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Abstract: This paper reviews recent approaches on how to accelerate Boolean 

Satisfiability (SAT) search by exploiting symmetries in the problem space. SAT search 

algorithms traverse an exponentially large search space looking for an assignment that 

satisfies a set of constraints. The presence of symmetries in the search space induces 

equivalence classes on the set of truth assignments. The goal is to use symmetries to avoid 

traversing all assignments by constraining the search to visit a few representative 

assignments in each equivalence class. This can lead to a significant reduction in search 

runtime without affecting the completeness of the search. 
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1. Introduction 

The last few years have seen a remarkable growth in the use of Boolean Satisfiability (SAT) models 

and algorithms for solving various problems in Engineering and Computer Science. This is mainly due 

to the fact that SAT algorithms have seen tremendous improvements in the last few years, allowing 

larger problem instances to be solved in different application domains. Such applications include 

formal verification [ 1], FPGA routing [ 2], power estimation [ 3], fault tolerance [ 4], network 

assignments [ 5], wireless communications [ 6], and scheduling [ 7]. SAT has also been extended to a 

variety of applications in Artificial Intelligence, including other well-known NP-complete problems. 

SAT solvers have traditionally been used to solve decision problems. Given a set of Boolean 

variables and constraints expressed in products-of-sum form (also known as conjunctive normal form 

(CNF)), the goal is to identify a variable assignment that will satisfy all constraints in the problem or 

prove that no such assignment exists. It is well known that the SAT problem is NP-complete [ 8] and 

that any algorithmic approach for solving it will require at least worst-case exponential time in its size. 
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Most powerful SAT solvers today are search based and use intelligent techniques to explore new 

regions of the search space while looking for a satisfying assignment. These intelligent techniques 

helped extend the application of SAT solvers to large problem instances consisting of thousands of 

variables and millions of constraints. Despite these advances, the tremendous growth in today’s 

designs is continuously outpacing the capabilities of existing SAT solvers. Many SAT instances 

remain hard to solve due to the significant size and complexity of the underlying systems 

they represent. 

Prasad et al. observed that Boolean functions arising in Engineering applications are “structured” [ 9]. 

Unlike random problems, structured problems have non-uniform distributions and consist of clusters of 

variables. In this paper, we summarize the main findings in exploiting and analyzing the SAT 

instance’s structure to improve the search process. Specifically, we review an approach to accelerate 

SAT search by exploiting symmetries in the instance. The approach consists of an automated flow  

for (1) finding all syntactic symmetries of CNF formulas and (2) utilizing the symmetries to add 

symmetry-breaking predicates that effectively prune the search space and accelerate SAT solvers. 

Presented experimental results show the advantage of symmetry breaking for search algorithms. 

The remainder of this paper is organized as follows. Section 2 presents an overview of Boolean 

Satisfiability. Section 3 describes basic symmetry definitions and notations. In Section 4, graph 

automorphism, which is used to identify symmetries, is described. Symmetry detection and breaking 

are discussed in Sections 5 and 6, respectively. Experimental results are presented in Section 7. 

Finally, the paper is concluded in Section 8. 

2. Boolean Satisfiability 

Recent years have seen significant advances in Boolean Satisfiability (SAT) solving. These 

advances have led to the successful deployment of SAT solvers in a wide range of problems in 

Engineering and Computer Science. The SAT problem involves finding an assignment to a set of 

binary variables that satisfies a given set of constraints or proving that no such assignment exists. In 

general, these constraints are expressed in products-of-sum form, also known as conjunctive normal 

form (CNF). SAT constraints will be referred to as clauses in the paper. A CNF formula, ϕ  on n 

binary variables, nxx ,...,1 , consists of the conjunction (AND) of m clauses, mωω ,...,1 , each of which 

consists of the disjunction (OR) of literals. A literal is an occurrence of a Boolean variable or its 

complement. 

As an example, the CNF instance: 

)()(),,( cbbacbaf ∨⋅∨=     (1) 

consists of three variables, two clauses, and four literals. The assignment {a = 1, b = 0, c = 0} leads to 

a conflict, whereas the assignment {a = 1, b = 0, c = 1} satisfies f. Note that a problem with n variables 

will have n2
 
possible assignments to test. The above example with three variables has eight possible 

assignments. An instance with 100 variables will have 1.27e + 30 assignments. Assuming a processor 

that can verify an assignment every one nanosecond, the processor will complete testing all 2
100

 

assignments in 4e + 12 years. 
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Despite the SAT problem being NP-Complete [ 8], there have been dramatic improvements in SAT 

solver technology over the past decade. This has led to the development of several powerful SAT 

algorithms that are capable of solving problems consisting of thousands of variables and millions of 

constraints. Such solvers include Grasp [ 10], zChaff [ 11], Berkmin [ 12], MiniSAT [ 13]. 

Most powerful SAT solvers are based on the original Davis-Putnam-Logemann-Loveland (DPLL) 

backtrack search algorithm [ 14]. The algorithm performs a depth first search process that traverses the 

space of n2
 
variable assignments until a satisfying assignment is found (the formula is satisfiable), or 

all combinations have been exhausted (the formula is unsatisfiable). The search process proceeds as 

follows. Originally, all variables are unassigned. The algorithm begins by choosing a decision 

assignment to an unassigned variable. A decision tree is maintained to keep track of variable 

assignments. An example of a decision tree is shown in Figure 1. After each decision, the algorithm 

determines the implications of the assignment on other variables. This is obtained by forcing the 

assignment of the variable representing an unassigned literal in an unresolved clause, whose all other 

literals are assigned to 0, to satisfy the clause. This is referred to as the unit clause rule. If no conflict is 

detected, the algorithm makes a new decision on a new unassigned variable. Otherwise, the 

backtracking process un-assigns one or more recently assigned variables and the search continues in 

another area of the search space. 

Figure 1. An example of a satisfiable SAT instance showing its corresponding 

decision tree. 

 

 

SAT solvers have been extended with several powerful algorithms to further expedite the search 

process. One of the best algorithms is known as the conflict analysis procedure [ 10] and has been 

implemented in almost all SAT solvers. Whenever a conflict is detected, the procedure identifies the 

causes of the conflict and augments the clause database with additional clauses, known as 

conflict-induced clauses, to avoid regenerating the same conflict in future parts of the search process. 

In essence, the procedure performs a form of learning from the encountered conflicts. Significant 
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speedups have been achieved with the addition of conflict-induced clauses, as they tend to effectively 

prune the search space. 

Intelligent decision heuristics and random restarts [ 11] also played an important role in enhancing 

the SAT solvers performance. The developers of the state-of-the-art SAT solver, zChaff [ 11], proposed 

an effective decision heuristic, known as VSIDS, and implemented several other enhancements, 

including random restarts, which lead to dramatic performance gains on many CNF instances. 

Over the years, SAT has been directly applied to various electronic design automation (EDA) 

computational tasks. In general, the overhead of reducing many of these problems to SAT is small. 

Below, we briefly survey a number of EDA applications to which SAT has been successfully introduced. 

One of the important applications of SAT is circuit verification. Due to the increasing complexity of 

modern hardware designs, verifying the correctness of these designs is becoming increasingly difficult. 

SAT has been successfully applied to formal verification, which has attracted much interest from 

industry, since unlike simulation, which only reveals the presence of bugs, formal verification can 

prove their absence. Specifically, combinational equivalence checking has been solved using SAT 

[ 15], and later, several attempts have been made to solve sequential equivalence checking problems 

using SAT [ 16]. Additionally, SAT has been used for bounded model checking [ 1], microprocessor 

verification [ 17], and functional vector generation [ 18]. Besides verification, SAT has also been 

heavily applied in automatic test pattern generation (ATPG) [ 19] and extended to delay fault testing 

[ 20]. SAT has also been used in FPGA routing [ 2], global routing [ 21], logic synthesis [ 22], cross talk 

noise analysis [ 23], power estimation [ 3], and power leakage estimation [ 24]. 

Additionally, SAT has been extended to a variety of applications in Artificial Intelligence, including 

other well known NP-complete problems such as graph colorability, vertex cover, hamiltonian path, 

and independent sets [ 25]. 

3. Symmetry Definitions and Notations 

The symmetry of a discrete object is a permutation of its components that leaves the object intact. 

For example, the rotations of a spatial solid, e.g., a cylinder, that leave its shape unchanged or the 

negation of a Boolean variable in a Boolean formula, e.g., x in )()()( zyyxyx +⋅+⋅+ , that does not 

affect the formula or the function it represents. 

Permutational symmetries can be classified as either syntactic or semantic symmetries. Given a 

Boolean function, a semantic symmetry is a permutation of variables that does not change the value of 

the function under any variable assignment. On the other hand, a syntactic symmetry, also known as a 

structural symmetry, is a permutation that does not change the representation of the function. Hence, a 

syntactic symmetry is also a semantic symmetry. In this paper, we focus on using syntactic symmetries 

to improve SAT search. 

In this paper, we will use the cycle notation to express the permutations. For example, a 

permutation that swaps elements 2 and 3, and maps 4 to 5, 5 to 6, and 6 to 4, while mapping all other 

elements to themselves will be represented as )456)(23(=ϕ . 

In general, the number of permutations in a permutation group can be exponentially large. Rather 

than explicitly representing the set of permutations in a group, they are typically represented implicitly 
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using irredundant sets of generators. A set of generators is a set of group elements such that any other 

group element can be obtained from the products of the generators. 

As an illustration, consider the permutations )12(1 =ϕ  and )23(2 =ϕ  expressed in cycle notation. 

Taking the composition, i.e., product, of 21 ϕϕ ⋅  generates the permutation )123(3 =ϕ , which is the 

result of performing 2ϕ  followed by 1ϕ . 

A set of generators is irredundant if it is not possible to express any of its elements as a product of 

other elements. An interesting observation from group theory is that an irredundant set of generators 

for a group with 1>N  elements contains at most N2log  elements [ 26]. For example, the group of all 

permutations on k elements has k! permutations, but can be efficiently generated by only two 

generators: )12(1 =ϕ  and )12(2 k…=ϕ . Thus, the use of irredundant sets of generators to express the 

complete set of permutations ensures exponential compression. 

In this paper, we will assume a total ordering 
nxxx <<< …21  of the variables 

nxxx ,,., 21 …  and consider 

the induced lexicographic ordering of the n2  truth assignments, i.e., 0–1 strings of length n. Given an 

equivalence partition on these assignments, the lex-leader of a particular equivalence class, i.e., orbit, 

is defined as its lexicographically smallest element. Adding a lex-leader predicate ensures that a 

Boolean function evaluates to true only on lex-leaders of orbits. 

For example, consider a Boolean function with four variables. Assume an orbit consists of the 

assignments {0100, 1000, 0010, 0001}. The lex-leader of the given orbit is {0001}. Adding a lex-

leader predicate will falsify the first three assignments. 

In terms of a CNF formula, a permutation of literals is a symmetry of a given CNF formula if 

Boolean consistency is observed and the formula is preserved under the permutation. In other words, 

every clause must map into a clause with the same polarities of literals. The addition of a symmetry-

breaking predicate (SBP), expressed as a set of CNF clauses, allows only one of many equivalent 

variable assignments to be a potential solution to the formula. An SBP is a full SBP if it selects exactly 

a single element from each orbit; otherwise it is known as a partial SBP. A lex-leader SBP (LL-SBP) 

is an SBP that selects lex-leaders only and is also classified as a full SBP. It is essential for partial 

SBPs, however, to select lex-leaders among other elements. Such SBPs are known as partial lex-leader 

SBPs (PLL-SBPs). Note that the addition of an SBP to the original CNF formula does not affect its 

satisfiability, but restricts the possible solutions to those selected by the SBP. In other words, if the 

original formula is satisfiable, the number of solutions may decrease considerably after pre-processing. 

However, if the original instance is unsatisfiable, the “number of equivalent paths leading nowhere” 

will be reduced and the SAT solver is likely to conclude faster that no solution exists. 

As an example, assume the CNF formula: 

))()()()((),,,,,,( fdedcbcafecgfedcbaf ∨∨∨∨∨∨=   (2) 

The group of all permutations of the CNF formula consists of four permutations 

)})()((),)((),(,{ efddabefddabE  that can be efficiently obtained from the products of the two 

generators )(1 ab=ϕ  and ))((2 efdd=ϕ . Note that E is the identity symmetry. Permuting the literals 

of the formula according to all four permutations yields the same formula. This is shown in Table 1. 
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Table 1. Permuting the literals of the CNF formula in (2) according to all its symmetries. 

Permutation CNF Formula  

E )()()()()( fdedcbcafec ∨⋅∨⋅∨⋅∨⋅∨∨  

)(ab  )()()()()( fdedcacbfec ∨⋅∨⋅∨⋅∨⋅∨∨  

))(( efdd  )()()()()( edfdcbcaefc ∨⋅∨⋅∨⋅∨⋅∨∨  

))()(( efddab  )()()()()( edfdcacbefc ∨⋅∨⋅∨⋅∨⋅∨∨  

4. Graph Automorphism 

The problem of identifying all symmetries is known as the graph automorphism problem [ 27]. 

Given a graph, a symmetry, i.e., an automorphism, is a permutation of its vertices that maps edges to 

edges. In the case of directed graphs, edge orientations must be maintained. In terms of complexity, 

there are no known worst-case polynomial-time algorithms for solving the graph automorphism 

problem. Nevertheless, the problem is rarely difficult in practice and is not believed to be NP-complete 

nor to be in P. Algorithms typically finish in linear-time if the symmetry is trivial, and in polynomial-

time for graphs of bounded vertex degree [ 28]. 

The complexity of solving the graph automorphism problem can be further simplified by the use of 

vertex labels. Each vertex is labeled by a color or an integer and the goal of the problem is reduced to 

mapping vertices to vertices of the same label. 

In this paper, we will use the powerful graph automorphism tool, Saucy [ 29]. 

5. Detecting Symmetries in CNF Formulas 

In this section, we describe how to identify symmetries in CNF formulas using graph automorphism 

[ 27]. The main idea is to express a CNF formula as an undirected graph such that the symmetry group 

of the graph is isomorphic to the symmetry group of the CNF formula. The first attempt to identify 

such symmetries by modeling CNF formulas as graphs was proposed in [ 30], and subsequently refined 

by Crawford et al. [ 31]. The construction proceeds as follows. Assuming a CNF formula with V 

variables and C clauses, of which 2C  are binary clauses and xC  are clauses of size three or more 

(single literal clauses are removed by preprocessing the CNF formula), a graph is constructed as 

follows: 

• A single vertex is created for each clause in xC . 

• Two vertices are created for each variable, representing its positive and negative literals. 

• Edges are added connecting a clause vertex to its respective literal vertices. 

Vertices corresponding to clauses, positive literals, and negative literals are colored differently. 

Boolean consistency is ensured by adding an extra vertex for each variable and two edges connecting 

the new vertex to the literals of that variable. The new set of vertices is assigned a new label. Clauses 

in 2C  are represented by adding a single edge between the two literals of the clause. This construction 

yields a total of xCV +3 vertices with four unique colors of vertices. An example of the construction is 

shown in Figure 2(a). Note that the presented construction cannot detect phase shift symmetries, i.e., 

symmetries of the form xx → . 
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The construction in [ 31] was further improved in [ 32] to handle phase-shift symmetries and their 

compositions with permutational symmetries. The construction in [ 32] also produces a smaller graph 

compared to previous methods. Assuming a CNF formula with V variables and C clauses, of which 2C  

are binary clauses and xC  are clauses of size three or more (single literal clauses are removed by 

preprocessing the CNF formula), a graph is constructed as follows: 

• A single vertex is created for each clause in xC . 

• Two vertices are created for each variable, representing its positive and negative literals. 

• Edges are added connecting a clause vertex to its respective literal vertices. 

Vertices corresponding to clauses and variables are colored differently. Boolean consistency is 

ensured by adding an edge between vertices of opposite literals. Clauses in 2C  are represented by 

adding a single edge between the two literals of the clause. The construction yields a total of xCV +2  

vertices with two unique colors of vertices. An example of the construction is shown in Figure 2(b). 

Figure 2. Conversion of the CNF formula )()()( zyzyxzyx ∨⋅∨∨⋅∨∨  to a graph for 

symmetry extraction purposes using the constructions (a) in [ 31] and (b) in [ 32]. Different 

shapes correspond to different vertex colors. 

  

6. Breaking Symmetries in CNF Formulas 

Once the symmetries are identified, the next step is to break them in the CNF formula. This is 

accomplished by adding symmetry breaking predicates (SBPs) that choose lex-leaders (LL), i.e., 

lexicographically smallest assignments, in each orbit or equivalence class. 

Crawford et al. [ 31] laid the theoretical foundation for constructing SBPs for CNF formulas that 

possess permutational symmetries. Their construction assumes a given variable ordering and consists 

of two nested conjunctions: 

• An outer conjunction over all permutations in the group of symmetries. 

• An inner conjunction over all variables in the permutation. 

This results in the selection of just the lex-leaders from each orbit and breaks all symmetries. Given a 

group of symmetries },,{ 1 mππ …=∏  for a CNF formula defined over a set of totally-ordered 

variables nxxx <<< …21 , the LL-SBP is defined as follows: 
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We will refer to )(πPP  as the permutation predicate for permutation π . By introducing n 

“equality” variables, )( π
jjj xxe =≡ , each PP can be translated to a CNF formula with 5n clauses and 

nn 5.135.0 2 +  literals. This is derived as follows. For each PP, we introduce variables nee ,,1 … . For 

each je  variable, we add four clauses, each consisting of three literals, in order to define the equality 

relationship with )( π
jj xx = . Furthermore, the outer conjunction over all n variables in (3) produces n 

clauses of increasing sizes; the first, second, and n-th clause have a size of two, three, and 1+n  

literals, respectively. Hence, all n clauses have a total of 2/)3( 2 nn +  literals. An example of this 

construction is shown in Table 2. 

Table 2. Example showing the creation of SBPs for the single-cycle permutation (abcd) 

using the formula in (3). 

SBP Clauses 

  

 

This approach breaks all permutational symmetries and will be referred to as full symmetry 

breaking. The downside is that the number of symmetries in the symmetry group is usually exponential 

in the number of problem variables, making such full symmetry breaking impractical. This is 

addressed in [ 31] by building a symmetry tree and pruning it to remove unnecessary duplication. This, 

unfortunately, still does not preclude the need to consider an exponential number of permutations in 

order to break all symmetries. 

For symmetry breaking to be effective in practice, the computational overhead of generating and 

manipulating the SBPs must be significantly less than the runtime savings they yield due to search 

pruning. Since breaking all symmetries can lead to an exponentially large SBP, which will 

significantly slow down the SAT solver, the authors in [ 33] suggested partial symmetry breaking. The 

idea is to break a few symmetries whose SBPs produce short CNF clauses. This would provide better 

runtime and memory trade-offs. The partial symmetry breaking ideas include creating permutation 

predicates for a subset, instead of all, generators. Irredundant generators are good candidates for 
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symmetries to be broken because they cannot be expressed in terms of each other. Another idea is to 

create bit predicates for the first k, instead of all bits in a permutation.  

As an example, the following formula: 

)()()()(),,,( dcbadcbadcbadcbadcbaf ∨∨∨⋅∨∨∨⋅∨∨∨⋅∨∨∨=  (5) 

has a total of 11 permutations. Two of the permutations represent the irredundant set of generators, 

namely: ))((1 cdab=ϕ  and )(2 abc=ϕ . Producing the SBPs for the two generators is more efficient 

than generating the SBPs for all 11 permutations, yet should still be able to lead to significant savings 

in SAT search runtime. 

7. Experimental Results 

In this section, we empirically show the advantage of breaking symmetries in CNF formulas. The 

experiments were performed on an Intel Xeon 3 Ghz machine with 4 GB of RAM running Linux. The 

runtime limit for all experiments was set to 1000 seconds. The benchmarks included the pigeon-hole 

(hole) [ 34], global routing (s3) [ 21], FPGA routing (fpga and chnl) [ 32], randomized Urquhart (urq) 

[ 35], and xor-chains (xor) [ 36]. We used the SAT solvers MiniSAT [ 13] and RSat [ 37] to test the 

advantage of SBPs. MiniSAT and RSat won the gold medals in the industrial category in the SAT 

2005 and SAT 2007 competitions [ 38], respectively. Saucy [ 29] was used to detect the symmetries and 

only the irredundant generators were used to generate the SBPs. The tool Shatter [ 32] was used to 

generate the SBPs. 

Table 3 shows the number of symmetries and generators identified in each instance. The numbers 

clearly show the significant savings obtained when generators are used to represent the complete set of 

symmetries. Furthermore, it is clear that all instances contain an exponential number of symmetries.  

Table 3. Symmetry statistics of the tested instances. 

Instance S/U 
# of 

Symmetries 

# of 

Generators 

chnl10_11 UNS 4.19631E + 28 39 

chnl10_12 UNS 6.04269E + 30 41 

chnl10_13 UNS 1.02121E + 33 43 

chnl11_12 UNS 7.31165E + 32 43 

chnl11_13 UNS 1.23567E + 35 45 

chnl11_14 UNS 2.42191E + 37 47 

fpga12_10_sat SAT 5.41777E + 16 28 

fpga12_11_sat SAT 1.78786E + 18 29 

fpga12_9_sat SAT 5.41777E + 14 25 

fpga13_10_sat SAT 1.89622E + 17 28 

fpga13_11_sat SAT 1.2515E + 19 30 

fpga13_12_sat SAT 9.01083E + 20 32 

hole10 UNS 1.4485E + 14 19 

hole11 UNS 1.91202E + 16 21 

 

 



Symmetry 2010, 2 

 

 

1130 

Table 3. cont. 

hole12 UNS 2.98275E + 18 23 

hole13 UNS 5.42861E + 20 25 

hole8 UNS 14631321600 15 

hole9 UNS 1.31682E + 12 17 

s3-3-3-10 SAT 34828517376 28 

s3-3-3-1 SAT 8707129344 26 

s3-3-3-3 SAT 69657034752 29 

s3-3-3-4 SAT 26121388032 27 

s3-3-3-8 SAT 34828517376 28 

Urq3_5 UNS 536870912 29 

Urq4_5 UNS 8.79609E + 12 43 

Urq5_5 UNS 4.72237E + 21 72 

x1_16 UNS 131072 17 

x1_24 UNS 16777216 24 

x1_32 UNS 4294967296 32 

x1_36 UNS 68719476736 36 

TOTAL 2.43444E + 37 941 

 

Table 4 compares the MiniSAT and RSat solvers’ runtimes for the original CNF instances and the 

instances augmented with SBPs. The table also shows the time needed by Saucy to detect all 

symmetries and the instance’s result as satisfiable (SAT) or unsatisfiable (UNS). Several observations 

are in order: (1) the symmetry detection runtime is negligible in most cases, (2) the symmetry detection 

runtime and SAT search runtime are not correlated, and (3) the addition of SBPs for the generators 

only significantly reduces the SAT search runtime in most cases. The only exception is some of the 

satisfiable global routing instances which are easily solved by the SAT solvers in their original case, 

nevertheless, the SAT solvers are also able to easily solve the instances with the augmented SBPs. 

Similar results using different solvers and machines were obtained in [ 32, 33]. 

Table 4. SAT solver runtimes for the original instances and the instances augmented with 

SBPs. Symmetry detection runtimes are also provided. All runtimes are in seconds. 

Instance S/U 

Saucy 

Time 

(Sec) 

RSAT Time (Sec) MiniSAT Time (Sec) 

Orig w/SBP Speedup Orig w/SBP Speedup 

chnl10_11 UNS 0.04 >1000 0.01 >100000 67.92 0.01 6792 

chnl10_12 UNS 0.05 >1000 0.01 >100000 115.26 0.01 11526 

chnl10_13 UNS 0.07 >1000 0.01 >100000 108.97 0.01 10897 

chnl11_12 UNS 0.07 >1000 0.01 >100000 520.44 0.01 52044 

chnl11_13 UNS 0.08 >1000 0.01 >100000 >1000 0.01 >100000 

chnl11_14 UNS 0.09 >1000 0.01 >100000 >1000 0.01 >100000 

fpga12_10_sat SAT 0.04 0.01 0.001 10 0.01 0.01 1 

fpga12_11_sat SAT 0.05 0.01 0.001 10 >1000 0.01 >100000 

fpga12_9_sat SAT 0.03 0.04 0.01 4 0.01 0.01 1 

 



Symmetry 2010, 2 

 

 

1131 

Table 4. cont. 

fpga13_10_sat SAT 0.05 0.05 0.001 50 0.01 0.01 1 

fpga13_11_sat SAT 0.06 0.08 0.001 80 0.01 0.01 1 

fpga13_12_sat SAT 0.07 0.01 0.01 1 0.01 0.01 1 

hole10 UNS 0.01 348.65 0.001 348650 65.85 0.01 6585.0 

hole11 UNS 0.01 >1000 0.001 >1000000 >1000 0.01 >100000 

hole12 UNS 0.01 >1000 0.001 >1000000 >1000 0.01 >100000 

hole13 UNS 0.03 >1000 0.001 >1000000 >1000 0.01 >100000 

hole8 UNS 0 0.18 0.001 180 0.49 0.01 49.0 

hole9 UNS 0 51.14 0.001 51140 3.24 0.01 324.0 

s3-3-3-10 SAT 0.42 2.25 0.09 25 0.69 0.26 2.7 

s3-3-3-1 SAT 0.24 0.08 0.75 0.1 1.44 0.12 12 

s3-3-3-3 SAT 0.4 0.07 0.16 0.4 0.31 0.19 1.6 

s3-3-3-4 SAT 0.37 0.79 0.36 2.2 0.21 0.14 1.5 

s3-3-3-8 SAT 0.35 0.4 0.27 1.5 0.16 0.17 0.9 

Urq3_5 UNS 0.03 369.57 0.1 3695 84.44 0.19 444.4 

Urq4_5 UNS 0.08 >1000 135.54 >7.4 >1000 27.25 36.7 

Urq5_5 UNS 0.37 >1000 >1000 1 >1000 780.4 1.3 

x1_16 UNS 0 0.01 0.01 1 0.02 0.001 20 

x1_24 UNS 0.01 34.04 0.01 3404 2.77 0.03 92.3 

x1_32 UNS 0.01 1.33 0.01 133 13.84 0.01 1384 

x1_36 UNS 0.03 188.77 0.29 650.9 42.85 0.16 267.8 

TOTAL 3 11997 1138  9029 809  

8. Conclusions 

Recent algorithmic advances in Boolean Satisfiability (SAT) techniques, along with highly efficient 

solver implementations, have enabled successful applications of SAT technology to a wide range of 

applications, and particularly in electronic design automation (EDA). Nevertheless, many SAT 

instances remain hard to solve due to the significant size and complexity of the underlying systems that 

they represent. This paper reviews recent approaches that analyze the SAT instance’s structure and 

exploit the structure to improve the search process. Specifically, it describes an automated flow that 

detects syntactic symmetries in CNF formulas and utilizes them to add symmetry-breaking predicates 

that effectively prune the search space and accelerate SAT solvers. Strong empirical evidence is 

presented that shows that symmetry breaking can yield significant speed-ups for a variety of 

benchmark classes.  
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