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1. Introduction

This paper deals with generating functions that define unitary operators. Problems of this kind were
discussed first by Bargmann [1]. He constructed a unitary operator given by an integral operator whose
kernel is a generating function of the Hermite polynomials. He also gave a similar construction for
the Laguerre polynomials without proof, and noticed as follows ([1], p.203). “It is worth noting that a
similar interpretation may be given to other classical generating functions.”

We turned our interest to the Gegenbauer polynomials which give the zonal spherical functions on the
pair (SO(n), SO(n−1)), and in [2] we showed that a similar construction is possible for them. Following
this, in [3] we gave a similar construction for the zonal spherical functions on the pair (U(n), U(n− 1)).
On the other hand, A. Essadiq and A. Intissar gave a q-analog of Laguerre’s case (the result is introduced
in [4]), and Essadiq [4] gave a q-analog of Gegenbauer’s case.

In the two cases that we constructed, we should remark that there is a similarity in the forms of the
generating functions. We shall give an explanation in detail. Let N0 be the set of nonnegative integers,
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and let B be the unit open disk |z| < 1 in . It is known that the set of all the zonal spherical functions
on (SO(n), SO(n − 1)) is parametrized by N0. Denote the set by {φm |m ∈ N0}. Further, we denote
by dm the degree of the representation corresponding to φm. Then, the generating function given as the
integral kernel of the unitary operator that we constructed is written as a series of the following form:∑

m∈N0

dmφm(g)z
m, g ∈ SO(n), z ∈ B

On the other hand, it is known that the set of all the zonal spherical functions on (U(n), U(n − 1))

is parametrized by N2
0. As in the first case, we define {φm |m ∈ N2

0} and dm (m ∈ N2
0). Then, the

generating function in this case is written as a series of the following form:∑
m∈N2

0

dmφm(g)z
m, g ∈ U(n), z ∈ B2

where zm = zm1
1 zm2

2 for z = (z1, z2) and m = (m1,m2).
In this way, the question naturally arises whether similar situations occur in the case of general

Gelfand pair (G,K) of the compact type. More precisely, let G be a compact group, and let K be
a closed subgroup, such that (G,K) is a Gelfand pair. Further, assume that the set of all the zonal
spherical functions on (G,K) is parametrized by Nℓ

0, where ℓ is a positive integer. And as in the case
above, define {φm |m ∈ Nℓ

0} and dm (m ∈ Nℓ
0). Then our question can be formulated as follows. Does

there exist a generating function of the following form such that it is the kernel of an integral operator
which is unitary? ∑

m∈Nℓ

0

dmφm(g)z
m, g ∈ G, z ∈ Bℓ (1)

where zm = zm1
1 · · · zmℓ

ℓ for z = (z1, . . . , zℓ) and m = (m1, . . . ,mℓ). For this question, we proposed the
following theorem in [5].

Theorem 1 Let G be a compact connected Lie group, and let K be a closed subgroup of G. If the pair
(G,K) is a Riemannian symmetric pair of rank ℓ such that G/K is simply connected, then there exists a
generating function of the form of (1) which defines a unitary operator.

We should remark that there is a difference between our viewpoint and that of Bargmann. In fact,
Bargmann was interested in an operator solution of a commutation rule, which Fock introduced in [6].
Bargmann constructed a function space F on which Fock’s solution is realized, and a unitary operator
to study the connection between the space F and the usual L2-space. In his discussion, he used the well
known generating function of the Hermite polynomials, but he did not use their other properties. That is,
he derived from the unitarity of the operator that the Hermite polynomials form a complete orthogonal
system. In contrast, we positively used not only the well known generating functions of the orthogonal
polynomials, but also their orthogonality and completeness, and showed the unitarity of the operators.

The purpose of this paper is to present a survey on generating functions that define unitary operators.
In Section 3, we give an outline of Bargmann’s discussion on the Hermite polynomials. In Section 4, we
deal with the case of the Laguerre polynomials. Bargmann gave the construction for them, but he did not
give its proof. In this section, we shall give our proof that borrows Bargmann’s viewpoint. In Sections
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5 and 6, we shall give surveys on the case of the Gegenbauer polynomials, and the case of the zonal
spherical functions on the pair (U(n), U(n − 1)), respectively. In Section 7, we shall give an outline of
the proof of Theorem 1.

2. Notation and Preliminaries

We will explain the notation and the terms which will be used throughout this paper.

2.1. General Notation

Firstly, we shall use the notation N0,R, for the set of nonnegative integers, the field of real numbers
and the field of complex numbers, respectively. For a fixed positive integer ℓ, we denote by ℓ the complex
ℓ- dimensional space, and denote by Nℓ

0 the set of all multi-indices m = (m1, . . . ,mℓ) with each mj ∈
N0. For m = (m1, . . . ,mℓ) ∈ Nℓ

0 and z = (z1, . . . , zℓ) ∈ℓ we write zm = zm1
1 · · · zmℓ

ℓ . For z =

(z1, . . . , zℓ) ∈ℓ and w = (w1, . . . , wℓ) ∈ℓ we denote (z1w1, . . . , zℓwℓ) ∈ℓ by zw. We denote by B the
unit open disk in , and denote by Bℓ the open polydisk of z = (z1, . . . , zℓ) ∈ℓ with each zj ∈ B. For a
subset A ⊂ R or we define Aℓ in the same way. We shall use the notation [a, b], [a, b) and (a, b) for the
interval {x ∈ R | a ≤ x ≤ b}, the interval {x ∈ R | a ≤ x < b} and the interval {x ∈ R | a < x < b},
respectively. For ζ ∈ let Re ζ be the real part of ζ, and ζ 7→ ζ the usual conjugation in . We denote
the Gamma function by Γ(x), the hypergeometric function by F (α, β; γ; x), the binomial coefficient by(
a
k

)
and Γ(a + k)/Γ(a) by (a)k. The minimum value of a and b is denoted by min(a, b). A function is

assumed to be complex-valued.

2.2. Gelfand Pairs

A compact group is a topological group whose underlying topology is compact Hausdorff. Let G
be a compact group, and let K be a closed subgroup of G. A representation of the compact group G
means a continuous homomorphism of G to the group GL(V ) of invertible linear transformations on a
finite-dimensional complex vector space V . Since G is compact, for an arbitrary representation of G
there exists a G-invariant inner product on the representation space V , that is, V admits an inner product
such that the representation is unitary.

Given an irreducible representation ρ of G, let Vρ denote the representation space of ρ, and V K
ρ the

subspace of Vρ consisting of elements w ∈ Vρ which satisfy ρ(k)w = w for any k ∈ K. If an irreducible
representation ρ of G satisfies V K

ρ ̸= {0}, ρ is called a spherical representation of G with respect to the
subgroup K. Let D(G,K) denote the set of all the equivalence classes of spherical representations of G
with respect to K.

Let dg denote the normalized Haar measure on G, that is, it has the property that
∫
G
dg = 1. For two

continuous functions φ, ψ on G the convolution φ ∗ ψ is defined by

(φ ∗ ψ)(g′) =
∫
G

φ(g′g−1)ψ(g)dg, g′ ∈ G

The pair (G,K) is called a Gelfand pair if the convolution algebra of continuous functions on G which
are bi-invariant under K is commutative. The pair (G,K) is a Gelfand pair if and only if dimV K

ρ = 1

for all ρ ∈ D(G,K).
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Let (G,K) be a Gelfand pair, and let ρ ∈ D(G,K). Choose a G-invariant inner product ⟨ , ⟩ on the
representation space Vρ, and take an orthonormal basis {e1} of V K

ρ with respect to ⟨ , ⟩. Define

φ(g) = ⟨e1, ρ(g)e1⟩, g ∈ G

The function φ is called the zonal spherical function associated with ρ.

2.3. Riemannian Symmetric Pairs

Let G be a compact connected Lie group, and let K be a closed subgroup of G. The pair (G,K)

is called a Riemannian symmetric pair if there exists an involutive C∞ automorphism θ of G such that
G0

θ ⊂ K ⊂ Gθ, where Gθ is the set of fixed points of θ and G0
θ is the identity component of Gθ.

Let (G,K) be a Riemannian symmetric pair. Let g and k be the Lie algebras ofG andK, respectively.
The automorphism of g which is the differential of the automorphism θ of G will also be denoted by θ.
Then we have

k = {X ∈ g | θ(X) = X}

We define the subspace m of g by

m = {X ∈ g | θ(X) = −X}

Then the Lie algebra g is decomposed into a direct sum of vector spaces as

g = k+m

The subspace m is called the canonical complement of the pair (G,K). A maximal abelian subalgebra,
which is contained in m is called a Cartan subalgebra of the pair (G,K). The Cartan subalgebras have
the same dimension, which is called the rank of the Riemannian symmetric pair (G,K).

3. Generating Function that Defines Unitary Operator—The Case of Hermite Polynomials

Bargmann [1] constructed a unitary operator given by an integral operator whose kernel is a generating
function of the Hermite polynomials. In fact, he was interested in the operator solution

ξk =
∂

∂ηk

of the commutation rule [ξk, ηk] = 1, which Fock introduced in [6]. He constructed a function space F
on which Fock’s solution is realized. This space F is a Hilbert space associated with the unitary operator
introduced above. In this section, we shall summarize Bargmann’s discussion, that is: how to construct
the space F and the unitary operator. For the sake of simplicity we only consider the one variable case.

3.1. L2-Space Associated with the Hermite Polynomials

The Hermite polynomials Hm(x), m = 0, 1, 2, . . . , have the following generating function:

e2xz−z2 =
∑

m∈N0

Hm(x)
zm

m!
, z ∈, x ∈ R
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Let dx be the Lebesgue measure on R, and let L2(R, dx) be the Hilbert space of Lebesgue measurable
functions φ on R with

∥φ∥ =

√∫
R

|φ(x)|2dx <∞

The inner product is given by

(φ, ψ) =

∫
R

φ(x)ψ(x)dx, φ, ψ ∈ L2(R, dx)

Set

ϕm(x) =
e−x2/2Hm(x)

(2mm!
√
π)1/2

, m ∈ N0, x ∈ R

Then it is known that {ϕm |m ∈ N0} is a complete orthonormal system of L2(R, dx). But, as described
in the Introduction, Bargmann did not use this fact in his discussion.

3.2. Hilbert Space F of Analytic Functions

Let F be the space of entire functions f on with

∥f∥ =

√∫
C

|f(z)|2ρ(|z|2)dz <∞

where ρ(t) = π−1e−t, and dz is the Lebesgue measure on induced from the identification ∼= R2. For
f ∈ F , the following inequality holds:

|f(z)| ≤ e|z|
2/2∥f∥, z ∈ (2)

which implies that F is a Hilbert space with inner product

⟨f, g⟩ =
∫
C

f(z)g(z)ρ(|z|2)dz, f, g ∈ F

Notice that Bargmann determined the weight ρ(|z|2) in order to satisfy the relation

⟨zf, g⟩ =
⟨
f,
dg

dz

⟩
for functions f, g that do not grow too fast at infinity. Set

um(z) =
zm√
m!
, m ∈ N0, z ∈

Then the system {um |m ∈ N0} is a complete orthonormal system of F . It also follows from (2) that the
space F has the reproducing kernel. The kernel is given by

gw(z) =
∑

m∈N0

um(w)um(z), z, w ∈

that is, gw(z) = ewz and f(w) = ⟨f, gw⟩ for f ∈ F and w ∈.
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3.3. Unitary Operator Associated with the Hermite Polynomials

A unitary operator on L2(R, dx) to F is defined as follows. First, set

Φ(z, x) = π−1/4 exp

{
−1

2
(z2 + x2) + 21/2xz

}
, z ∈, x ∈ R

This has the following expansion:

Φ(z, x) =
∑

m∈N0

um(z)ϕm(x), z ∈, x ∈ R

which means that the function Φ(z, x) can be regarded as a generating function of the Hermite polyno-
mials.

For φ ∈ L2(R, dx) define

(Φφ)(z) =

∫
R

Φ(z, x)φ(x)dx, z ∈

Then Φφ ∈ F and the following holds.

Theorem 2 The operator Φ on L2(R, dx) to F is unitary.

Notice that Bargmann determined the integral kernel Φ(z, x) in order to satisfy the following conditions:
if φ is sufficiently smooth and vanishes sufficiently fast at infinity, then

Φ(ηφ) = z(Φφ), Φ(ξφ) =
d(Φφ)

dz

where

η = 2−1/2

(
x− d

dx

)
, ξ = 2−1/2

(
x+

d

dx

)
In what follows, we shall state an outline of Bargmann’s proof that Φ is unitary. Let φ be a continuous

function on R with compact support, and let f = Φφ. Define

fr(z) = f(rz), 0 < r < 1

Then the square of the norm ∥fr∥ can be rewritten as follows.

∥fr∥2 = (1 + ϵ2)

∫
R

e−ϵ2s2Nϵ(s)ds

Nϵ(s) =
1√
π

∫
e−t2 φ(s− ϵt)φ(s+ ϵt)dt

where

ϵ =

(
1− r2

1 + r2

)1/2

These relations imply that

lim
r→1

∥fr∥2 =
∫
R

|φ(x)|2dx = ∥φ∥2

It follows from this result that the norms ∥fr∥, 0 < r < 1 are uniformly bounded, which means that
f ∈ F and

lim
r→1

∥fr∥2 = ∥f∥2



Symmetry 2010, 2 352

Remark 1 As stated in the Introduction, Bargmann did not use in his proof the fact that the system
{ϕm |m ∈ N0} is a complete orthonormal system of L2(R, dx). He conversely defined the function ϕm

by ϕm = Φ−1um, and derived from the unitarity of Φ that {ϕm |m ∈ N0} is a complete orthonormal
system of L2(R, dx).

4. Generating Function that Defines Unitary Operator—The Case of Laguerre Polynomials

As stated in the Introduction, Bargmann [1] gave a construction similar to Hermite’s case for the
Laguerre polynomials, but he did not prove this fact. In this section, we shall give our proof for it. Our
proof follows Bargmann’s viewpoint. That is, we use the well known generating function of the Laguerre
polynomials, but we do not use their other properties except some properties that are easily derived from
the generating function.

Let γ be a positive real number. The Laguerre polynomials Lγ
m(x), m = 0, 1, 2, . . . , have the follow-

ing generating function:

exp{−xz/(1− z)}
(1− z)γ+1

=
∑

m∈N0

Lγ
m(x)z

m, z ∈ B, 0 < x <∞ (3)

The orthogonality relation easily follows from (3) (cf. [7]):∫ ∞

0

Lγ
m(x)L

γ
m′(x)e

−xxγdx =

{
Γ(m+ γ + 1)/m!, m = m′

0, m ̸= m′

4.1. L2-Space Associated with the Laguerre Polynomials

Set
dνγ(x) =

xγ

Γ(γ + 1)
dx

and let L2((0,∞), dνγ(x)) be the Hilbert space of Lebesgue measurable functions φ on the open interval
(0,∞) with

∥φ∥ =

√∫ ∞

0

|φ(x)|2dνγ(x) <∞

The inner product is given by

(φ, ψ) =

∫ ∞

0

φ(x)ψ(x)dνγ(x), φ, ψ ∈ L2((0,∞), dνγ(x))

¿From the orthogonality relation of the Laguerre polynomials, we see that the functions e−x/2Lγ
m(x), m =

0, 1, 2, . . . , form an orthogonal system of L2((0,∞), dνγ(x)). Denote by ϕγ
m(x) the normalization of

e−x/2Lγ
m(x) with respect to the norm of this space. That is,

ϕγ
m(x) =

(
γ +m

m

)−1/2

e−x/2Lγ
m(x)

Then the system {ϕγ
m |m ∈ N0} is an orthonormal system of L2((0,∞), dνγ(x)).
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4.2. Hilbert Space of Analytic Functions

Let dz be the Lebesgue measure on B induced from the identification ∼= R2, and set

dµγ(z) =
γ

π
(1− |z|2)γ−1dz

Let Fγ be the space of analytic functions f on B with

∥f∥ =

√∫
B

|f(z)|2dµγ(z) <∞

In the following, we shall show some properties of the space Fγ .

Lemma 1 For f ∈ Fγ , let f(z) =
∑

m∈N0
αmz

m be the power series expansion of f in B. Then we
have

∥f∥2 =
∑

m∈N0

(
γ +m

m

)−1

|αm|2

Proof. Let 0 < σ < 1, and set Bσ = {z ∈ | |z| ≤ σ}. It is easy to see that

∫
Bσ

zmzm′dµγ(z) =

 γ

∫ σ2

0

tm(1− t)γ−1dt, m = m′

0, m ̸= m′

Hence, we have ∫
Bσ

|f(z)|2dµγ(z) =
∑

m∈N0

|αm|2γ
∫ σ2

0

tm(1− t)γ−1dt

=
∑

m∈N0

(
γ +m

m

)−1

cm(σ)|αm|2 ≤ ∥f∥2

where

cm(σ) =

(
γ +m

m

)
γ

∫ σ2

0

tm(1− t)γ−1dt

Since 0 ≤ cm(σ) ≤ 1 and limσ→1 cm(σ) = 1, we obtain

∥f∥2 = lim
σ→1

∫
Bσ

|f(z)|2dµγ(z) =
∑

m∈N0

(
γ +m

m

)−1

|αm|2

(Note that we used 1a. Preliminary remarks in Bargmann [1].)

Lemma 2 Let f ∈ Fγ . Then we have

|f(z)| ≤ ∥f∥(1− |z|2)−(γ+1)/2, z ∈ B
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Proof. Let f(z) =
∑

m∈N0
αmz

m be the power series expansion of f in B. By the Schwarz inequality
and Lemma 1, we have

|f(z)| =

∣∣∣∣ ∑
m∈N0

{(
γ +m

m

)−1/2

αm

}{(
γ +m

m

)1/2

zm
}∣∣∣∣

≤ ∥f∥

√√√√ ∑
m∈N0

(
γ +m

m

)
|z|2m = ∥f∥(1− |z|2)−(γ+1)/2

which implies our assertion.

It follows from Lemma 2 that Fγ is a Hilbert space with inner product

⟨f, g⟩ =
∫
B

f(z)g(z)dµγ(z), f, g ∈ Fγ

Set

uγm(z) =

(
γ +m

m

)1/2

zm, m ∈ N0, z ∈ B

Then we have

Lemma 3 The system {uγm |m ∈ N0} is a complete orthonormal system of Fγ .

Proof. In the same way as in the proof of Lemma 1, we see that {uγm |m ∈ N0} is an orthonormal
system of Fγ . Next we show the completeness of the system. Let f be an element of Fγ with power
series expansion f(z) =

∑
m∈N0

αmz
m. From Lemma 1, the power series expansion of f converges

with respect to the norm of Fγ . Hence, we have

⟨f, uγm⟩ =
(
γ +m

m

)−1/2

αm

By Lemma 1, we obtain
∥f∥2 =

∑
m∈N0

|⟨f, uγm⟩|2

which implies the completeness of the system.

It follows from Lemma 2 that Fγ has the reproducing kernel. The kernel is given by

gγw(z) =
∑

m∈N0

uγm(w)u
γ
m(z), z, w ∈ B

that is, gγw(z) = (1− wz)−(γ+1) and f(w) = ⟨f, gγw⟩ for f ∈ Fγ and w ∈ B.

4.3. Unitary Operator Associated with the Laguerre Polynomials

A unitary operator on L2((0,∞), dνγ(x)) to Fγ is defined as follows. First, set

Φ(z, x) =
1

(1− z)γ+1
exp

{
−x(1 + z)

2(1− z)

}
, z ∈ B, 0 < x <∞
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This has the following expansion:

Φ(z, x) =
∑

m∈N0

uγm(z)ϕ
γ
m(x), z ∈ B, 0 < x <∞ (4)

which means that the function Φ(z, x) is a generating function of the Laguerre polynomials.
For φ ∈ L2((0,∞), dνγ(x)) we define

(Φφ)(z) =

∫ ∞

0

Φ(z, x)φ(x)dνγ(x), z ∈ B (5)

Then Φφ ∈ Fγ and the following holds.

Theorem 3 The operator Φ on L2((0,∞), dνγ(x)) to Fγ is unitary.

In what follows, we shall prove this theorem.

Lemma 4 The operator Φ is a bounded operator on L2((0,∞), dνγ(x)) to Fγ .

Proof. Let φ ∈ L2((0,∞), dνγ(x)). It follows from (4), (5) and
∑

m∈N0
|uγm(z)|2 <∞ that

(Φφ)(z) =

(
φ,

∑
m∈N0

uγm(z)ϕ
γ
m

)
=

∑
m∈N0

uγm(z)(φ, ϕ
γ
m), z ∈ B

Since {ϕγ
m |m ∈ N0} is an orthonormal system of L2((0,∞), dνγ(x)), we have

∑
m∈N0

|(φ, ϕγ
m)|2

<∞. Hence, we see that Φφ ∈ Fγ and

∥Φφ∥2 =
∑

m∈N0

|(φ, ϕγ
m)|2 ≤ ∥φ∥2

which means that Φ is an operator on L2((0,∞), dνγ(x)) to Fγ , and bounded.

Lemma 5 The operator Φ is surjective.

Proof. If we take φ = ϕγ
m in the proof of Lemma 4, we have

Φϕγ
m = uγm, m ∈ N0 (6)

Further, {uγm |m ∈ N0} is a complete orthonormal system of Fγ , and the operator Φ is bounded. These
facts imply that Φ is surjective.

Lemma 6 The operator Φ is injective.

Proof. Let φ ∈ L2((0,∞), dνγ(x)), and assume that Φφ = 0. It is clear that∫ ∞

0

xγφ(x) exp

{
−x(1 + z)

2(1− z)

}
dx = 0 (7)

for each z ∈ B. Let us consider the following linear fractional transformation

w =
1 + z

1− z
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This transformation maps the unit open disk B in the z-plane onto {w ∈ |Rew > 0} in the w-plane.
Therefore, the condition (7) is equivalent to the following.∫ ∞

0

e−x(ξ+iη)/2xγφ(x)dx = 0 (8)

for each positive real number ξ and each η ∈ R. Take ξ = 1 and set

ψ(x) =

{
e−x/2xγφ(x), x > 0

0, x ≤ 0

It follows from (8) that ψ ∈ L1(R, dx) and∫ ∞

−∞
ψ(x)e−ixη/2dx = 0 (9)

for all η ∈ R, where L1(R, dx) is the space of Lebesgue measurable functions ϕ on R with
∫∞
−∞ |ϕ(x)|dx

< ∞. Since the Fourier transformation on L1(R, dx) is injective, by (9) we obtain ψ = 0. By the
definition of ψ, we see that φ = 0, which implies that Φ is injective.

Lemma 7 The operator Φ is an isometry.

Proof. Let φ ∈ L2((0,∞), dνγ(x)), and set

Φφ =
∑

m∈N0

αmu
γ
m

Then we have
∥Φφ∥2 =

∑
m∈N0

|αm|2 (10)

On the other hand, by Lemma 4 and (6), we see that

Φφ =
∑

m∈N0

αmΦϕ
γ
m = Φ

( ∑
m∈N0

αmϕ
γ
m

)

It follows from this fact and Lemma 6 that

φ =
∑

m∈N0

αmϕ
γ
m

which implies
∥φ∥2 =

∑
m∈N0

|αm|2 (11)

¿From (10) and (11), we have the assertion.

As a result of these lemmas, we can conclude that Φ is unitary.

Corollary 1 The system {ϕγ
m |m ∈ N0} is complete.
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5. Generating Function that Defines Unitary Operator – the Case of Gegenbauer Polynomials

Let λ be a positive real number. The Gegenbauer polynomials Cλ
m(x), m = 0, 1, 2, . . . , have the

following generating function:
1

(1− 2xz + z2)λ
=

∑
m∈N0

Cλ
m(x)z

m, z ∈ B, −1 < x < 1

In this section, we deal with a generating function of {Cλ
m |m ∈ N0} that defines a unitary operator. For

more details, refer to [2].

5.1. L2-Space Associated with the Gegenbauer Polynomials

Let L2((−1, 1), (1 − x2)λ−1/2dx) be the Hilbert space of Lebesgue measurable functions φ on the
open interval (−1, 1) with

∥φ∥ =

√∫ 1

−1

|φ(x)|2(1− x2)λ−1/2dx <∞

The inner product is given by

(φ, ψ) =

∫ 1

−1

φ(x)ψ(x)(1− x2)λ−1/2dx, φ, ψ ∈ L2((−1, 1), (1− x2)λ−1/2dx)

As is well known, the Gegenbauer polynomials Cλ
m(x), m = 0, 1, 2, . . . , form a complete orthogonal

system of L2((−1, 1), (1−x2)λ−1/2dx). Denote by ϕλ
m the normalization of Cλ

m with respect to the norm
of this space. That is,

ϕλ
m(x) =

√
22λ−1(m+ λ)m!(Γ(λ))2

πΓ(m+ 2λ)
Cλ

m(x)

Then the system {ϕλ
m |m ∈ N0} is a complete orthonormal system of L2((−1, 1), (1− x2)λ−1/2dx).

5.2. Hilbert Space of Analytic Functions

For 0 < t < 1 we define

ρλ(t) =


1

Γ(2λ− 1)
tλ−1

∫ 1

t

s−λ(1− s)2λ−2ds, λ > 1/2

tλ−1

(
Γ(1− λ)

Γ(λ)
− 1

Γ(2λ− 1)

∫ t

0

s−λ(1− s)2λ−2ds

)
, 0 < λ ≤ 1/2

Let Fλ be the space of analytic functions f on B with

∥f∥ =

√∫
B

|f(z)|2ρλ(|z|2)dz <∞

where dz is the Lebesgue measure on B induced from the identification ∼= R2. For f ∈ Fλ, we have the
following inequality

|f(z)| ≤ ∥f∥

√√√√ ∑
m∈N0

(m+ λ)Γ(m+ 2λ)

πm!
|z|2m, z ∈ B (12)
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which implies that Fλ is a Hilbert space with inner product

⟨f, g⟩ =
∫
B

f(z)g(z)ρλ(|z|2)dz, f, g ∈ Fλ

Set

uλm(z) =

√
(m+ λ)Γ(m+ 2λ)

πm!
zm, m ∈ N0, z ∈ B

Then the system {uλm |m ∈ N0} is a complete orthonormal system of Fλ. It also follows from (12) that
the space Fλ has the reproducing kernel. The kernel is given by

gλw(z) =
∑

m∈N0

uλm(w)u
λ
m(z), z, w ∈ B

that is, f(w) = ⟨f, gλw⟩ for f ∈ Fλ and w ∈ B.

5.3. Unitary Operator Associated with the Gegenbauer Polynomials

A unitary operator on L2((−1, 1), (1− x2)λ−1/2dx) to Fλ is defined as follows. First, set

Φ(z, x) =
2λ−1/2Γ(λ+ 1)

π

1− z2

(1− 2xz + z2)λ+1
, z ∈ B, −1 < x < 1

This has the following expansion:

Φ(z, x) =
∑

m∈N0

uλm(z)ϕ
λ
m(x), z ∈ B, −1 < x < 1 (13)

which means that the function Φ(z, x) is a generating function of the Gegenbauer polynomials.
For φ ∈ L2((−1, 1), (1− x2)λ−1/2dx) we define

(Φφ)(z) =

∫ 1

−1

Φ(z, x)φ(x)(1− x2)λ−1/2dx, z ∈ B (14)

Then Φφ ∈ Fλ and we have

Theorem 4 The operator Φ on L2((−1, 1), (1− x2)λ−1/2dx) to Fλ is unitary.

We positively use in our proof the fact that the system {ϕλ
m |m ∈ N0} is a complete orthonormal system

of L2((−1, 1), (1−x2)λ−1/2dx). It follows from (13) and (14) that for φ ∈ L2((−1, 1), (1−x2)λ−1/2dx)

(Φφ)(z) =
∑

m∈N0

(φ, ϕλ
m)u

λ
m(z), z ∈ B

Hence, we have
∥Φφ∥2 =

∑
m∈N0

|(φ, ϕλ
m)|2 = ∥φ∥2, Φϕλ

m = uλm,

which imply that Φ is unitary.
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Remark 2 Let n be a positive integer that n ≥ 3, and let Sn−1 be the (n−1)-dimensional unit sphere. Set
e1 =

t(1, 0, . . . , 0) ∈ Sn−1. Then the identification SO(n)/SO(n− 1) ∼= Sn−1 is given by the mapping
gSO(n − 1) 7→ ge1, g ∈ SO(n). On the other hand, in the case of λ = (n − 2)/2, the Gegenbauer
polynomials Cλ

m, m = 0, 1, 2, . . . , give the zonal spherical functions on (SO(n), SO(n − 1)). More
precisely, for each m ∈ N0 define

φm(g) =
Cλ

m((ge1, e1))

Cλ
m(1)

, g ∈ SO(n)

where ( , ) denotes the canonical inner product on the real vector space Rn. Then {φm |m ∈ N0} is
equal to the set of all the zonal spherical functions on (SO(n), SO(n− 1)). Let dm denote the degree of
the representation corresponding to φm. Then the following holds.∑

m∈N0

dmφm(g)z
m =

1− z2

(1− 2z(ge1, e1) + z2)
n
2

, g ∈ SO(n), z ∈ B

which does not equal to Φ(z, x). But, since these functions differ only by a constant, the difference
between them is not essential.

Remark 3 We can generalize Theorem 4 to the case of the Jacobi polynomials P (α,β)
m (x),m = 0, 1, 2, . . .,

which have the following generating function (cf. [8]) :∑
m∈N0

(2m+ α+ β + 1)(α+ β + 1)m
(α+ 1)m

P (α,β)
m (x)zm

=
(α+ β + 1)(z + 1)

(1− z)α+β+2
F

(
α+ β + 2

2
,
α+ β + 3

2
; α+ 1 ;

2z(x− 1)

(1− z)2

)
, z ∈ B, −1 < x < 1

Let α, β > 0. If we replace L2((−1, 1), (1− x2)λ−1/2dx) by L2((−1, 1), (1− x)α(1 + x)βdx), ρλ(t) by

ρα,β(t) = t
α+β−1

2

∫ 1

t

u−
α+β+1

2 (1− u)β−1du

∫ 1

t
u

v−
β−α+1

2 (1− v)β−1dv

and Φ(z, x) by

(α+ β + 1)Γ(α+ β + 1)(z + 1)√
2α+β+2πΓ(α+ 1)Γ(β)(1− z)α+β+2

F

(
α+ β + 2

2
,
α+ β + 3

2
; α+ 1 ;

2z(x− 1)

(1− z)2

)
then we can obtain the desired result. For more details, refer to [9].

6. Generating Function that Defines Unitary Operator – the Case of Zonal Spherical Functions
on (U(n), U(n− 1))

Let n be a positive integer that n ≥ 3. Denote by S(n) the unit sphere in n and set e1 = t(1, 0, . . . , 0) ∈
S(n). Then we have the identification U(n)/U(n − 1) ∼= S(n) by the mapping gU(n − 1) 7→ ge1, g ∈
U(n). The zonal spherical functions on (U(n), U(n− 1)) are concerned with the functions Gn−1

pq , p, q ∈
N0 which have the following generating function (see Theorem 1.1. in [10]):

(1− 2Re(xz) + |z|2)1−n =
∑

p,q∈N0

Gn−1
pq (x)zpzq, x, z ∈ B
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More precisely, for each p, q ∈ N0 define

φpq(g) =
Gn−1

pq ((ge1, e1))

Gn−1
pq (1)

, g ∈ U(n)

where ( , ) denotes the canonical inner product on the complex vector space n. Then {φpq | p, q ∈ N0} is
equal to the set of all the zonal spherical functions on (U(n), U(n−1)). For the functions φpq, p, q ∈ N0,
refer to [11]. In this section, we deal with a generating function of {φpq | p, q ∈ N0} that defines a unitary
operator. For more details, refer to [3].

6.1. L2-Space Associated with the Zonal Spherical Functions on (U(n), U(n− 1))

In what follows, x is an element of the unit open disk B in , and dx is the Lebesgue measure on B
induced from the identification ∼= R2. Let L2(B, (1 − |x|2)n−2dx) be the Hilbert space of Lebesgue
measurable functions φ on B with

∥φ∥ =

√∫
B

|φ(x)|2(1− |x|2)n−2dx <∞

The inner product is given by

(φ, ψ) =

∫
B

φ(x)ψ(x)(1− |x|2)n−2dx, φ, ψ ∈ L2(B, (1− |x|2)n−2dx)

The functions Gn−1
pq , p, q ∈ N0 form a complete orthogonal system of L2(B, (1 − |x|2)n−2dx). Denote

by ϕn
pq the normalization of Gn−1

pq with respect to the norm of this space. That is,

ϕn
pq(x) =

√
(p+ q + n− 1)p!q!(Γ(n− 1))2

πΓ(p+ n− 1)Γ(q + n− 1)
Gn−1

pq (x)

Then the system {ϕn
pq | p, q ∈ N0} is a complete orthonormal system of L2(B, (1− |x|2)n−2dx).

6.2. Hilbert Space of Analytic Functions

Let ρn be the function on the direct product of the open interval (0, 1) with itself defined by

ρn(u, v) = (uv)(n−3)/2

∫ min(1/u,1/v)

1

fn(tu, tv)

t
dt

where
fn(u, v) = (uv)−(n−3)/2 {(1− u)(1− v)}n−3

Let Fn be the space of analytic functions f on B2 in 2 with

∥f∥ =

√∫
B2

|f(z1, z2)|2ρn(|z1|2, |z2|2)dz1dz2 <∞

where dz1, dz2 are the Lebesgue measures on B induced from the identification ∼= R2. For f ∈ Fn, we
have the following inequality

|f(z)| ≤ ∥f∥

√√√√ ∑
p,q∈N0

(p+ q + n− 1)Γ(p+ n− 1)Γ(q + n− 1)

π2p!q!(Γ(n− 2))2
|z2p1 z

2q
2 |, z = (z1, z2) ∈ B2 (15)
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which implies that Fn is a Hilbert space with inner product

⟨f, g⟩ =
∫
B2

f(z1, z2)g(z1, z2)ρn(|z1|2, |z2|2)dz1dz2, f, g ∈ Fn

Set

unpq(z) =

√
(p+ q + n− 1)Γ(p+ n− 1)Γ(q + n− 1)

π2p!q!(Γ(n− 2))2
zp1z

q
2, p, q ∈ N0, z = (z1, z2) ∈ B2

Then the system {unpq | p, q ∈ N0} is a complete orthonormal system of Fn. It also follows from (15) that
the space Fn has the reproducing kernel. The kernel is given by

gnw(z) =
∑

p,q∈N0

unpq(w)u
n
pq(z), z, w ∈ B2

that is, f(w) = ⟨f, gnw⟩ for f ∈ Fn and w ∈ B2.

6.3. Unitary Operator Associated with the Zonal Spherical Functions on (U(n), U(n− 1))

A unitary operator on L2(B, (1− |x|2)n−2dx) to Fn is defined as follows. First, set

Φ(z, x) =
(n− 2)(n− 1)

π3/2

1− z1z2
(1− xz1 − xz2 + z1z2)n

, z = (z1, z2) ∈ B2, x ∈ B

This has the following expansion:

Φ(z, x) =
∑

p,q∈N0

unpq(z)ϕ
n
pq(x), z ∈ B2, x ∈ B (16)

which means that the function Φ(z, x) is a generating function of the zonal spherical functions on
(U(n), U(n− 1)).

For φ ∈ L2(B, (1− |x|2)n−2dx) we define

(Φφ)(z) =

∫
B

Φ(z, x)φ(x)(1− |x|2)n−2dx, z ∈ B2 (17)

Then Φφ ∈ Fn and we have

Theorem 5 The operator Φ on L2(B, (1− |x|2)n−2dx) to Fn is unitary.

As in Gegenbauer’s case, we positively use in our proof the fact that the system {ϕn
pq | p, q ∈ N0} is a

complete orthonormal system of L2(B, (1−|x|2)n−2dx). It follows from (16), (17) and ϕn
pq(x) = ϕn

qp(x)

that for φ ∈ L2(B, (1− |x|2)n−2dx)

(Φφ)(z) =
∑

p,q∈N0

(φ, ϕn
qp)u

n
pq(z), z ∈ B2

Hence, we have
∥Φφ∥2 =

∑
p,q∈N0

|(φ, ϕn
pq)|2 = ∥φ∥2, Φϕn

qp = unpq

which imply that Φ is unitary.
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Remark 4 Let dpq denote the degree of the representation corresponding to φpq. Then the following
holds. ∑

p,q∈N0

dpqφpq(g)z
p
1z

q
2 =

1− z1z2
(1− z1(ge1, e1)− z2(e1, ge1) + z1z2)n

, g ∈ U(n), z1, z2 ∈ B

which does not equal to Φ(z, x). But, since these functions differ only by a constant, the difference
between them is not essential.

7. Group Theoretical Approach to Generating Functions that Define Unitary Operators

Let G be a compact connected Lie group, K a closed subgroup of G, and (G,K) a Riemannian
symmetric pair of rank ℓ such that G/K is simply connected. Then it is known (cf. [12]) that the set of
all the zonal spherical functions on (G,K) can be parametrized by Nℓ

0. Denote the set by {φm |m ∈ Nℓ
0},

and by dm the degree of the representation corresponding to φm. Further, we can assume that there exists
a measure µ0 on [0, 1)ℓ such that

d−1
m =

∫
[0,1)ℓ

tmdµ0(t), m ∈ Nℓ
0. (18)

See Lemma 2 in [5]. Weyl’s dimension formula and Theorem 1 in [13] play important roles in the proof
of (18). (Note that Theorem 1 in [13] gives a necessary and sufficient condition for a multisequence
{αm}m∈Nℓ

0

to have a measure µ1 on [0, 1]ℓ such that αm =
∫
[0,1]ℓ

tmdµ1(t), m ∈ Nℓ
0.) Furthermore,

it follows from (18) that we can construct a generating function of the form of (1) which defines a
unitary operator.

7.1. L2-Space Associated with the Zonal Spherical Functions on (G,K)

Let dg be the normalized Haar measure on G, that is, it has the property that
∫
G
dg = 1. Let L2(G)

denote the Hilbert space of measurable functions φ on G with

∥φ∥ =

√∫
G

|φ(g)|2dg <∞

The inner product is given by

(φ, ψ) =

∫
G

φ(g)ψ(g)dg (19)

Let L2(G,K) be the space of functions φ ∈ L2(G) which are bi-invariant under K. Then L2(G,K) is a
closed subspace of L2(G), that is, L2(G,K) is also a Hilbert space with inner product (19). As is well
known (cf. [12], [14]), the system {φm |m ∈ Nℓ

0} is a complete orthogonal system of L2(G,K), and has
the following orthogonality relation:∫

G

φm(g)φm′(g)dg =

{
d−1
m , m = m′

0, m ̸= m′

Set
ϕm =

√
dmφm, m ∈ Nℓ

0

Then the system {ϕm |m ∈ Nℓ
0} is a complete orthonormal system of L2(G,K).
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7.2. Hilbert Space of Analytic Functions

It follows from (18) that we can construct a measure µ on Bℓ such that∫
Bℓ

zmzm′dµ(z) =

{
d−1
m , m = m′

0, m ̸= m′

Let F be the space of analytic functions f on Bℓ with

∥f∥ =

√∫
Bℓ

|f(z)|2dµ(z) <∞

For f ∈ F , we have the following inequality

|f(z)| ≤ ∥f∥
√√√√ ∑

m∈Nℓ

0

dm|zm|2, z ∈ Bℓ (20)

Note that
∑

m∈Nℓ

0

dm|zm|2 < ∞ for all z ∈ Bℓ, because dm is a polynomial of m1, . . . ,mℓ. The
inequality (20) implies that F is a Hilbert space with inner product

⟨f, g⟩ =
∫
Bℓ

f(z)g(z)dµ(z), f, g ∈ F

It also follows from (20) that the space F has the reproducing kernel. That is, for each w ∈ Bℓ there
exists a unique gw ∈ F such that f(w) = ⟨f, gw⟩ for f ∈ F . Set

um(z) =
√
dmz

m, m ∈ Nℓ
0, z ∈ Bℓ

Then the system {um |m ∈ Nℓ
0} is a complete orthonormal system of F . Note that the reproducing

kernel of F has the following expansion:

gw(z) =
∑

m∈Nℓ

0

um(w)um(z), z, w ∈ Bℓ

7.3. Unitary Operator Associated with the Zonal Spherical Functions on (G,K)

A unitary operator on L2(G,K) to F is defined as follows. First, set

Φ(z, g) =
∑

m∈Nℓ

0

dmφm(g)z
m, z ∈ Bℓ, g ∈ G

This has the following expansion:

Φ(z, g) =
∑

m∈Nℓ

0

um(z)ϕm(g), z ∈ Bℓ, g ∈ G (21)

For φ ∈ L2(G,K) we define

(Φφ)(z) =

∫
G

Φ(z, g−1)φ(g)dg, z ∈ Bℓ (22)

Then Φφ ∈ F and we have
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Theorem 6 The operator Φ on L2(G,K) to F is unitary.

As stated above, the system {um |m ∈ Nℓ
0} is a complete orthonormal system of F . Thus, it follows

from (21), (22) and φm(g
−1) = φm(g) that for φ ∈ L2(G,K)

(Φφ)(z) =
∑

m∈Nℓ

0

(φ, ϕm)um(z), z ∈ Bℓ

Hence, we have
∥Φφ∥2 =

∑
m∈Nℓ

0

|(φ, ϕm)|2 = ∥φ∥2, Φϕm = um

which imply that Φ is unitary.

Remark 5 The pair (SO(n), SO(n− 1)) is a typical example of Theorem 6.

Remark 6 Suppose that a pair (G,K) is a Gelfand pair of the compact type, and that the set of all the
zonal spherical functions on (G,K) is parametrized by Nℓ

0, where ℓ is a positive integer. And as in the
first part of this section, define {φm |m ∈ Nℓ

0} and dm (m ∈ Nℓ
0). If the pair (G,K) has a measure µ0

on [0, 1)ℓ which satisfies (18), and the series
∑

m∈Nℓ

0

dm|zm|2 converges for each z ∈ Bℓ, then Theorem
6 also holds. The pair (U(n), U(n− 1)) is such an example.
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