
Citation: Wang, D.; Yuan, Y.; Liu, Z.;

Zhu, S.; Sun, Z. Novel Distance

Measures of q-Rung Orthopair Fuzzy

Sets and Their Applications. Symmetry

2024, 16, 574. https://doi.org/

10.3390/sym16050574

Academic Editor: Cengız Kahraman

Received: 29 March 2024

Revised: 26 April 2024

Accepted: 2 May 2024

Published: 7 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Novel Distance Measures of q-Rung Orthopair Fuzzy Sets and
Their Applications
Donglai Wang 1, Yige Yuan 1, Zhe Liu 2,* , Sijia Zhu 3 and Zhifang Sun 4

1 School of Cyberspace Security, Hainan University, Haikou 570228, China
2 School of Computer Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
3 Cw Chu College, Jiangsu Normal University, Xuzhou 221116, China
4 College of Artificial Intelligence, Shandong University of Engineering and Vocational Technology,

Jinan 250200, China
* Correspondence: zheliu@ieee.org

Abstract: The q-rung orthopair fuzzy sets (q-ROFSs), a novel concept for processing vague in-
formation, offer a more potent and all-encompassing method compared to traditional fuzzy sets,
intuitionistic fuzzy sets, and Pythagorean fuzzy sets. The inclusion of the parameter q allows for the
q-rung orthopair fuzzy sets to capture a broader range of uncertainty of information. In this paper,
we present two novel distance measures for q-ROFSs inspired by the Jensen–Shannon divergence,
called DJS_2D and DJS_3D, and we analyze some properties they satisfy, such as non-degeneracy,
symmetry, boundedness, and triangular inequality. Then, the normalized distance measures, called
D

J̃S_2D
and D

J̃S_3D
, are proposed and we verify their rationality through numerical experiments.

Finally, we apply the proposed distance measures to practical scenarios, including pattern recognition
and multicriteria decision-making, and the results demonstrate the effectiveness of the proposed
distance measures.

Keywords: q-rung orthopair fuzzy sets (q-ROFSs); Jensen–Shannon divergence; distance measure;
pattern recognition; multicriteria decision-making

1. Introduction

The intricacies inherent in objective phenomena, combined with the constraints of
human understanding, inevitably give rise to uncertainty [1,2]. A great number of theories
have been proposed to model uncertainty, such as fuzzy sets [3,4], neutrosophic sets [5,6],
rough sets [7,8], and evidence theory [2,9]. Fuzzy sets (FSs) [10], initially introduced by
Zadeh, facilitate the handling of uncertainty by incorporating membership degree, offering
a mathematical framework more adept at managing uncertainties. FSs have proven effective
for addressing complexities and ambiguities. However, FSs represent only a certain level
of uncertain information.

To encompass a broader spectrum and a higher degree of uncertainty, Atanassov [11]
expanded upon this concept by introducing intuitionistic fuzzy sets (IFSs). IFSs include both
membership (κ) and non-membership (ϑ) degrees, thereby providing a more detailed repre-
sentation of uncertainty. Numerous researchers have explored various measures of distance
or similarity between IFSs since the inception of the theory. Szmidt and Kacprzyk [12] in-
troduced the Hamming distance and the Euclidean distance measures along with their nor-
malized forms. Wang and Xin [13] formulated an expanded distance measure specifically
for IFSs and effectively employed it to tackle pattern recognition challenges. Park et al. [14]
introduced a new distance measure for IFSs, building upon the framework established by
Wang and Xin [13]. Yang and Chiclana [15] introduced an innovative spherical distance
measure specifically tailored for IFSs within a three-dimensional framework, effectively
leveraging it in decision-making analysis for enhanced precision and accuracy. Further
contributions include Son and Phong [16], who developed intuitionistic vector similarity
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measures, applying these measures to medical diagnosis. Ye [17] introduced two novel
measures, i.e., cosine similarity and weighted cosine similarity, based on the cosine function,
which effectively incorporate fuzzy information within the framework of IFSs. Xu [18]
developed the Minkowski distance measure for IFSs and utilized it in solving pattern
recognition and medical diagnosis. More recently, Xiao [19] introduced a novel distance
measure based on the Jensen–Shannon divergence between IFSs. Li et al. [20] presented
an intuitionistic fuzzy distance measure based on the Hellinger distance and applied it
to pattern classification. These measures, however, face challenges when the sum of the
membership and non-membership degrees exceeds one, complicating their applications.

Later, Yager [21] introduced an extension to IFSs, known as Pythagorean fuzzy sets
(PFSs), which are characterized by membership (κ) and non-membership (ϑ). In PFSs,
the sum of the squares of these degrees does not exceed one, offering a richer represen-
tation of uncertainty. This development initiated numerous studies into the properties
and applications of PFSs [22–24]. Liang and Xu [25] developed a measure for the TOPSIS
within the context of PFSs. Wei and Lu [26] proposed a set of power-based aggregation
functions tailored for PFSs. Wei [27] suggested some PF interaction aggregation functions
with their utility in multicriteria decision-making (MCDM). Zhang and Xu developed a
distance measure for PFSs that evaluates alternatives and introduced a modified TOPSIS
method to tackle multicriteria decision-making. Zeng et al. [28] demonstrated the appli-
cation of Pythagorean fuzzy measures to assess both distance and similarity in MCDM,
underscoring the utility of these advanced fuzzy sets in complex decision-making scenarios.
Farhadinia [29] introduced a variety of new similarity measures for PFSs. Xiao et al. [30]
applied the distance measures based on the Jensen–Shannon divergence to the PFSs en-
vironment. Liu [31] proposed two Hellinger distance measures for PFSs. Senapati and
Yager [32] further proposed Fermatean fuzzy sets (FFSs), which expand the constraint on
the sum of membership and non-membership degrees to the cubic. A number of researchers
have delved into FFSs to handle uncertain information. Zhou et al. [33] introduced a new
distance measure based on the Jensen–Shannon divergence to the Fermatean fuzzy context.
Deng and Wang [34] designed two distance measures for FFSs based on the Hellinger
distance and the triangular divergence. Liu [35] proposed a new distance measure for
FFSs to overcome the limitations of the previous triangular divergence. Recently, Liu [36]
developed some Fermatean fuzzy similarity measures according to Tanimoto and Sørensen
coefficients and applied them to various applications.

Expanding the field of fuzzy logic, Yager [37] introduced the concept of q-rung or-
thopair fuzzy sets (q-ROFSs), which enhance the representation of uncertainty by utilizing
the adjustable parameter q. The key characteristics of q-ROFSs include membership (κ) and
non-membership (ϑ) degrees, where the sum of their q powers does not exceed 1, expressed
as κq + ϑq ≤ 1. One significant benefit of q-ROFSs is their flexible and comprehensive depic-
tion of uncertainty. By varying the q value, the granularity of the uncertainty representation
can be adjusted over a wider spectrum, making q-ROFSs particularly suitable for more
complex decision-making scenarios and handling a diverse range of information. Since
their introduction, q-ROFSs have been extensively explored in the literature, with numerous
studies contributing to their development. An increasing array of distance or similarity
measures have been proposed, enhancing their utility. For example, Wang et al. [38] ex-
tended some similarity measure based on the cosine and cotangent functions from PFSs
to q-ROFSs. Liu et al. [39] proposed a new similarity measure for q-ROFSs by combining
cosine similarity and Euclidean distance. Singh [40] developed new correlation coefficients
to assess the degree and nature of the correlation between q-ROFSs. Ali [41] proposed
a new distance measure for q-ROFSs, rooted in the matrix norm and strictly monotonic
functions. Rani et al. [42] developed a distance measure inspired by the Hausdorff distance
for q-ROFSs. Du [43] introduced distance measures of the Minkowski type for q-ROFSs.
Turkarslan [44] proposed a distance measure between q-ROFSs using the Choquet integral,
and great results were achieved in pattern recognition.
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Evidently, q-ROFSs possess a broader scope than both IFSs and PFSs, enabling them
to encapsulate a richer array of fuzzy information and offer a more comprehensive repre-
sentation of uncertainty and vagueness. However, there are challenges with some existing
distance measures for q-ROFSs, such as producing identical results when assessing differ-
ences between distinct q-ROFSs, which can lead to unreasonable outcomes. This limits
their discriminative capacity in more complex ambiguous environments. Therefore, it is
logical to propose new solutions to address this limitation. Moreover, to date, the literature
lacks examples of using the Jensen–Shannon divergence as a basis for defining a distance
measure for q-ROFSs. Motivated by these gaps, we aim to introduce two novel distance
measures for q-ROFSs that utilize the Jensen–Shannon divergence, potentially offering a
more robust and effective tool for measuring differences within this framework.

The main contributions of this paper are displayed as follows:

1. We propose two new distance measures, i.e., a two-dimensional distance measure of
a q-ROFS, which considers membership and non-membership degrees, and a three-
dimensional distance measure of q-ROFSs, considering membership, non-membership,
and hesitancy degrees.

2. We analyze some properties that the proposed distance measures satisfy, such as
non-degeneracy, symmetry, boundedness, and triangle inequality.

3. We apply the proposed distance measures to pattern recognition and multicriteria
decision-making issues, and excellent results are obtained to verify their performance.

The rest of this paper is structured as follows. In Section 2, we review some essential
knowledge of IFSs, PFSs, FFSs, and q-ROFSs briefly. In Section 3, we first introduce the con-
cept of the Jensen–Shannon divergence. Then, we define two novel distance measures for
q-ROFSs based on the Jensen–Shannon divergence and prove some properties. In Section 4,
the effectiveness of the proposed measures is verified by some numerical examples. Sub-
sequently, we apply the proposed measures to practical applications including pattern
recognition and multicriteria decision-making in Section 5. We conclude this paper in
Section 6.

2. Preliminaries

In this section, we will review the fundamental concepts related to IFSs, PFSs, FFSs,
and q-ROFSs and introduce some existing q-ROFS distance measures.

2.1. Intuitionistic Fuzzy Sets

Definition 1. [11] Let X be the universe of discourse (UOD), and an intuitionistic fuzzy set I in
X is defined below:

I = {⟨x,κI(x), ϑI(x)⟩|x ∈ X} (1)

where κI(x),ϑI(x): X → [0, 1] denote the membership degree and non-membership degree of
x ∈ X, respectively. For any x ∈ X, we have the following constraint:

0 ≤ κI(x) + ϑI(x) ≤ 1 (2)

The hesitancy degree πI(x) is as follows:

πI(x) = 1 −κI(x)− ϑI(x) (3)
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2.2. Pythagorean Fuzzy Sets

Definition 2. [21] Let X be the UOD, and a Pythagorean fuzzy set P in X is defined below:

P = {⟨x,κP(x), ϑP(x)⟩|x ∈ X} (4)

where κP(x): X → [0, 1] represents the membership degree of x ∈ X and ϑP(x): X → [0, 1] ex-
presses the non-membership degree of x ∈ X. For any x ∈ X, κP(x) and ϑP(x) meet the following:

0 ≤ κ2
P(x) + ϑ2

P(x) ≤ 1 (5)

The hesitancy degree of x ∈ X is determined below:

πP(x) =
√

1 −κ2
P(x)− ϑ2

P(x) (6)

2.3. Fermatean Fuzzy Sets

Definition 3. [32] Suppose that X is a finite UOD. The Fermatean fuzzy set F in X is defined below:

F = {⟨x,κF(x), ϑF(x)⟩|x ∈ X} (7)

where κF(x): X → [0, 1] represents the membership degree of x ∈ X and ϑF(x):X → [0, 1] ex-
presses the non-membership degree of x ∈ X. For any x ∈ X, κF(x) and ϑF(x) meet the following:

0 ≤ κ3
F(x) + ϑ3

F(x) ≤ 1 (8)

For any x ∈ X, the hesitancy degree of the element x is determined below:

πF(x) = 3
√

1 −κ3
F(x)− ϑ3

F(x) (9)

2.4. Q-Rung Orthopair Fuzzy Sets

Definition 4. [37] Let X be a finite UOD. The q-rung orthopair fuzzy set Q in X can be denoted as:

Q =
{
⟨x,κQ(x), ϑQ(x)⟩|x ∈ X

}
(10)

where κQ(x): X → [0, 1] means the membership degree of x ∈ X and ϑQ(x) : X → [0, 1] signifies
the non-membership degree of x ∈ X. For any x ∈ X, κQ(x) and ϑQ(x) satisfy the following
conditions:

0 ≤ κq
Q(x) + ϑ

q
Q(x) ≤ 1, q ≥ 1 (11)

The hesitancy degree πQ(x) can be formulated as:

πQ(x) = q
√

1 −κq
Q(x)− ϑ

q
Q(x) (12)

2.5. Distance Measures For q-ROFSs

Let Q1 = {(xj,κQ1(xj), ϑQ1(xj))} and Q2 = {(xj,κQ2(xj), ϑQ2(xj))} be two q-rung
orthopair fuzzy sets in the UOD X. D(Q1, Q2) and S(Q1, Q2) demonstrate a distance
measure and a similarity measure between the q-ROFSs, respectively [38,45].
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Definition 5. Let Q1 and Q2 be two q-ROFSs, and the distance measures Di(i = 1, 2, 3, 4, 5) are
listed below:

D1(Q1, Q2) =
1
n

n

∑
j=1

|κq
Q1
(xj)−κq

Q2
(xj)| ∨ |ϑq

Q1
(xj)− ϑ

q
Q2
(xj)|

D2(Q1, Q2) =
2
n

n

∑
j=1

|κq
Q1
(xj)−κq

Q2
(xj)| ∨ |ϑq

Q1
(xj)− ϑ

q
Q2
(xj)|

1 + |κq
Q1
(xj)−κq

Q2
(xj)| ∨ |ϑq

Q1
(xj)− ϑ

q
Q2
(xj)|

D3(Q1, Q2) =
2 ∑n

j=1

(
|κq

Q1
(xj)−κq

Q2
(xj)| ∨ |ϑq

Q1
(xj)− ϑ

q
Q2
(xj)|

)
∑n

j=1

(
1 + |κq

Q1
(xj)−κq

Q2
(xj)| ∨ |ϑq

Q1
(xj)− ϑ

q
Q2
(xj)|

)
D4(Q1, Q2) = 1 −

∑n
j=1

(
(κq

Q1
(xj) ∧κq

Q2
(xj)) + (ϑ

q
Q1
(xj) ∧ ϑ

q
Q2
(xj))

)
∑n

j=1

(
(κq

Q1
(xj) ∨κq

Q2
(xj)) + (ϑ

q
Q1
(xj) ∨ ϑ

q
Q2
(xj))

)
D5(Q1, Q2) = 1 −

∑n
j=1

(
(κq

Q1
(xj) ∧κq

Q2
(xj)) + (1 − ϑ

q
Q1
(xj)) ∧ (1 − ϑ

q
Q2
(xj))

)
∑n

j=1

(
(κq

Q1
(xj) ∨κq

Q2
(xj)) + (1 − ϑ

q
Q1
(xj)) ∨ (1 − ϑ

q
Q2
(xj))

)

Definition 6. Let Q1 and Q2 be two q-ROFSs, and the similarity measures Si(i = 1, 2, 3, 4, 5) are
listed below:

S1(Q1, Q2) =
1
n

n

∑
j=1

κq
Q1
(xj)κ

q
Q2
(xj) + ϑ

q
Q1
(xj)ϑ

q
Q2
(xj)√

(κq
Q1
(xj))2 + (ϑ

q
Q1
(xj))2

√
(κq

Q2
(xj))2 + (ϑ

q
Q2
(xj))2

S2(Q1, Q2) =
1
n

n

∑
j=1

κq
Q1
(xj)κ

q
Q2
(xj) + ϑ

q
Q1
(xj)ϑ

q
Q2
(xj) + π

q
Q1
(xj)π

q
Q2
(xj)√

(κq
Q1
(xj))2 + (ϑ

q
Q1
(xj))2 + (π

q
Q1
(xj))2

√
(κq

Q2
(xj))2 + (ϑ

q
Q2
(xj))2 + (π

q
Q2
(xj))2

S3(Q1, Q2) =
1
n

n

∑
j=1

cot
[π

4
+

π

4

(
max

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|

))]
S4(Q1, Q2) =

1
n

n

∑
j=1

cot
[π

4
+

π

8

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|

)]
S5(Q1, Q2) =

1
n

n

∑
j=1

cot
[π

4
+

π

4

(
max

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|, |π

q
Q1
(xj)− π

q
Q2
(xj)|

))]
S6(Q1, Q2) =

1
n

n

∑
j=1

cot
[π

4
+

π

8

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|, |π

q
Q1
(xj)− π

q
Q2
(xj)|

)]
Definition 7. Let Q1 and Q2 be two q-ROFSs. According to the similarity measures above, there
are some distance measures defined as follows:
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D6(Q1, Q2) = 1 − 1
n

n

∑
j=1

κq
Q1
(xj)κ

q
Q2
(xj) + ϑ

q
Q1
(xj)ϑ

q
Q2
(xj)√

(κq
Q1
(xj))2 + (ϑ

q
Q1
(xj))2

√
(κq

Q2
(xj))2 + (ϑ

q
Q2
(xj))2

D7(Q1, Q2) = 1 − 1
n

n

∑
j=1

κq
Q1
(xj)κ

q
Q2
(xj) + ϑ

q
Q1
(xj)ϑ

q
Q2
(xj) + π

q
Q1
(xj)π

q
Q2
(xj)√

(κq
Q1
(xj))2 + (ϑ

q
Q1
(xj))2 + (π

q
Q1
(xj))2

√
(κq

Q2
(xj))2 + (ϑ

q
Q2
(xj))2 + (π

q
Q2
(xj))2

D8(Q1, Q2) = 1 − 1
n

n

∑
j=1

cot
[π

4
+

π

4

(
max

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|

))]
D9(Q1, Q2) = 1 − 1

n

n

∑
j=1

cot
[π

4
+

π

8

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|

)]
D10(Q1, Q2) = 1 − 1

n

n

∑
j=1

cot
[π

4
+

π

4

(
max

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|, |π

q
Q1
(xj)− π

q
Q2
(xj)|

))]
D11(Q1, Q2) = 1 − 1

n

n

∑
j=1

cot
[π

4
+

π

8

(
|κq

Q1
(xj)−κq

Q2
(xj)|, |ϑ

q
Q1
(xj)− ϑ

q
Q2
(xj)|, |π

q
Q1
(xj)− π

q
Q2
(xj)|

)]
3. Two New Distance Measures of q-ROFSs

In this section, we propose two new distance measures specifically for q-ROFSs,
drawing inspiration from the Jensen–Shannon divergence. Moreover, we deduce and prove
the properties of these suggested measures, ensuring their accuracy and reliability.

3.1. Jensen–Shannon Divergence

Definition 8. [19] Assuming that P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn} are two probabil-
ity distributions, the Jensen–Shannon divergence between them is formally defined in the following
manner:

JS(P, Q) =
1
2

[
KL(P,

(P + Q)

2
) + KL(Q,

(P + Q)

2
)

]
(13)

with

KL(P, Q) =
n

∑
i=1

pi log
pi
qi

(14)

where KL(P,Q) represents the Kullback–Leibler divergence.
JS(P, Q) can alternatively be represented using the subsequent equation:

JS(P, Q) = H
(

P + Q
2

)
− 1

2
H(P)− 1

2
H(Q)

=
1
2

(
n

∑
i=1

pi log
2pi

pi + qi
+

n

∑
i=1

qi log
2qi

pi + qi

)
(15)

with

H(P) = −
n

∑
i=1

pi log pi, H(Q) = −
n

∑
i=1

qi log qi, H(
P + Q

2
) = −

n

∑
i=1

pi + qi
2

log
pi + qi

2
(16)

where H( P+Q
2 ), H(P), and H(Q) represent the Shannon entropy.
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3.2. Two-Dimensional (2D) Distance Measure of q-ROFSs

Definition 9. Suppose that Q1 = ⟨x,κQ1(x), ϑQ1(x)⟩ and Q2 = ⟨x,κQ2(x), ϑQ2(x)⟩ are two
q-ROFSs in the UOD X. For any x ∈ X, then the distance between Q1 and Q2 is defined below:

DJS_2D(Q1, Q2) =

[
1
2

(
κq

Q1
(x) log

2κq
Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

+κq
Q2
(x) log

2κq
Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

+ϑ
q
Q1
(x) log

2ϑ
q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+ ϑ
q
Q2
(x) log

2ϑ
q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

(17)

Property 1. Let Q1, Q2, and Q3 be three q-ROFSs in the UOD X, and the properties of DJS_2D
are displayed as follows:

1. Non-degeneracy: DJS_2D(Q1, Q2) = 0, if and only if Q1 = Q2;
2. Symmetry: DJS_2D(Q1, Q2) = DJS_2D(Q2, Q1);
3. Boundedness: 0 ≤ DJS_2D(Q1, Q2) ≤ 1;
4. Triangular inequality: DJS_2D(Q3, Q1) + DJS_2D(Q1, Q2) ≥ DJS_2D(Q3, Q2).

Proof. DJS_2D(Q1, Q2) = 0, if and only if Q1 = Q2.

Considering two q-ROFSs in the UOD X that meet the condition Q1 = Q2, we can
obtain that:

κq
Q1
(x) = κq

Q2
(x) and ϑ

q
Q1
(x) = ϑ

q
Q2
(x)

Then, we have:

DJS_2D(Q1, Q2) =

[
1
2

(
κq

Q1
(x) log

2κq
Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

+κq
Q2
(x) log

2κq
Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

+ϑ
q
Q1
(x) log

2ϑ
q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+ ϑ
q
Q2
(x) log

2ϑ
q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

= 0

Hence, we obtain
DJS_2D(Q1, Q2) = 0.

When DJS_2D(Q1, Q2) = 0, we have:

κq
Q1
(x) = κq

Q2
(x), ϑ

q
Q1
(x) = ϑ

q
Q2
(x)

Thus,
κQ1(x) = κQ2(x), ϑQ1(x) = ϑQ2(x)

Hence, we obtain
Q1 = Q2.

Proof. DJS_2D(Q1, Q2) = DJS_2D(Q2, Q1).

Given two q-ROFSs Q1 and Q2 in the UOD X, we have:
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DJS_2D(Q1, Q2) =

[
1
2

(
κq

Q1
(x) log

2κq
Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

+κq
Q2
(x) log

2κq
Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

+ ϑ
q
Q1
(x) log

2ϑ
q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+ ϑ
q
Q2
(x) log

2ϑ
q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

=

[
1
2

((
κq

Q1
(x) +κq

Q2
(x)
)( κq

Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

log
2κq

Q1
(x)

κq
Q1
(x) +κQ2(x)

+
κq

Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

log
2κq

Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

)

+
(

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)
)( ϑ

q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

log
2ϑ

q
Q1
(x)

ϑ
q
Q1
(x) + ϑQ2(x)

+
ϑ

q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

log
2ϑ

q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

= DJS_2D(Q2, Q1)

Thereby, we can prove that DJS_2D(Q1, Q2) = DJS_2D(Q2, Q1).

Proof. 0 ≤ DJS_2D(Q1, Q2) ≤ 1.

Given two q-ROFSs Q1 and Q2 in the UOD X, we can obtain that:

DJS_3D(Q1, Q2) =

[
1
2

(
κq

Q1
(x) log

2κq
Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

+κq
Q2
(x) log

2κq
Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

+ ϑ
q
Q1
(x) log

2ϑ
q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+ ϑ
q
Q2
(x) log

2ϑ
q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

=

[
1
2

((
κq

Q1
(x) +κq

Q2
(x)
)( κq

Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

log
2κq

Q1
(x)

κq
Q1
(x) +κQ2(x)

+
κq

Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

log
2κq

Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

)

+
(

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)
)( ϑ

q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

log
2ϑ

q
Q1
(x)

ϑ
q
Q1
(x) + ϑQ2(x)

+
ϑ

q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

log
2ϑ

q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

)] 1
2

=

[
1
2
(Q1 + Q2)

(
1 − H

(
Q1

Q1 + Q′
2
+

Q2

Q1 + Q′
2

))] 1
2
.

The proof for 0 ≤ ξ ≤ 1 was established in [46].

1 − H(ξ, 1 − ξ) ≤ |ξ − (1 − ξ)|.
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Then,we have:

DJS_2D(Q1, Q2) ≤
[

1
2
(Q1 + Q2)

∣∣∣∣ Q1

Q1 + Q2
− Q2

Q1 + Q2

∣∣∣∣] 1
2
=

[
1
2

V(Q1, Q2)

] 1
2

where V(Q1, Q2) is the variational distance.
As proven in [47],

0 ≤ V(Q1, Q2) ≤ 2

Thereby, we can obtain:

0 ≤ DJS_2D(Q1, Q2) ≤ 1.

Consequently, it is proved that 0 ≤ DJS_2D(Q1, Q2) ≤ 1.

Proof. DJS_2D(Q3, Q1) + DJS_2D(Q1, Q2) ≥ DJS_2D(Q3, Q2).

There exists three q-ROFSs Q1, Q2, and Q3 in X, considering assumptions
Ai, (i = 1, 2, 3, 4) for evaluation:

A1 : κq
Q3
(x) ≤ κq

Q1
(x) ≤ κq

Q2
(x)

A2 : κq
Q2
(x) ≤ κq

Q1
(x) ≤ κq

Q3
(x)

A3 : κq
Q1
(x) ≤ min{κq

Q3
(x),κq

Q2
(x)}

A4 : κq
Q1
(x) ≥ max{κq

Q3
(x),κq

Q2
(x)}.

Given the assumptions A1 and A2, it becomes evident that the triangle inequality
holds true in the manner described below:

|κq
Q3
(x)−κq

Q2
(x)| ≤ |κq

Q3
(x)−κq

Q1
(x)|+ |κq

Q1
(x)−κq

Q2
(x)|.

With assumption A3, we obtain:

κq
Q3
(x)−κq

Q1
(x) ≥ 0 and κq

Q2
(x)−κq

Q1
(x) ≥ 0

Then, the calculation can be determined:

|κq
Q3
(x)−κq

Q1
(x)|+ |κq

Q1
(x)−κq

Q2
(x)| − |κq

Q3
(x)−κq

Q2
(x)|

=


κq

Q3
(x)−κq

Q1
(x) +κq

Q2
(x)−κq

Q1
(x)−κq

Q3
(x) +κq

Q2
(x)

if κq
Q3
(x) ≥ κq

Q2
(x)

κq
Q1
(x)−κq

Q3
(x) +κq

Q2
(x)−κq

Q1
(x) +κq

Q3
(x)−κq

Q2
(x)

if κq
Q3
(x) ≤ κq

Q2
(x)

= 2(min{κq
Q3
(x),κq

Q2
(x)} −κq

Q1
(x)) ≥ 0.
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With assumption A4 in place, it can be inferred that similarly:

|κq
Q3
(x)−κq

Q1
(x)|+ |κq

Q1
(x)−κq

Q2
(x)| − |κq

Q3
(x)−κq

Q2
(x)|

=


κq

Q1
(x)−κq

Q3
(x) +κq

Q1
(x)−κq

Q2
(x)−κq

Q3
(x) +κq

Q2
(x)

if κq
Q3
(x) ≥ κq

Q2
(x),

κq
Q3
(x)−κq

Q1
(x) +κq

Q1
(x)−κq

Q2
(x) +κq

Q3
(x)−κq

Q2
(x)

if κq
Q3
(x) ≤ κq

Q2
(x),

= 2(κq
Q1
(x)− max{κq

Q3
(x),κq

Q2
(x)}) ≥ 0.

As a result, the triangle inequality remains valid when founded on assumptions A3
and A4, in which case

|κq
Q3
(x)−κq

Q2
(x)| ≤ |κq

Q3
(x)−κq

Q1
(x)|+ |κq

Q1
(x)−κq

Q2
(x)|.

In a similar fashion, we can deduce that

|ϑq
Q3
(x)− ϑ

q
Q2
(x)| ≤ |ϑq

Q3
(x)− ϑ

q
Q1
(x)|+ |ϑq

Q1
(x)− ϑ

q
Q2
(x)|

Consequently, the triangle inequality property for DJS_2D has been proven, as shown
by the following:

DJS_2D(Q3, Q1) + DJS_2D(Q1, Q2) ≥ DJS_2D(Q3, Q2)

3.3. Three-Dimensional (3D) Distance Measure of q-ROFSs

Definition 10. Let Q1 = ⟨x,κQ1(x), ϑQ1(x)⟩ and Q2 = ⟨x,κQ2(x), ϑQ2(x)⟩ be two q-ROFSs.
The hesitancy grades of Q1 and Q2 are represented by πQ1 and πQ2 , respectively. For any x ∈ X,
the distance measure between Q1 and Q2 is defined as follows:

DJS_3D(Q1, Q2) =

[
1
2

(
κq

Q1
(x) log

2κq
Q1
(x)

κq
Q1
(x) +κq

Q2
(x)

+κq
Q2
(x) log

2κq
Q2
(x)

κq
Q1
(x) +κq

Q2
(x)

+ϑ
q
Q1
(x) log

2ϑ
q
Q1
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+ ϑ
q
Q2
(x) log

2ϑ
q
Q2
(x)

ϑ
q
Q1
(x) + ϑ

q
Q2
(x)

+π
q
Q1
(x) log

2π
q
Q1
(x)

π
q
Q1
(x) + π

q
Q2
(x)

+ π
q
Q2
(x) log

2π
q
Q2
(x)

π
q
Q1
(x) + π

q
Q2
(x)

)] 1
2

(18)

Property 2. Consider the three q-ROFSs Q1, Q2, and Q3 in the UOD X, and the properties that
DJS_3D should satisfy are displayed by:

1. Non-degeneracy: DJS_3D(Q1, Q2) = 0, if and only if Q1 = Q2;
2. Symmetry: DJS_3D(Q1, Q2) = DJS_3D(Q2, Q1);
3. Boundedness: 0 ≤ DJS_3D(Q1, Q2) ≤ 1;
4. Triangular inequality: DJS_3D(Q3, Q1) + DJS_3D(Q1, Q2) ≥ DJS_3D(Q3, Q2).

Proof. The proof of Property 2 is similar to Property 1.
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Definition 11. Assume that Q1 = ⟨x,κQ1(x), ϑQ1(x)⟩ and Q2 = ⟨x,κQ2(x), ϑQ2(x)⟩ are two
q-ROFSs in the UOD X = {x1, x2, . . . , xn}, and the normalized distance measures between Q1
and Q2 are defined as follows:

D
J̃S_2D

(Q1, Q2) =
1
n

n

∑
i=1

DJS_2D(Q1, Q2)

=
1
n

n

∑
i=1

[
1
2

(
κq

Q1
(xi) log

2κq
Q1
(xi)

κq
Q1
(xi) +κq

Q2
(xi)

+κq
Q2
(xi) log

2κq
Q2
(xi)

κq
Q1
(xi) +κq

Q2
(xi)

+ ϑ
q
Q1
(xi) log

2ϑ
q
Q1
(xi)

ϑ
q
Q1
(xi) + ϑ

q
Q2
(xi)

+ ϑ
q
Q2
(xi) log

2ϑ
q
Q2
(xi)

ϑ
q
Q1
(xi) + ϑ

q
Q2
(xi)

)] 1
2

(19)

D
J̃S_3D

(Q1, Q2) =
1
n

n

∑
i=1

DJS_3D(Q1, Q2)

=
1
n

n

∑
i=1

[
1
2

(
κq

Q1
(xi) log

2κq
Q1
(xi)

κq
Q1
(xi) +κq

Q2
(xi)

+κq
Q2
(xi) log

2κq
Q2
(xi)

κq
Q1
(xi) +κq

Q2
(xi)

+ ϑ
q
Q1
(xi) log

2ϑ
q
Q1
(xi)

ϑ
q
Q1
(xi) + ϑ

q
Q2
(xi)

+ ϑ
q
Q2
(xi) log

2ϑ
q
Q2
(xi)

ϑ
q
Q1
(xi) + ϑ

q
Q2
(xi)

+ π
q
Q1
(xi) log

2π
q
Q1
(xi)

π
q
Q1
(xi) + π

q
Q2
(xi)

+ π
q
Q2
(xi) log

2π
q
Q2
(xi)

π
q
Q1
(xi) + π

q
Q2
(xi)

)] 1
2

(20)

Property 3. Consider the three q-ROFSs Q1, Q2, and Q3 in the UOD X, and the properties that
D

J̃S_2D
and D

J̃S_3D
should satisfy are displayed by:

1. Non-degeneracy: D
J̃S_2D

(Q1, Q2) = 0, and D
J̃S_3D

(Q1, Q2) = 0 , if and only if Q1 = Q2;

2. Symmetry: D
J̃S_2D

(Q1, Q2) = D
J̃S_2D

(Q2, Q1), and D
J̃S_3D

(Q1, Q2) = D
J̃S_3D

(Q2, Q1);

3. Boundedness: 0 ≤ D
J̃S_2D

(Q1, Q2) ≤ 1, and 0 ≤ D
J̃S_3D

(Q1, Q2) ≤ 1;

4. Triangular inequality: D
J̃S_2D

(Q3, Q1) + D
J̃S_2D

(Q1, Q2) ≥ D
J̃S_2D

(Q3, Q2), and

D
J̃S_3D

(Q3, Q1) + D
J̃S_3D

(Q1, Q2) ≥ D
J̃S_3D

(Q3, Q2).

Proof. The proof of Property 3 is similar to Property 1.

4. Numerical Examples

In the following section, we illustrate the properties of the two novel distance measures
with some examples.

Example 1. Given the three q-ROFSs Q1, Q2, and Q3 in X = {x1, x2}, they are listed as follows:

Q1 = {⟨x1, 0.7, 0.5⟩, ⟨x2, 0.4, 0.8⟩};

Q2 = {⟨x1, 0.7, 0.5⟩, ⟨x2, 0.4, 0.8⟩};

Q3 = {⟨x1, 0.48, 0.74⟩, ⟨x2, 0.82, 0.6⟩}.

If q = 3, according to Equations (19) and (20), the distance between the q-ROFSs Q1, Q2, and
Q3 can be calculated as:

The values of D
J̃S_2D

are depicted as follows:

D
J̃S_2D

(Q1, Q2) = 0, D
J̃S_2D

(Q2, Q1) = 0

D
J̃S_2D

(Q1, Q3) = 0.3851, D
J̃S_2D

(Q3, Q1) = 0.3851

D
J̃S_2D

(Q2, Q3) = 0.3851, D
J̃S_2D

(Q3, Q2) = 0.3851
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The values of D
J̃S_3D

are depicted as follows:

D
J̃S_3D

(Q1, Q2) = 0, D
J̃S_3D

(Q2, Q1) = 0

D
J̃S_3D

(Q1, Q3) = 0.3967, D
J̃S_3D

(Q3, Q1) = 0.3967

D
J̃S_3D

(Q2, Q3) = 0.3967, D
J̃S_3D

(Q3, Q2) = 0.3967

We can verify that the proposed measures satisfy the first two properties according to the
calculated results.

Example 2. There are three q-ROFSs Q1, Q2, and Q3 in X = {x1, x2}, which are expressed
as follows:

Q1 = {⟨x1, 0.7, 0.5⟩, ⟨x2, 0.7, 0.4⟩};

Q2 = {⟨x1, 0.6, 0.4⟩, ⟨x2, 0.8, 0.5⟩};

Q3 = {⟨x1, 0.9, 0.3⟩, ⟨x2, 0.8, 0.2⟩};

If q = 3, the values of the D
J̃S_2D

(Q3, Q1) and D
J̃S_3D

(Q3, Q1) distance measures are
depicted as follows:

D
J̃S_2D

(Q3, Q1) = 0.2244, D
J̃S_2D

(Q1, Q2) = 0.1361, D
J̃S_2D

(Q3, Q2) = 0.2728

D
J̃S_3D

(Q3, Q1) = 0.2625, D
J̃S_3D

(Q1, Q2) = 0.1830, D
J̃S_3D

(Q3, Q2) = 0.3362

Then, it is calculated that

D
J̃S_3D

(Q3, Q1) + D
J̃S_3D

(Q1, Q2) = 0.5455

D
J̃S_2D

(Q3, Q1) + D
J̃S_2D

(Q1, Q2) = 0.3605

Thereby, this result verifies the property:

DJS(Q3, Q1) + DJS(Q1, Q2) ≥ DJS(Q3, Q2)

Example 3. Consider two q-ROFSs Q1 and Q2 in X, where

Q1 = {< x,κ, ϑ >}; Q2 = {< x, ϑ,κ >}

The range of the parameters κ and ϑ are [0, 1] and meet the requirement that 0 ≤ κq + ϑq ≤ 1.
Equation (19) is used to compute the distance between Q1 and Q2. (Assume q = 3.)

Figure 1a shows the variations of κ and ϑ. Figure 1b demonstrates that when κ and ϑ vary
from 0 to 1, the values of D

J̃S_2D
vary within [0, 1]. When κ = ϑ, the distance between Q1 and Q2

is 0. Moreover, when κ = 0, ϑ = 1(or κ = 1, ϑ = 0), D
J̃S_2D

has a maximum of 1. With these
results, we can verify the property of the boundedness of D

J̃S_2D
.
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(a) Variations of κ and ϑ (b) Value of D
J̃S_2D

Figure 1. D
J̃S_2D

distance measure between Q1 and Q2.

Example 4. Let Q1 and Q2 be two q-ROFSs in X. To compare the experimental results of the
proposed distance measures with the existing measures, two cases of q-ROFSs are employed, and the
findings are presented in Table 1 (suppose q = 4).

From Table 1, we find that Case 1 and Case 2 are two different q-ROFSs. However, the values
calculated by D1, D2, D3, D8, and D10 are equal, which indicates that these existing distance
measures will lead to counter-intuitive results. Additionally, D4, D5, D6, D7, D9, D11, and our
proposed distance measures D

J̃S_2D
and D

J̃S_3D
can generate accurate results. This suggests that

our proposed measures demonstrate remarkable efficacy in discriminating between distinct q-ROFSs.

Table 1. Comparisons of various similarity measures in Example 4.

Distance
Case 1 Case 2

Q1 = ⟨0.2, 0.4⟩ Q1 = ⟨0.2, 0.4⟩
Q2 = ⟨0.5, 0.2⟩ Q2 = ⟨0.5, 0.4⟩

D1 0.0609 0.0609
D2 0.1148 0.1148
D3 0.1148 0.1148
D4 0.9637 0.6913
D5 0.0800 0.0587
D6 0.9121 0.5640
D7 0.4378 0.2427
D8 0.0914 0.0914
D9 0.0646 0.0467
D10 0.0914 0.0914
D11 0.0913 0.0902

D
J̃S_2D

0.1894 0.1633

D
J̃S_3D

0.1900 0.1654

5. Applications

In this section, we will present two examples involving the developed distance mea-
sures within a q-rung orthopair fuzzy environment. The measures introduced in this
study are utilized in pattern recognition and multicriteria decision-making, showcasing the
efficiency of these measures.

5.1. Pattern Recognition

Problem description: Given a finite UOD X = {x1, x2, . . . , xn}. There are k patterns
P = {P1,P2, . . . ,Pk}. Every pattern is depicted by a q-ROFS denoted as
Pj = {(xi,κPj(xi), ϑPj(xi))} (j = 1, 2, . . . , k). For m test samples, S = {S1,S2, . . . ,Sm} are
represented by q-ROFSs as Sl = {(xi,κSl (xi), ϑSl (xi))} (l = 1, 2, . . . , m). The objective is to
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classify the test sample according to the designated pattern, ensuring
accurate categorization.

Step 1: We use the suggested measures for measuring the distance D J̃S(Pj, Sl) between
the known pattern Pj and the test sample Sl .

Step 2: The minimum distance D J̃S(Pj,Sl) among all the calculated distances D J̃S(Pj,Sl)

between the pattern Pj and the sample Sl will be selected by using the equation below:

D J̃S(Pj,Sl) = min
1≤j≤k

D J̃S(Pj,Sl) (21)

Step 3: The result of classifying the sample Sk is determined as follows:

j = argmin
1≤j≤k

{D J̃S(Pj,Sl)},Pj → Sl (22)

The pseudocode of the proposed algorithm is shown in Algorithm 1.

Algorithm 1 Pattern classification algorithm.

Require: P =
{
P1,P2, . . .Pj . . . ,Pt

}
, S = {S1,S2, . . . Sk . . . ,Sm}

Ensure: Classification of sample Sk
1: for j = 1; j ≤ t do
2: for k = 1; k ≤ m do
3: Compute the distance D J̃S(Pj,Sk) using Equations (19) and (20);
4: end for
5: end for
6: for k = 1; k ≤ m do
7: Choose the smallest distance D J̃S(Pj,Sk) using Equation (21);
8: end for
9: for k = 1; k ≤ m do

10: Classify the sample Sk according to Equation (22);
11: end for

Example 5. Assume that Q1, Q2, Q3, Q4 are four known patterns in Z = {z1, z2, z3}. Each
pattern is represented by a q-ROFS as Qj =

{
< zi,κQj(zi), ϑQj(zi) >

}
(j = 1, 2, 3, 4) and the

sample Q is expressed as Q =
{
< zi,κQ(zi), ϑQ(zi) >

}
. The purpose is to categorize the sample

Q based on the known patterns. The distance between Q and Qj computed by different distance
measures is displayed in Table 2, where q = 3.

Aiming to probe deeply into the flexibility and sensitivity characteristics of the parameter q,
we choose a different value q to measure the distance between Qj and Q, and the result is shown in
Table 3.

Q1 = {(z1, 0.32, 0.36), (z2, 0.41, 0.47), (z3, 0.54, 0.48)}
Q2 = {(z1, 0.41, 0.43), (z2, 0.52, 0.51), (z3, 0.60, 0.32)}
Q3 = {(z1, 0.34, 0.57), (z2, 0.56, 0.61), (z3, 0.86, 0.71)}
Q4 = {(z1, 0.23, 0.11), (z2, 0.31, 0.30), (z3, 0.45, 0.35)}
Q = {(z1, 0.25, 0.22), (z2, 46, 0.34), (z3, 0.47, 0.54)}

Step 1: Different distance measures are employed to compute the distances between Q and Qj.
Table 2 shows the results.
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Step 2: The minimum distances between Q and Qj based on D
J̃S_2D

and D
J̃S_3D

are depicted
as follows:

D
J̃S_2D

(Q1, Q) = 0.1003

D
J̃S_3D

(Q1, Q) = 0.1016

Step 3: The classification outcome of Q is determined as follows:

Q1 → Q

As shown in Table 2, it is obvious that there is a minimum distance between Q1 and Q
calculated by the majority of the q-ROFS distance measures, including the suggested q-ROFS
measures. Thus, the sample Q should be assigned to Q1. Furthermore, we notice that D5 and D9
classify Q as Q4. This does not align with our initial expectations. Therefore, the existing measures
D5 and D9 make it difficult to obtain satisfactory results in practical application.

To assess the impact of altering the parameter q on the outcomes, we incorporate various values
into the proposed distance measures. From Tables 3 and 4, we can find that as the value of q rises,
the distance between Q1 and Q remains consistently the smallest, which indicates that the sample
Q should be allocated to the known pattern Q1. Hence, we conclude that the distance measures
we introduced are capable of achieving identical results as the existing measures and avoiding
counter-intuitive results in the application of pattern recognition.

Table 2. Compare with various distance measures for Example 5.

Method (Q1, Q) (Q2, Q) (Q3, Q) (Q4, Q) Classi f ication

D1 0.0514 0.0956 0.2982 0.0638 Q1
D2 0.0975 0.1738 0.4360 0.1169 Q1
D3 0.0978 0.1746 0.4593 0.1200 Q1
D4 0.4141 0.6233 0.7383 0.5184 Q1
D5 0.0789 0.1483 0.3285 0.0699 Q4
D6 0.1030 0.1441 0.1750 0.1084 Q1
D7 0.0379 0.0586 0.0719 0.0434 Q1
D8 0.0775 0.1395 0.3721 0.0936 Q1
D9 0.0624 0.1214 0.2637 0.0554 Q4
D10 0.0852 0.1742 0.3955 0.0998 Q1
D11 0.0845 0.1766 0.4316 0.1033 Q1

D
J̃S_2D

0.1003 0.1835 0.3140 0.1119 Q1

D
J̃S_3D

0.1016 0.1907 0.4302 0.1174 Q1

Table 3. D
J̃S_2D

between Q and Qj with different q value in Example 5.

q (Q1, Q) (Q2, Q) (Q3, Q) (Q4, Q) Classi f ication

3 0.1003 0.1835 0.3140 0.1119 Q1
4 0.0831 0.1544 0.2999 0.0894 Q1
5 0.0654 0.1233 0.2743 0.0691 Q1
6 0.0501 0.0958 0.2458 0.0521 Q1
7 0.0378 0.0733 0.2182 0.0387 Q1
8 0.0282 0.0556 0.1930 0.0285 Q1
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Table 4. D
J̃S_3D

between Q and Qj with different q value in Example 5.

q (Q1, Q) (Q2, Q) (Q3, Q) (Q4, Q) Classi f ication

3 0.1016 0.1907 0.4302 0.1174 Q1
4 0.0834 0.1568 0.3575 0.0916 Q1
5 0.0655 0.1242 0.3097 0.0698 Q1
6 0.0501 0.0961 0.2692 0.0523 Q1
7 0.0378 0.0734 0.2343 0.0388 Q1
8 0.0282 0.0556 0.2045 0.0285 Q1

5.2. Multicriteria Decision-Making

In this study, we showcase the effectiveness of the proposed q-ROFS distance measures
in tackling multicriteria decision-making issues that are inherently uncertain
and ambiguous.

Problem description: We have m feasible alternatives expressed as L = {L1,L2, . . . ,Lm}
and n criteria expressed as I = {I1, I2, . . . , In}. The goal is to determine the best alterna-
tive.

Step 1: Construct the decision matrix D =
[
⟨κjk, ϑjk⟩

]
n×m

that includes the data

pertaining to the available options in relation to the criteria. In this matrix, κjk signifies the
extent to which option Lj fulfills the criteria Ik, whereas ϑjk denotes the extent to which it
falls short of satisfying the same criteria.

Step 2: Formulate the normalized decision matrix using Equation (23).

⟨κ′
jk, ϑ′

jk⟩ =
{
⟨κjk, ϑjk⟩, if Ik is benefit criteria
⟨ϑjk,κjk⟩, if Ik is cost criteria

(23)

Step 3: Determine the q-ROFSs’s ideal opinion P∗ = ⟨κ∗
1 , ϑ∗

1⟩, ⟨κ∗
2 , ϑ∗

2⟩, . . . , ⟨κ∗
5 , ϑ∗

5⟩
where κ∗

k = max
j

κjk and ϑ∗
k = min

j
ϑjk, k = 1, 2, . . . , 5.

Step 4: Compute the distance of the alternative Lj from the q-ROFSs’s ideal solution
P∗ utilizing the proposed q-ROFS distance measures D

J̃S_2D
and D

J̃S_2D
.

Step 5: Rank the alternatives in ascending order according to their distance, with the
one having the minimum distance deemed as the most optimal alternative.

Example 6. Considering the problem for choosing one among five different houses Tj(j = 1, 2, 3, 4, 5)
to purchase, a prospective homebuyer will take into account the following criteria Mk when making
a purchase decision.

M1: Ceiling height, M2: Design, M3: Location, M4: Purchase price, and M5 : Ventilation.
Step 1: The details regarding the five houses based on the previously mentioned criteria are

represented by q-ROFSs within Table 5.
Step 2: Given that attribute M4 is the only cost attribute, we utilize Equation (23) to establish

the normalized decision matrix, as depicted in Table 6.
Step 3: Assume that all the attributes have the same weight. Then, we will determine

the q-ROFS’s ideal opinion P∗ = ⟨κ∗
1 , ϑ∗

1⟩, ⟨κ∗
2 , ϑ∗

2⟩, . . . , ⟨κ∗
5 , ϑ∗

5⟩ where κ∗
k = max

j
κjk and

ϑ∗
k = min

j
ϑjk, k = 1, 2, . . . , 5.. So, the q-ROFS’s ideal solution A∗ is expressed as:

P∗ = {⟨0.7, 0.5⟩, ⟨0.7, 0.3⟩, ⟨0.6, 0.6⟩, ⟨0.6, 0.4⟩, ⟨0.6, 0.3⟩}
Step 4: We compute the distance of each alternative from the q-ROFS’s ideal solution with the

novel distance measures given in Equations (19) and (20). The result is shown in Table 7 (suppose
q = 3).

Step 5: In ascending order of distance, the final ranking of alternatives is depicted in Table 8.
Table 8 demonstrates that while the ranking outcomes derived from various distance measures

may vary, the optimal alternative consistently remains T2, and the second most desirable choice
is T1. Thus, we conclude that T2 is the most feasible option considering all the proposed q-ROFS
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distance measures. This demonstrates that our proposed measures can attain consistent outcomes
with the established measures when addressing multicriteria decision-making challenges. In other
words, the two proposed q-ROFS distance measures are effective for evaluation.

Table 5. Decision matrix.

M1 M2 M3 M4 M5

T1 ⟨0.7, 0.5⟩ ⟨0.6, 0.8⟩ ⟨0.4, 0.7⟩ ⟨0.8, 0.3⟩ ⟨0.6, 0.5⟩
T2 ⟨0.6, 0.6⟩ ⟨0.7, 0.3⟩ ⟨0.2, 0.7⟩ ⟨0.4, 0.6⟩ ⟨0.1, 0.7⟩
T3 ⟨0.29, 0.8⟩ ⟨0.21, 0.9⟩ ⟨0.6, 0.8⟩ ⟨0.71, 0.3⟩ ⟨0.1, 0.3⟩
T4 ⟨0.2, 0.9⟩ ⟨0.2, 0.8⟩ ⟨0.1, 0.6⟩ ⟨0.5, 0.6⟩ ⟨0.4, 0.7⟩
T5 ⟨0.3, 0.9⟩ ⟨0.32, 0.9⟩ ⟨0.4, 0.8⟩ ⟨0.6, 0.6⟩ ⟨0.3, 0.4⟩

Table 6. Normalized decision matrix.

M1 M2 M3 M4 M5

T1 ⟨0.7, 0.5⟩ ⟨0.6, 0.8⟩ ⟨0.4, 0.7⟩ ⟨0.3, 0.8⟩ ⟨0.6, 0.5⟩
T2 ⟨0.6, 0.6⟩ ⟨0.7, 0.3⟩ ⟨0.2, 0.7⟩ ⟨0.6, 0.4⟩ ⟨0.1, 0.7⟩
T3 ⟨0.29, 0.8⟩ ⟨0.21, 0.9⟩ ⟨0.6, 0.8⟩ ⟨0.3, 0.71⟩ ⟨0.1, 0.3⟩
T4 ⟨0.2, 0.9⟩ ⟨0.2, 0.8⟩ ⟨0.1, 0.6⟩ ⟨0.6, 0.5⟩ ⟨0.4, 0.7⟩
T5 ⟨0.3, 0.9⟩ ⟨0.32, 0.9⟩ ⟨0.4, 0.8⟩ ⟨0.6, 0.6⟩ ⟨0.3, 0.4⟩

Table 7. The distance of each alternative from the q-ROFS ideal solution.

(T1,P∗) (T2,P∗) (T3,P∗) (T4,P∗) (T5,P∗)

D1 0.2366 0.1302 0.3788 0.3362 0.3886
D2 0.3429 0.2100 0.5296 0.4711 0.5233
D3 0.3824 0.2304 0.5494 0.5032 0.5597
D4 0.5510 0.4658 0.7878 0.7680 0.7696
D5 0.2768 0.1485 0.4656 0.4260 0.4695
D6 0.2920 0.2486 0.6159 0.5134 0.4663
D7 0.1328 0.1166 0.2883 0.2405 0.2136
D8 0.2933 0.1739 0.4588 0.4075 0.4595
D9 0.2146 0.1482 0.3464 0.3148 0.3436
D10 0.2933 0.1739 0.4588 0.4075 0.4595
D11 0.2776 0.1697 0.4547 0.4020 0.4571

D
J̃S_2D

0.2526 0.1839 0.4062 0.3876 0.3757

D
J̃S_3D

0.2698 0.1854 0.4340 0.4013 0.4009

Table 8. Ranking of the alternatives.

Ranking

D1 T2 > T1 > T4 > T5 > T3
D2 T2 > T1 > T4 > T5 > T3
D3 T2 > T1 > T4 > T3 > T5
D4 T2 > T1 > T4 > T5 > T3
D5 T2 > T1 > T4 > T3 > T5
D6 T2 > T1 > T5 > T4 > T3
D7 T2 > T1 > T5 > T4 > T3
D8 T2 > T1 > T4 > T3 > T5
D9 T2 > T1 > T4 > T5 > T3
D10 T2 > T1 > T4 > T3 > T5
D11 T2 > T1 > T4 > T3 > T5

D
J̃S_2D

T2 > T1 > T5 > T4 > T3

D
J̃S_3D

T2 > T1 > T5 > T4 > T3
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6. Conclusions

In this study, we proposed two new distance measures based on the Jensen–Shannon
divergence, called D

J̃S_2D
and D

J̃S_3D
. The proposed measures comply with the fundamen-

tal definition of a distance measure, demonstrating its capability to accurately measure
the variance between q-rung orthopair fuzzy sets. Furthermore, the normalized forms for
the distance measure are also introduced. Numerical experiments show that the proposed
measures can satisfy the axioms for distance measures. Finally, the application of the pro-
posed measures across various fields has yielded accurate outcomes. By comparing with
the existing methods, it verifies the feasibility and rationality of the proposed measures.
Additionally, as the value of the rung q rises, q-ROFSs can be utilized to encompass a
broader spectrum of decision-making information.

It is important to note that the proposed distance measures encounter several chal-
lenges. For instance, in practical applications, various attributes or criteria often carry
differing levels of importance in decision-making processes. However, the current distance
measures treat each attribute equally, which may not reflect the nuanced realities of these
decisions. In the future, integrating these measures with weighted information could
enhance their practicality and effectiveness in solving real-world problems. Addition-
ally, there is an opportunity to extend the application of these distance measures to more
complex decision-making environments.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, D.W.; validation, D.W.,
Y.Y. and S.Z.; formal analysis, Z.L.; investigation, D.W. and Y.Y.; visualization, Y.Y., S.Z. and Z.S.;
writing—original draft preparation, D.W., Y.Y. and S.Z.; writing—review and editing, Z.L. and Z.S.;
supervision, Z.L. and Z.S. All authors have read and agreed to the published version of this manuscript.
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