issue is a major one, as there is no 

straightforward mapping between structural changes in the biomechanical system and the resulting 

movement pattern due to multiple and flexible forms of compensation. However, our techniques do 

provide a more detailed approach to how changes in one part of the system may influence more distal 

movement patterns in other parts of the system. 

3.2. Summary 

In this review we have described a number of techniques developed by our research team to 

quantify the variability and complexity of locomotion in developing children, children with 

developmental coordination disorder, healthy adults wearing a knee brace to simulate injury, 

quadrupeds, and in individuals using wheel chairs. In much of this research we have explored how a 

variety of conditions or injuries leads to deviations from the normally symmetric gait patterns found in 

young healthy adults. We have been exploring better ways to quantify these deviations so that 

ultimately we can develop more sensitive measures to detect and diagnose when individuals movement 

patterns diverge from normal, healthy patterns. An important aspect of this continued research is to 

gain a better understanding of how and when deviations from symmetry lead to degraded movement 

patterns and how and when asymmetric movement patterns over time may place increased stress on 

other parts of the system with potentially harmful consequences. Ultimately, we hope our research in 

this area will lead to improved diagnostic methods, improved monitoring of injury rehabilitation, and 

improved interventions for individuals with movement difficulties. 
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