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Abstract: Wearable devices are paramount in health monitoring applications since they provide
contextual information to identify and recognize human activities. Although sensor-based human
activity recognition (HAR) has been thoroughly examined, prior studies have yet to definitively dif-
ferentiate between symmetric and asymmetric motions. Determining these movement patterns might
provide a more profound understanding of assessing physical activity. The main objective of this
research is to investigate the use of wearable motion sensors and deep convolutional neural networks
in the analysis of symmetric and asymmetric activities. This study provides a new approach for
classifying symmetric and asymmetric motions using a deep residual network incorporating channel
and spatial convolutional block attention modules (CBAMs). Two publicly accessible benchmark
HAR datasets, which consist of inertial measurements obtained from wrist-worn sensors, are used
to assess the model’s efficacy. The model we have presented is subjected to thorough examination
and demonstrates exceptional accuracy on both datasets. The ablation experiment examination also
demonstrates noteworthy contributions from the residual mappings and CBAMs. The significance of
recognizing basic movement symmetries in increasing sensor-based activity identification utilizing
wearable devices is shown by the enhanced accuracy and F1-score, especially in asymmetric activi-
ties. The technique under consideration can provide activity monitoring with enhanced accuracy
and detail, offering prospective advantages in diverse domains like customized healthcare, fitness
tracking, and rehabilitation progress evaluation.

Keywords: human activity recognition; wearable sensor; symmetric human activity; deep learning;
deep residual network

1. Introduction

Wearable gadgets enable the ongoing surveillance of people’s actions, providing cru-
cial contextual data for well-being and health solutions [1]. Smartwatches and wristbands
include inertial measurement units (IMUs) to detect and analyze human movements and
recognize human behavior efficiently [2]. Fitness trackers and smartwatches integrated
with IMUs have become widely popular in tracking wellness and health. The integration
of motion sensors in wearables allows for the continuous identification of human actions,
opening up various applications beyond just monitoring activities [3]. For example, human
activity recognition (HAR) identifies sedentary activities to avoid lifestyle disorders [4]. De-
termining improvement over physical treatment may be facilitated by assessing asymmetry
in arm motions, which can benefit stroke recovery [5]. Smartwatch-based HAR also shows
potential for particular groups, such as older adults, who are prone to falls [6]. The remote
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assessment of recovery and disability is facilitated by detecting motion anomalies caused by
injuries, arthritic conditions, and surgery. The emphasis on monitoring aberrant asymmetry
sets HAR apart from typical activity categorization challenges. In addition to developing
practical computing on wearable devices, HAR offers individualized biofeedback to pre-
vent the worsening of pre-existing conditions during physical activities. The increasing
usefulness of sensor-based HAR algorithms on commercialized smartwatches is evident in
their detailed understanding of an individual’s mobility, stability, and health issues.

Inertial sensor feeds have been effectively classified for physical activities using deep
learning techniques, resulting in high accuracy [7]. Nevertheless, most current HAR
techniques fail to differentiate between symmetric activities like walking or jogging and
asymmetric actions like playing golf or tossing a ball. Discovering inherent patterns of
symmetry or asymmetry in movements may provide profound insights into the underlying
meaning linked with activities. Assessing the asymmetry in gait and arm movement could
be helpful as an indicator of recovery status in stroke rehabilitation [8].

This research introduces a method that utilizes a deep convolutional neural network
(CNN) and attention mechanisms to accurately identify symmetric and asymmetric move-
ments from multi-dimensional inertial information. The main contributions of this study
can be stated as follows:

1. This study delves into detecting symmetric and asymmetric human activities utilizing
wearable sensors. To achieve this, we employed two well-established benchmark
HAR datasets: WISDM-HARB and UTwente. These datasets offer diverse symmetric
and asymmetric human actions, providing a robust foundation for our research.

2. The proposed model, CNN-ResBLSTM-CBAM, represents an innovative approach,
integrating advanced deep residual networks with attention mechanisms. This design
is tailored to effectively learn and capture the nuanced characteristics of symmetry
and asymmetry in sensor data.

3. Extensive evaluations demonstrate the efficacy of our method, showcasing impressive
accuracy rates of 89.01% and 96.49% on the WISDM-HARB and UTwente datasets,
respectively. These evaluations emphasize the model’s ability to differentiate between
symmetric and asymmetric activities. Notably, our approach surpasses the perfor-
mance of conventional CNNs and long short-term memory (LSTM) models in this
classification task.

4. Furthermore, our study conducts thorough assessments to elucidate the impact of var-
ious sensor types on the classification of symmetric and asymmetric human activities.
This comprehensive analysis sheds light on the nuances of sensor selection and its
implications for accurate activity recognition.

The remaining sections are structured as follows: Section 2 provides an overview of
HAR and sensing modalities in wearable inertial sensors and critically evaluates previ-
ous deep learning methodologies and their limitations. Section 3 outlines the proposed
attention-based deep CNN technique for simulating symmetric and asymmetric move-
ments, highlighting advancements in model components. Section 4 details the experimental
setup, dataset, implementation, and benchmarks of the approach against state-of-the-art
methods. Section 5 investigates individual model components’ contributions and pro-
vides qualitative representations of learned properties. Section 6 concludes by reviewing
results, addressing limitations, suggesting future research directions, and exploring the
implications of practical sensor-driven activity identification systems.

2. Related Works

This section comprehensively summarizes previous studies concerning sensor-based
HAR. We thoroughly review existing research on HAR techniques employing wearable
sensors to gather movement data. Furthermore, we offer a succinct overview of various
deep learning methodologies utilized to improve the performance of HAR systems, such
as convolutional and recurrent neural network structures. Our assessment includes an
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examination of both significant advancements and inherent limitations observed in current
deep learning models for activity categorization.

2.1. Sensor-Based HAR

HAR involves using sensor data to identify and classify physical activities carried out
by persons. Automated HAR facilitates the implementation of diverse sports, healthcare,
military, and entertainment applications, allowing them to adjust and react accordingly to
user behavior. Wearable sensors may collect movement data, which is then analyzed by
identification systems to detect specific activity, such as walking, jogging, or sitting. The
acknowledged action may provide context to customized applications to more effectively
cater to unique requirements or preferences in that particular circumstance. In recent years,
extensive research has significantly improved sensor-based activity categorization, making
it suitable for many developing applications such as remote medical monitoring, tailored
fitness advice, interactive gaming, automatic security warnings, and more [9,10]. There
are still many opportunities to enhance the development of robust and precise models for
recognizing human activities. These models allow the next level of intelligent user-focused
services in many sectors.

Previous studies have classified human actions into two categories: simple human ac-
tivities (SHA) and complex human activities (CHA) [11–13]. According to Shoaib et al. [13],
SHAs are repetitive, regular movements such as walking, running, sitting, and standing
that can be easily recognized with an accelerometer. On the other hand, CHAs are not as
repeated and often include actions associated with the hands, such as eating, smoking,
and drinking [11]. Recognizing these actions may require using other sensory modalities,
such as a gyroscope. Actions that include stairs have also been categorized as CHAs
because of the challenge of accurately identifying them alone via an accelerometer [13].
Alo et al. [14] distinguished short-duration activities, such as walking and jogging, and
longer-duration activities, such as cooking or taking medicine, which entail a series of
sub-activities. Peng et al. [12] defined SHAs as repetitive movements or individual body
positions that, while easier to identify, do not accurately represent typical human activities
in everyday life. The complication of real-world activities, including many SHAs, temporal
evolution, and high-level interpretations, is best encapsulated by CHAs. Liu et al. [15]
defined atomic actions as indivisible unit activities, meaning they cannot be broken down
any further. On the other hand, complex activities consist of a series of atomic movements
performed in different combinations, either sequentially or simultaneously. Correspond-
ingly, Chen et al. [16] conducted a comparison between single and repetitive SHAs, which
can be identified using an accelerometer and CHAs. CHAs involve multiple overlapping
activities and often require the utilization of multimodal sensors. Ultimately, Lara and
Labrador [11] presented a review that condensed taxonomies of human activities, catego-
rized according to the distinction between primary and complicated motions, as previously
defined in existing research.

The concept of symmetry has received limited attention in studies on HAR, as evi-
denced by [17,18]. Furthermore, it can also be explored concerning indoor activity recog-
nition. For instance, strolling, as an ordinary human action, can be categorized as a
symmetrical movement based on features inherent to bipedal locomotion, such as the
angles of incline. Similarly, jogging exhibits symmetrical characteristics, as both arms and
legs move in synchrony at a consistent rate; essentially, the phase-plane cycles of each leg
mirror each other.

2.2. Deep Learning Approaches for HAR

Despite progress, identifying human activities still needs to be completed. Feature
extraction plays a crucial role in gathering relevant information and distinguishing between
actions, thereby impacting accuracy. Methods for feature extraction can be broadly cate-
gorized into two approaches: human feature engineering and automated feature learning
using deep learning techniques. The manual engineering of domain-specific features is a
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laborious and complex process that may not be readily applicable across various activities.
On the other hand, deep learning enables the automated extraction of hierarchical features,
eliminating the need for extensive domain expertise [19]. In end-to-end HAR models, deep
neural networks such as recurrent neural networks (RNNs) and CNNs have been employed
to automatically learn features from time series data.

Cutting-edge hierarchical autoregressive HAR models have emphasized crafting so-
phisticated and deep architectures that extend beyond simple feature learning to improve
accuracy. These models commonly leverage CNN-based feature extractors as their pri-
mary structural elements. Numerous investigations have introduced tailored backbone
architectures, including Inception modules [20], dual-scale residual networks [21], ResNet
ensembles [22], and iSPLInception [23]. Additionally, certain researchers have employed
DenseNet backbones [24].

Various improvements have been integrated into CNN backbones, incorporating
LSTM layers [25–28] to capture temporal patterns and self-attention blocks to selectively
enhance features according to contextual information. Examples of models employing
these enhancements include combinations like BiLSTMs coupled with Inception-CNN
branches [27], CNNs paired with BiLSTMs [28], dual-attention CNN architectures [29],
DeepConvLSTMs incorporating attention mechanisms [30], and multi-channel CNNs with
embedded attention [31]. These recent studies on HAR that use deep learning technology
are given in Table 1.

Table 1. Comparison of the recent HAR studies with our study.

Ref. Year Method Dataset Sensor
Types Sensor Location No. of

Activities

Focus
Symmetry and

Asymmetry
Motions

[21] 2019 Dual-scaled residual OPPORTUNITY A, G Body 11 nonetwork UniMiB-SHAR A Pocket 17

[22] 2020 Ensemble ResNet UCI-DSA A, G, M Body 19 no

[23] 2021 iSPLInception OPPORTUNITY A, G Body 17 noPAMAP2 A, G, M Head, Chest, Ankle 12

[24] 2020 DenseNet UCI-HAR A, G Waist 6 no

[25] 2019 InnoHAR
OPPORTUNITY A, G Body 17

noPAMAP2 A, G, M Head, Chest, Ankle 12
UCI-HAR A, G Waist 6

[26] 2017 Residual BiLSTM OPPORTUNITY A, G Body 17 noUCI-HAR A, G Waist 6

[27] 2020 BiLSTM mHelath A, G, M Ankle, Arm, Chest 12 no

[28] 2021 Multibrance CNN-BiLSTM
WISDM A Pocket 6

noUCI-HAR A, G Waist 6
PAMAP2 A, G, M Head, Chest, Ankle 12

[29] 2021 Dual Attention Network

WISDM A Pocket 6

noUniMiB-SHAR A Pocket 17
PAMAP2 A, G, M Head, Chest, Ankle 12
OPPORTUNITY A, G Body 18

[30] 2018 Att-DeepConvLSTM
OPPORTUNITY A, G Body 17

noPAMAP2 A, G, M Head, Chest, Ankle 12
Skoda A Arm 10

Our approach - CNN-ResBiGRU-CBAM WISDM-HARB A, G Wrist 18 yesUTwente A, G Wrist 13
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3. Methodology

This section presents a sensor-driven framework designed for HAR to achieve recogni-
tion accuracy for both symmetric and asymmetric activities. The HAR framework proposed
here employs deep learning algorithms to analyze user activities captured by sensors em-
bedded in a wrist-worn wearable device, utilizing signal data collected from these sensors.

To address the challenge of identifying symmetric and asymmetric human activities,
we embarked on a study focusing on activity taxonomies [17,18]. We systematically cate-
gorized human activities into two primary classes: symmetry and asymmetry. This study
aimed to establish precise definitions for symmetric and asymmetric human activities by
employing the taxonomy approach.

• Symmetric activities entail the coordinated use of both sides of the body in a mir-
rored fashion, as depicted in Figure 1a. Common symmetric activities recognized by
sensor-based HAR systems include walking, running, climbing stairs, biking, and
similar motions.

• In contrast, asymmetric actions involve the body’s use in a manner that lacks symmetry
or balance, as illustrated in Figure 1b. Rather than exhibiting symmetrical movements
across opposing limbs or body parts, these activities feature unpredictable and ir-
regular motions that differ between the sides of the body. Such actions demonstrate
unilateral variability, introducing complexity to their analysis. Examples encompass
activities like typing, drinking, writing, eating, and other unstructured movements
executed with a single hand or on one side of the body, commonly observed daily.

& & & & & & & & & & & & & & & & & & & & & & & & & & Y*[& & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & YX[

!"#$%&' ()&&%&' *%$%&'+,"&-%&' +%,,%&' !"#$#%& '()#%&*"#%+#%& ,-$#%&

Figure 1. Some samples of different symmetric and asymmetric human activities with respect to the
axis of symmetry shown in yellow line: (a) symmetric activities; (b) asymmetric activities.

3.1. Overview of the Sensor-Based HAR Framework

This section offers a concise overview of the entire setup of the proposed sensor-based
HAR framework. The process begins with data acquisition, involving gathering sensor
data from wrist-worn devices. Subsequently, the data undergo pre-processing, including
noise reduction, handling missing data, and normalization. Data segmentation is then
conducted to convert multi-dimensional sensor data into suitable sample data for model
training. This involves defining temporal windows, determining their intersections, and
assigning classes to segments. The sample data are divided into training and testing sets
using 5-fold cross-validation during the data production phase. The subsequent phase
entails training various deep learning models, including CNN, LSTM, bidirectional LSTM
(BiLSTM), gated recurrent unit (GRU), and bidirectional GRU (BiGRU).

Additionally, we introduce a hybrid residual deep learning model termed CNN-
ResBiGRU-CBAM. Performance evaluation metrics such as accuracy, precision, recall, and
F1-score are employed to assess these models. Figure 2 illustrates the sequential steps of
the proposed sensor-based HAR framework.
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Figure 2. The proposed framework of sensor-based HAR for symmetric and asymmetric human
activity recognition.

3.2. Data Acquisition

This study utilizes two publicly accessible benchmark datasets for human activity
recognition, encompassing a broad spectrum of symmetric and asymmetric movements
recorded through wearable inertial sensors. The first dataset employed is the WISDM
Smartphone and Smartwatch Activity and Biometrics dataset, comprising time series data
from wearable devices such as triaxial accelerometers and gyroscopes. It encompasses
18 everyday activities, including walking, running, climbing stairs, and sedentary postures.
The second dataset utilized is the UTwente dataset, which features data gathered from
smartphone and wrist-worn platforms, capturing multimodal sensor data. This dataset
encompasses 13 physical activities, ranging from essential to intricate movements, involving
sequences of asymmetrical arm movements and whole-body motions. By leveraging these
two diverse datasets, which exhibit symmetrical and asymmetrical characteristics, our
study facilitates a robust evaluation of our proposed approach in discerning various real-
world motion patterns captured by mobile sensors.

3.2.1. WISDM-HARB Dataset

For this study, the widely adopted WISDM-HARB dataset, introduced by Weiss et al. [32],
was selected due to its significance and widespread use in identifying human activities
through wearable sensors. Given its extensive usage in numerous research endeavors,
this dataset is an ideal benchmark for comparing methodologies and evaluating accuracy
rates across various implementations. During data collection, the creators employed
rigorous supervision and measures to ensure the acquisition of high-quality and consistent
movement data. Consequently, the WISDM-HARB dataset is well suited for comprehensive
analyses across various activities, particularly excelling in detecting symmetric actions.

The researchers obtained the necessary licenses and approvals from relevant authori-
ties, as the study involved human subjects. Notably, the dataset was publicly available and
accessible to all researchers, fostering transparency.

The dataset encompasses a wide array of activities performed by 51 individuals, featur-
ing 18 unique activities, each lasting approximately 3 min. A surveillance setup comprising
a wristwatch and a smartphone was employed to monitor the subjects’ movements. The
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wristwatch, worn on the dominant hand, is discreet and compact. Meanwhile, the smart-
phone is placed in the pocket, mimicking its typical daily carriage. Both devices utilize a
custom-built application specifically designed for data collection purposes. Equipped with
a total of four sensors, with two sensors allocated to each device, both the smartwatch and
smartphone capture accelerometer and gyroscope data. The sampling frequency for each
sensor is set at 20 Hz, corresponding to a data sampling every 50 milliseconds. Although a
specified data polling rate has been established, it is essential to note that the actual polling
rate of sensor data may experience delays if the CPU is occupied.

Symmetric activities are defined by movements that exhibit balance and uniformity
on both body sides. The dataset includes numerous symmetric activities, such as walking,
running, climbing stairs, sitting, standing, and clapping, as depicted in Table 2. Walking,
running, and climbing stairs entail the legs executing repetitive and coordinated motions.
Clapping involves repeating rhythmic patterns evenly distributed across both sides of the
body’s trunk. Sitting and standing represent static, upright postures characterized by sym-
metrical weight distribution on both body sides. These repetitive, symmetrical movements
often demonstrate consistent patterns over time, facilitating activity recognition efforts.

Table 2. Activity list of the WISDM-HARB dataset.

Type Activity Description

Symmetic

Walking Engaging in the activity of moving on foot outside.
Jogging Engaging in the activity of running at a steady and moderate pace outside.
Stairs Repeatedly ascending and descending many flights of stairs.
Sitting Being in a sitting position.
Standing Being in an upright position on one’s feet.
Clapping Striking one’s hands together to produce a sound, using both hands.

Asymmetric

Typing Performing keyboard input tasks while seated.
Brushing Teeth Engaging in oral hygiene by brushing teeth.
Eating Soup Consuming soup from a bowl.
Eating Chips Ingesting snack chips.
Eating Pasta Partaking in pasta consumption.
Eating Sandwich Consuming a sandwich meal.
Drinking Taking liquid refreshment from a cup.
Kicking Striking a soccer ball with the foot.
Catching a ball Intercepting a thrown object, such as a tennis ball.
Dribbling Manipulating a basketball with repeated bounces.
Writing Producing written content while seated.
Folding Organizing clothing items by creasing and arranging them.

Conversely, asymmetric activities are distinguished by complex and irregular move-
ments that lack distinct symmetrical patterns. Table 2 includes a range of asymmetrical
tasks, such as typing, brushing teeth, dribbling a basketball, eating various food items,
drinking, and folding clothing. In these activities, movements tend to be less organized
spatially, with more significant variability in timing and a lack of consistent rhythm. They
typically involve unilateral, asymmetrical movements of specific limbs, often the arms or
hands. Differentiating between these disparate and uneven patterns, from both each other
and balanced actions, presents significant challenges for accurate identification.

The accelerometer readings capture the forces of acceleration acting on the three sensor
axes, including the gravitational force. Upon examining the data samples of symmetric
activities (Figure 3a), we observe regular and repetitive patterns that persist over time.
These patterns manifest as consistent periodic variations during walking, notable peaks
aligning with foot strikes in running, and rhythmic patterns indicative of stair climbing.
These patterns correspond to the structured and predictable movements of solid objects.
Meanwhile, the gyroscope rotations, illustrated in Figure 4a, display consistent waveforms
suggesting dynamic rotational symmetry around the vertical axis during gait activities.

Conversely, the samples of asymmetric activities (Figures 3b and 4b) exhibit a notably
higher degree of visual diversity, lacking distinct patterns of repetition. This encompasses
sporadic and asymmetrical hand movements during eating, gesturing while brushing,
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and irregular rotations while handling objects, such as during writing. The fluctuations
in accelerations and orientation alterations observed in these intricate activities stem from
their spatial and temporal asymmetry.
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Figure 3. Some samples of accelerometer data from the WISDM-HARB dataset.
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Figure 4. Some samples of gyroscope data from the WISDM-HARB dataset.

3.2.2. UTwente Dataset

This study analyzes a specific dataset known as the complex human activities using
smartphones and smartwatch sensors, commonly called the UTwente dataset [13]. It is
a publicly accessible benchmark dataset comprising data from a wrist-worn which, and
it was was publicly released by Twente University’s pervasive system research group in
late 2016. The dataset encompasses data collected from 10 healthy individuals, covering
13 human activities detailed in Table 3. Each participant was instructed to wear two
Samsung Galaxy S2 mobile phones, one in their right jeans pocket and the other on
their right wrist, mimicking a wristwatch’s functionality. Participants engaged in seven
fundamental daily tasks to gather sensor-based activity data for three minutes. Additionally,
seven participants were tasked with more demanding activities, such as eating, typing,
writing, drinking coffee, and conversing, for 5–6 min. Six out of the ten subjects were
smokers and were instructed to smoke a single cigarette. To ensure a balanced class
distribution, the authors utilized 30 min of data from every participant for each activity.
Data were collected from an accelerometer, a linear acceleration sensor, a gyroscope, and a
magnetometer at a frequency of 50 Hz.

Table 3. Activity list of the UTwente dataset.

Type Activity Description

Symmetic

Walking Walking at a normal pace on a flat surface indoors
Jogging Jogging at a moderate pace on a flat surface indoors
Standing Standing still in an upright position
Sitting Sitting in a chair with minimal movement
Biking Riding a bicycle outdoors on a flat surface
Walking Upstairs Climbing multiple flights of stairs in an upward direction
Walking Downstairs Descending multiple flights of stairs in a downward direction

Asymmetric

Typing Typing on a computer keyboard while seated in a chair
Writing Handwriting with a pen on paper while seated in a chair
Drinking Coffee Consuming a beverage from a cup while seated
Talking Engaging in a conversation while standing still
Smoking Smoking a cigarette while standing still
Eating Consuming a cup of soup using a spoon while seated
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The UTwente dataset consists of a range of typical daily activities that exhibit symmet-
rical and asymmetrical motion characteristics. The symmetric activities involve consistent
and repetitive movement patterns, such as walking, jogging, cycling, and climbing stairs.
Stationary postures like standing and sitting are also considered symmetric. In contrast,
asymmetric activities involve more complex and irregular movements, primarily using
the hands and arms. These include typing on a keyboard, handwriting, drinking, smok-
ing, engaging in conversation, and eating with utensils. The dataset comprehensively
represents various human activities in a realistic setting, captured using inertial sensors on
smartphones and smartwatches.

The accelerometer data exhibit recognizable repetitive patterns during symmetric
activities, such as the consistent cyclic fluctuations observed during walking and jogging
(as illustrated in Figure 5a). In contrast, asymmetric activities like smoking, talking, and
eating produce irregular and fluctuating signals (as depicted in Figure 5b). Similarly, the
gyroscope’s rotations exhibit structured patterns over time during activities like cycling
with regular leg pedaling (as seen in Figure 6a), in contrast to the unpredictable orientations
observed during asymmetrical actions like typing, writing, or drinking (as shown in
Figure 6b). Both sensor feeds present distinct patterns over time, providing clear evidence
of the symmetry and asymmetry inherent in the observed complex human behaviors.
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Figure 5. Some samples of accelerometer data from the UTwente dataset.
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Figure 6. Some samples of gyroscope data from the UTwente dataset.

3.3. Data Pre-Processing

Pre-processing is essential to read the raw inertial sensor data for training algorithms
that recognize activities. The publicly available datasets comprise multi-dimensional time
series data gathered from wrist-worn devices worn by participants, encompassing the
3-axis accelerometer and gyroscope recordings. This study implemented a systematic data
preparation pipeline before constructing deep neural networks. The pipeline involved
denoising, normalizing, and segmenting the data.

3.3.1. Data Denoising

When handling time series data, it is typically essential to employ noise-reduction
methods. Sensor measurements are often subject to uncertainties, which can manifest as
noise in the signal. Complex tasks involving successive movements contribute to noise
accumulation in data recordings from inertial sensors. In this study, noise reduction was
achieved by applying a median filter and a third-order low-pass Butterworth filter, with a
cutoff frequency set at 20 Hz. This frequency was sufficient to capture bodily motions, as
the energy content below 15 Hz accounted for 99% of the signal [33].

3.3.2. Data Normalization

Equation (1) demonstrates the scaling of the initial sensor data to a standardized
interval from 0 to 1. This method simplifies the model’s learning task by ensuring all data
points fall within a limited range. Consequently, gradient descents can achieve quicker
convergence rates.

xnorm
i =

xi − xmin
i

xmax
i − xmin

i
, i = 1, 2, 3, .... (1)
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where xnorm
i represents the normalized data, n represents the number of channels, and xmax

i
and xmin

i are the maximum and minimum values of the i-th channel, respectively.

3.3.3. Data Segmentation

The wearable devices accumulate a substantial volume of sensor data. Inputting the
complete dataset into the HAR model simultaneously is impractical. To address this issue,
we utilize the sliding window technique. This method segments data and finds extensive
usage in HAR systems [34]. It caters to symmetric activities like running, walking, and
standing, as well as asymmetric activities such as drinking, eating, and writing [35].

The sliding window method entails splitting the unprocessed sensor readings into
segments of predetermined length, with a specified amount of overlap between adjoining
segments. This approach augments the number of samples for training purposes and
effectively captures transitions between different activities. For this study, we divided the
sensor data into 10-s segments, with a 50% overlap between consecutive segments.

Figure 7 depicts segmenting data using the sliding window method. The sensor
readings are split into segments with a fixed 10-s width. Each segment overlaps with the
preceding one by 50%. This overlapping allows for a more seamless transition between
consecutive segments. It also aids in effectively capturing the interdependencies that exist
across sequential data points over time.

Sliding Window xt

Sliding Window xt+1

Sliding Window xt+2

Overlap Overlap

Se
ns
or
s

Step size

Figure 7. A visualization of the sliding window segmentation with a fixed-width window size of 10 s
with the overlapping of 50%.

Utilizing the sliding window technique, we convert the uninterrupted sensor readings
into a sequence of segments with predetermined lengths. The HAR model can efficiently
handle these segmented inputs. This data segmentation approach allows the model to
discern the unique patterns and characteristics of various human activities, enhancing the
accuracy of activity identification.

3.4. The Proposed CNN-ResBiGRU-CBAM Model

The suggested model comprises three main elements: convolution, residual BiGRU,
and CBAM blocks. It represents an end-to-end deep learning framework, functioning as a
hybrid architecture. The overall layout of the proposed model is depicted in Figure 8.

The first module, the convolution block (ConvB), is responsible for extracting spatial
features from the pre-processed information. Modifying the convolution kernel’s stride may
significantly decrease the temporal series’ length, hence improving the recognition speed.
After completing this stage, the BiGRU network extracts temporal characteristics from
the data that the convolution block has processed. This component improves the model’s
ability to capture long-term dependencies in time series data using the characteristics of a
BiGRU. This integration improves the model’s understanding of complex temporal patterns
and strengthens its recognition accuracy. To further enhance the final recognition qualities,
we used an attention mechanism called a convolutional block attention module (CBAM).
This technique calculates weights for the feature maps generated by the BiGRU network,
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allowing the model to concentrate on the most exciting parts of the input data. CBAM
increases the model’s discriminatory capacity and boosts activity recognition accuracy by
emphasizing the most significant characteristics. Ultimately, the behavior information is
classified by the wholly linked layer and SoftMax function. The result of this categorization
procedure serves as the recognition output, predicting the particular action in progress.
The following sections will comprehensively explain each component, clearly outlining
their functions and contributions within our suggested model.

D
ro

po
ut

M
ax

Po
ol

in
g

Ba
tc

h 
N

om
al

iz
at

io
n

C
on

v1
D

Residual BiGRU Block

C
BA

M

D
en

se

O
ut

pu
t

Convolution Block × 4 Attention
Block

So
ftm

ax

IMU Sensor Data

GRU +

+

+

+

+

+

⋅

⋅

⋅

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

GRU

xt

xt+1

xt-1

yt+1

yt

yt­1

+

+

+

+

+

+

GRU

GRU

GRU

GRU

GRU

GRU

Classification
Block

Figure 8. Detailed and architecture of the proposed CNN-ResBiGRU-CBAM model.

3.4.1. Convolution Block

When a CNN is deployed, it usually relies on a predetermined collection of compo-
nents. CNNs are often used in the context of supervised learning. Usually, these neural
networks establish connections between each neuron and every other neuron in the subse-
quent network layers. The activation function of a neural network transforms the input
value of neurons into the corresponding output value. Two critical factors influence the
efficiency of the activation function. These factors include the scarcity of data and the ability
of the neural network’s lower layers to withstand the reduced flow of gradients. CNNs
often use pooling to reduce the dimensionality of data. The maximum and average pooling
processes are often used and referred to as max-pooling and average pooling, respectively.

The work uses ConvB to extract basic features from unprocessed sensor data. Figure 8
illustrates that ConvB consists of four layers: 1D-convolutional (Conv1D) and batch nor-
malization (BN), the max-pooling layer (MP), and the dropout layer. The Conv1D utilizes
several trainable convolutional kernels to capture different attributes, with each kernel
generating a unique feature map. The decision was made to use the BN layer to enhance
stability and speed up the training process.

3.4.2. Residual BiGRU Block

Human actions are time-based; therefore, it depends on whether the convolution
block for extracting spatial features is inadequate for recognizing actions. It is necessary to
consider the chronological order of the whole event. RNNs have advantageous skills for
handling time series data. Nevertheless, RNN models can encounter gradient vanishing
and data loss when the time series expands.

Hochreiter et al. [36] introduced an LSTM network. LSTM, as opposed to basic RNNs,
is a recurrent neural network that uses gates to successfully store and remember information
over extended periods. Furthermore, it surpasses ordinary RNNs in effectively managing
more extended time series. However, behavioral data are impacted not only by prior times
but also by following events.

While LSTM has successfully addressed the vanishing gradient in RNNs, its memory
cells contribute to higher memory use. In 2014, Cho et al. [37] proposed the GRU network,
a new model based on RNNs. The GRU is a simplified variant of the LSTM that lacks a
distinct memory cell in its architecture [38]. Within a GRU network, updates and reset gates
govern the extent to which each hidden state is modified. It discerns which information
should be transmitted to the subsequent stage and which should not. A BiLSTM is a
neural network architecture incorporating forward and backward information using two
GRU networks. BiGRU improves time series feature extraction by capturing bidirectional
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relationships, in contrast to the GRU network. Hence, using a BiGRU network to extract
time series characteristics from behavioral data is a suitable methodology.

The BiLSTM network excels in capturing time series features but lacks spatial infor-
mation gathering. Increasing the number of stacked layers can lead to gradient vanishing
during training. To tackle this problem, the Microsoft Research team introduced ResNet [39]
in 2015, achieving a depth of 152 layers and winning the ILSVRC competition. The formu-
lation for each residual block of the ResNet architecture is provided as follows:

xi+1 = xi + f (xi, Wi) (2)

The residual blocks are partitioned into two components: xi, which represents a direct
mapping, F(xi, Wi), representing the residual portion.

x̂i =
xi − E(xi)√

var(xi)
(3)

where xi denotes the input vector in the i-th dimension and x̂i represents the output
subsequent to layer normalization.

This research introduces a novel combination of residual structure and layer normaliza-
tion in a BiGRU network, referred to as ResBiGRU. The diagram illustrating this combination
can be seen in Figure 9. The recursive feature information y could be defined as

x f (i+1)
t = LN(x f (i)

t + G(x f (i)
t , Wi)) (4)

xb(i+1)
t = LN(xb(i)

t + G(xb(i)
t , Wi)) (5)

yt = concat(x f
t , xb

t ) (6)
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Figure 9. Structure of the ResBiGRU.

Layer normalization (LN) denotes the normalization of layers. At the same time, the
processing of input states in the GRU network are represented by G. The t-th moment
in the time series is denoted by the subscript t in x f (i+1)

t . The forward state is indicated
by the superscript f , the reverse state by b, and the number of stacked layers by (i + 1).
The encoded information yt at time t is generated by amalgamating the forward and
backward states.
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3.4.3. CBAM Block

To augment feature representation and elevate HAR performance, the proposed
deep residual network integrates the convolutional block attention module (CBAM) [40].
CBAM adaptively refines the feature maps by sequentially applying attention mechanisms
focused on channels and spatial attributes. The architectural structure of CBAM is depicted
in Figure 10.
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Figure 10. The convolutional block attention module (CBAM).

The channel attention module leverages the interdependencies among different feature
channels, while the spatial attention module concentrates on the interrelationships across
spatial locations. By applying these attention mechanisms, CBAM enables the network to
focus on more informative features and suppress less relevant ones.

Given an input feature map, the channel attention module first generates a channel
attention map by employing maximum and average pooling operations along the spatial
dimensions. These pooled features are processed through a shared multi-layer perceptron
(MLP) to produce the channel attention weights. On the other hand, the spatial attention
module generates a spatial attention map by applying maximum and average pooling
operations along the channel dimension, followed by a convolutional layer to produce the
spatial attention weights.

The refined feature map is obtained by linearly multiplying the input feature map
with the channel and spatial attention weights. This allows the network to adjust the
importance of different channels and spatial locations adaptively [41], thereby enhancing
the discriminative power of the learned features for HAR tasks.

3.5. CNN-ResBiGRU-CBAM Model Hyperparameters

Table 4 briefly summarizes the parameters employed in the research concerning the
CNN-ResBiGRU-CBAM framework. This model comprises four key phases: the convolu-
tional block, the residual BiGRU block, the CBAM block, and the classification block.

The convolutional segment undergoes four iterations and comprises Conv1D layers
utilizing a kernel size of 3, a stride of 1, and 256 filters. ReLU activation, batch normalization,
max pooling, and dropout procedures follow these layers. These layers extract and analyze
specific patterns and traits within the input data. Next, the residual BiGRU portion consists
of two BiGRU layers, one with 128 neurons and the other with 64 neurons. These layers
capture temporal dependencies and contextual information over extended periods. The
CBAM segment enhances feature representations by selectively focusing on crucial channels
and spatial locations. Lastly, the classification component includes a densely connected
layer with a neuron count matching the number of activity classes. The application of
the SoftMax activation function follows this. SoftMax converts the dense layer’s output
values into a probability distribution across the activity classes. Formally, it can be defined
as follows:

SoftMax(xi) =
exi

∑K
j=1 exj

(7)
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Assume xi represents the input to the i-th neuron within the dense layer, and let
K indicate the overall count of activity categories. SoftMax ensures that the resulting
probabilities sum up to 1, rendering it suitable for tasks entailing the classification of
numerous categories [42].

During training, the model employs the cross-entropy loss function to assess the
variance between the predicted probability and the actual activity labels. This loss function,
cross-entropy, is a mathematical expression utilized for gauging the distinction between
two probability distributions, which is defined as

Loss = −
N

∑
i=1

K

∑
j=1

yij log(ŷij) (8)

Consider N as the count of samples, K as the count of activity categories, yij as the
genuine label (either 0 or 1) for the i-th sample regarding the j-th category, and ŷij as
the estimated probability of the i-th sample for the j-th category. The cross-entropy loss
function is frequently utilized in deep learning for classification tasks and has demonstrated
favorable performance and convergence characteristics [43].

To enhance the model, the Adam optimizer is employed, which adjusts the learning
rate for each parameter based on its previous gradients [44]. Training is executed using
a batch size of 128 and over 200 epochs to empower the model to grasp robust feature
representations and achieve high generalization capability.

Table 4. The summary of hyperparameter s of the CNN-ResBiGRU-CBAM used in this work.

Stage Hyperparameters Values

Architecture

Convolutional Block × 4
1D Convolution Kernel Size 3

Stride 1
Filters 256
Activation ReLU

Batch Normalization -
Max Pooling 2
Dropout 0.25

Residual BiGRU Block
ResBiGRU_1 Neural 128
ResBiGRU_2 Neural 64

CBAM Block
CBAM Layer -

Classification Block
Dense Number of activity classes
Activation SoftMax

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 128
Number of Epochs 200

3.6. Cross-Validation

In order to evaluate the effectiveness of the CNN-ResBiGRU-CBAM model, we used
the k-fold cross-validation (k-CV) technique [45]. This method entails dividing the dataset
into k subsets that are nearly equal in size, different from each other, and non-overlapping.
After the data are divided into subsets, one is chosen as the validation set, while the other
k − 1 subsets are used to train the model. The total performance is calculated using the
average performance parameters, such as accuracy, precision, recall, and F1-score, over all
k folds [46].

It is essential to highlight that the k-CV approach can require considerable computa-
tional resources, particularly with large datasets or when using high k values. Utilizing the
k-CV technique aims to guarantee a just and impartial assessment of the model [47]. In our
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investigation, we opted for a 5-fold cross-validation (k = 5) to find a compromise between
computational efficiency and accurate performance estimation.

4. Experiments and Results

In this section, we offer a thorough evaluation to determine the efficiency of the
CNN-ResBiGRU-CBAM method. We demonstrated the effectiveness of this approach on
two standard HAR datasets (WISDM-HARB and UTwente), comparing it against various
baseline deep learning architectures like CNN, LSTM, BiLSTM, GRU, and BiGRU. To gauge
the performance of the DL models in SAR applications, we relied on accuracy and the
F1-score, which are widely recognized metrics.

4.1. Experimental Settings

This research leveraged Google Colab Pro+ in conjunction with a Tesla V100-SXM2-16GB,
Hewlett Packard Enterprise, Los Angeles, CA, USA, graphics processing unit to accelerate
the training of deep learning models. The CNN-ResBiGRU-CBAM and other foundational
deep learning architectures were implemented using a Python 3.6.9 framework that employs
TensorFlow 2.2.0 and CUDA 10.2 backends. The investigation focused on utilizing several
Python libraries, including

• Numpy and Pandas manage data during data retrieval, processing, and sensor
data analysis.

• Matplotlib and Seaborn are used to craft visualizations and present the results of data
analysis and model evaluation.

• Scikit-learn, or Sklearn, is used to gather and generate data for research endeavors.
• TensorFlow is used to construct and train deep learning models.

Multiple tests were performed on the WISDM-HARB and UTwente datasets to assess
the most effective method. The trials used a five-fold cross-validation process.

4.2. Experimental Results

In this section, we conduct thorough comparative evaluations of two widely recog-
nized benchmark datasets, namely WISDM-HARB and UTwente. We aim to assess the
effectiveness of our proposed deep CNN design, CNN-ResBiGRU-CBAM, for sensor-based
HAR. Through extensive empirical investigations, we demonstrate the learning ability
to adeptly discern unique spatial and temporal patterns from data captured by inertial
sensors. These capabilities enable the accurate classification of both typical symmetric
motions and complex asymmetric activities.

4.2.1. Experimental Results from the WISDM-HARB Dataset

We outline the evaluation experiments and the activity recognition results achieved
using the WISDM-HARB benchmark dataset. Our objective is to validate the effectiveness
of the CNN-ResBiGRU-CBAM model architecture proposed in our study. Using this widely
utilized public dataset, we assess the performance of various foundational deep learning
models, such as CNN, LSTM, BiLSTM, GRU, and BiGRU.

Based on the data presented in Table 5, which illustrates the accuracy of deep learning
models in recognizing patterns in accelerometer data from the WISDM-HARB dataset,
several key observations can be made. The CNN model achieves a modest accuracy of
69.10% for identifying human activities, indicating that relying solely on convolutional
layers for spatial feature extraction may not adequately capture the temporal dynamics
of human movements. In contrast, recurrent models such as LSTM, BiLSTM, GRU, and
BiGRU exhibit notable improvements in accuracy, ranging from 81% to 85%, owing to
their ability to model temporal sequences effectively. This underscores the importance of
integrating temporal modeling alongside spatial feature learning. Specifically, BiLSTM and
BiGRU models, which analyze sequences bidirectionally, outperform their unidirectional
counterparts (LSTM and GRU), highlighting the benefits of incorporating past and future
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contexts for activity classification. Our CNN-ResBiGRU-CBAM model achieves an impres-
sive accuracy of 86.77%, surpassing the performance of all other deep learning models used
for comparison. This underscores the effectiveness of our architectural enhancements.

Table 5. Recognition performance of deep learning models using accelerometer data of the
WISDM-HARB dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 69.10% 68.77% 69.11% 68.62%
LSTM 81.08% 81.13% 81.07% 80.94%
BiLSTM 84.14% 84.17% 84.13% 84.05%
GRU 81.39% 81.41% 81.38% 81.25%
BiGRU 85.39% 85.43% 85.39% 85.36%
CNN-ResBiGRU-CBAM 86.77% 86.90% 86.77% 86.69%

The recognition performance of gyroscope data from the WISDM-HARB dataset is
depicted in Table 6. Similar patterns in performance are observed compared to the ac-
celerometer data. Once again, the CNN model demonstrates the lowest accuracy rate
of 59.36%, underscoring the limitations of relying solely on spatial feature learning for
activity recognition. In contrast, the LSTM, BiLSTM, GRU, and BiGRU recurrent networks
achieve higher accuracy rates ranging from 71% to 73%, highlighting their effectiveness
in capturing temporal sequences. The BiLSTM and BiGRU models outperform the LSTM
and GRU models, indicating the benefits of incorporating bidirectional context modeling
for gyroscope-based activity classification. Our proposed CNN-ResBiGRU-CBAM archi-
tecture attains an accuracy of 75.13%, further validating the advantages of integrating
CNN, RNN, and attention mechanisms. Since the gyroscope measures orientation and
rotational movements, accurately modeling temporal changes is crucial for identifying
gesture-based movements.

Table 6. Recognition performance of deep learning models using the gyroscope data of the
WISDM-HARB dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 59.36% 59.08% 59.31% 58.90%
LSTM 73.34% 73.17% 73.33% 73.81%
BiLSTM 73.89% 73.66% 73.56% 73.84%
GRU 71.21% 72.76% 71.20% 71.50%
BiGRU 72.34% 72.26% 72.31% 72.19%
CNN-ResBiGRU-CBAM 75.13% 75.28% 75.12% 73.76%

Upon comparing the performance of deep learning models on both accelerometer
(Table 5) and gyroscope (Table 6) data from the WISDM-HARB dataset, certain conclusions
emerge. The accuracy of all models experiences a notable enhancement when utilizing
combined accelerometer and gyroscope data, as evidenced in Table 7, compared to using
either sensor in isolation. This investigation corroborates the notion that amalgamating
diverse motion modalities improves accuracy in identifying activities. For instance, the
accuracy of the CNN model increases from 69.10% with individual sensors to 72.27% with
multimodal data. Similarly, significant enhancements are observed for LSTM (82.63%
compared to 81.08%), BiLSTM (86.00% compared to 84.14%), GRU (84.77% compared to
81.39%), and BiGRU (86.92% compared to 85.39%). When employing sensor fusion, our
proposed CNN-ResBiGRU-CBAM architecture achieves an accuracy of 89.01%, surpassing
the accuracies achieved using accelerometer and gyroscope signals separately, which were
86.77% and 75.13%, respectively.
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Table 7. Recognition performance of deep learning models using both the accelerometer and the
gyroscope data of the WISDM-HARB dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 72.27% 72.38% 72.24% 71.96%
LSTM 82.63% 82.55% 82.61% 82.49%
BiLSTM 86.00% 86.01% 85.99% 85.93%
GRU 84.77% 84.85% 84.78% 84.70%
BiGRU 86.92% 86.88% 86.92% 86.83%
CNN-ResBiGRU-CBAM 89.01% 89.00% 89.01% 88.94%

4.2.2. Experimental Results from the UTwente Dataset

Detailed comparative evaluations are provided in this section, focusing on the UTwente
benchmark dataset to extend the investigation into the performance of our proposed CNN-
ResBiGRU-CBAM architecture in recognizing human activities using sensor data.

An analysis of the recognition performance data displayed in Table 8, focusing on
accelerometer data from the UTwente dataset, yields significant insights. The CNN model
exhibits an accuracy of 85.55%, outperforming its performance on the WISDM-HARB
dataset. This indicates a more efficient process of learning spatial features in UTwente ac-
tivities. While the LSTM and GRU models achieve accuracy rates of 84.70% and 93.55%, re-
spectively, they lag behind the BiLSTM (90.64%) and BiGRU (95.68%) models, highlighting
the advantages of bidirectional context modeling. Our proposed CNN-ResBiGRU-CBAM
architecture achieves an impressive accuracy of 96.15%, underscoring the effectiveness of
our residual connections and attention modules.

Table 8. Recognition performance of deep learning models using the accelerometer data of the
UTwente dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 85.55% 86.28% 85.53% 85.13%
LSTM 84.70% 84.75% 84.70% 83.90%
BiLSTM 90.64% 91.02% 90.64% 90.51%
GRU 93.55% 93.80% 93.55% 93.51%
BiGRU 95.68% 95.73% 95.68% 95.65%
CNN-ResBiGRU-CBAM 96.15% 96.39% 96.15% 96.14%

Examination of the gyroscope data from the UTwente dataset, as shown in Table 9,
reveals the following comparative trends in the recognition performance of deep learning
models: The CNN model achieves a decreased accuracy of 72.08%, indicating that spatial
features alone provide less insight for the gyroscope compared to the accelerometer. The
LSTM and BiLSTM models also demonstrate significantly reduced accuracy, at 38.86%
and 64.12%, respectively, indicating challenges in capturing complex rotational motions
effectively. Surprisingly, the GRU model (81.53%) outperforms the BiGRU model (75.17%),
in contrast to observations on the accelerometer data, suggesting that unidirectional context
holds more significance for UTwente gyroscope signals. Our proposed CNN-ResBiGRU-
CBAM model achieves an accuracy of 88.93%, notably higher than previous state-of-the-art
models, affirming its robustness.
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Table 9. Recognition performance of deep learning models using the gyroscope data of the
UTwente dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 72.08% 72.44% 72.08% 71.72%
LSTM 38.86% 38.52% 38.86% 35.32%
BiLSTM 64.12% 63.92% 64.13% 62.23%
GRU 81.53% 81.93% 81.53% 81.20%
BiGRU 75.17% 75.36% 75.17% 74.34%
CNN-ResBiGRU-CBAM 88.93% 89.79% 88.93% 88.45%

A thorough examination of multimodal recognition performance utilizing combined
accelerometer and gyroscope signals from the UTwente dataset, outlined in Table 10, reveals
several noteworthy observations. The integration of data from both the accelerometer and
gyroscope significantly boosts the accuracy of all models, confirming the significance of
incorporating supplementary information encoding human movements. Specifically, the
CNN’s accuracy improves from 85.55% and 72.08% when utilizing solely accelerometer
and gyroscope data to 93.07% when amalgamating data from both sensors through sensor
fusion. Consistent enhancements are observed across LSTM, BiLSTM, GRU, and BiGRU
models, with BiLSTM’s accuracy rising from 90.64% and 64.12% to 93.29%. This underscores
the advantages of fusion in capturing temporal sequences. Our proposed CNN-ResBiGRU-
CBAM architecture achieves an accuracy of 96.49% when leveraging multimodal data,
surpassing the accuracies achieved from the individual accelerometers and gyroscope
signals, which were 96.15% and 88.93%, respectively.

Table 10. Recognition performance of deep learning models using both accelerometer and gyroscope
data of UTwente dataset.

Model
Recognition Performance

Accuracy Precision Recall F1-Score

CNN 93.07% 93.22% 93.07% 92.95%
LSTM 90.00% 90.53% 90.00% 89.82%
BiLSTM 93.29% 93.42% 93.28% 93.25%
GRU 94.66% 94.93% 94.66% 94.60%
BiGRU 95.72% 95.80% 95.72% 95.71%
CNN-ResBiGRU-CBAM 96.49% 96.62% 96.49% 96.47%

Integrating complementary data on acceleration and rotation enables a more com-
prehensive examination of HAR. Our approach adeptly manages varied sequences by
incorporating unified feature extraction and bidirectional context modeling elements.

4.3. Comparison with State-of-the-Art Models

Furthermore, we carried out a comparative analysis of the CNN-ResBiGRU-CBAM
model proposed in this study against other cutting-edge deep learning models known
for achieving superior results in HAR. The first contender is the InceptionTime model, as
proposed in [48], which integrates a modified Inception architecture with a gated recurrent
unit and residual connections to enhance recognition accuracy, particularly on imbalanced
HAR datasets. The second competitor is the DeepConvTCN model [49]. This deep learning
architecture comprises a deep convolutional neural network (DeepConv) and temporal
convolutional networks (TCNs). Within this research, we assessed the performance of our
CNN-ResBiGRU-CBAM model by comparing it to these two deep learning models using
the WISDM-HARB and UTwente benchmark HAR datasets.

Using the WISDM-HARB dataset, the proposed CNN-ResBiGRU-CBAM model out-
performed the DeepConvTCN and InceptionTime models, as shown in Table 11. Symmetric
activities achieved the highest F1 scores in four out of six activities, with InceptionTime
being better for sitting and standing. The proposed model obtained the top F1-scores for
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asymmetric activities in six out of nine activities, with DeepConvTCN and InceptionTime
each leading in one activity.

Table 11. Comparison of F1-score between the proposed CNN-ResBiGRU-CBAM model and state-of-
the-art models using wearable sensor data from the WISDM-HARB dataset.

Type Activity
F1-Score

DeepConvTCN [49] InceptionTime [48] The Proposed
CNN-ResBiGRU-CBAM

Symmetric

Walking 0.96 0.93 0.97
Jogging 0.98 0.73 1.00
Stairs 0.88 0.98 0.94
Sitting 0.78 0.80 0.80
Standing 0.82 0.91 0.86
Clapping 0.98 0.86 0.97

Asymmetric

Typing 0.88 0.80 0.92
Brushing Teeth 0.98 0.98 0.96
Eating Soup 0.86 0.87 0.85
Eating Chips 0.75 0.73 0.70
Eating Pasta 0.82 0.83 0.84
Drinking 0.87 0.86 0.82
Eating Sandwishes 0.62 0.73 0.58
Kicking 0.90 0.81 0.95
Catching a ball 0.93 0.90 0.97
Dribbling 0.94 0.90 0.98
Writing 0.86 0.72 0.94
Folding 0.87 0.88 0.97

Average 0.87 0.85 0.89

Overall, the CNN-ResBiGRU-CBAM model attained the highest average F1-score
of 0.89 across all activities, surpassing DeepConvTCN (0.87) and InceptionTime (0.85).
This demonstrates its superior performance and robustness in recognizing symmetric and
asymmetric activities using the WISDM-HARB wearable sensor dataset.

The proposed CNN-ResBiGRU-CBAM model outperformed the DeepConvTCN and
InceptionTime models in activity recognition using the UTwente dataset, as shown in
Table 12. It achieved the highest F1 scores for symmetric activities in six out of seven
activities, with InceptionTime performing better only for sitting. The proposed model
obtained the highest scores for asymmetric activities in five out of six activities, with
InceptionTime slightly better for eating.

Overall, the CNN-ResBiGRU-CBAM model attained the highest average F1 score of
0.965 across all activities, surpassing DeepConvTCN (0.918) and InceptionTime (0.922).
This demonstrates its superior performance and generalization ability in recognizing both
symmetric and asymmetric activities using wearable sensor data from the UTwente dataset.

Table 12. Comparison of F1 score between the proposed CNN-ResBiGRU-CBAM model and state-of-
the-art models using wearable sensor data from the UTwente dataset.

Type Activity
F1-Score

DeepConvTCN [49] InceptionTime [48] The Proposed
CNN-ResBiGRU-CBAM

Symmetric

Walking 0.91 0.87 0.99
Jogging 0.97 0.97 1.00
Standing 0.87 0.86 0.95
Sitting 0.89 0.98 0.88
Biking 0.90 0.98 1.00
Walking Upstairs 0.98 0.99 0.98
Walking Downstairs 0.97 0.97 0.99
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Table 12. Cont.

Type Activity
F1-Score

DeepConvTCN [49] InceptionTime [48] The Proposed
CNN-ResBiGRU-CBAM

Asymmetric

Typing 0.92 0.95 0.99
Writing 0.98 0.91 1.00
Drinking Coffee 0.82 0.85 0.94
Talking 0.89 0.82 0.91
Smoking 0.87 0.84 0.94
Eating 0.97 0.99 0.97

Average 0.918 0.922 0.965

5. Discussion

This part thoroughly examines the research observations discussed in Section 4.

5.1. Impact of Different Types of Sensors

From reviewing the activity recognition results from the WISDM-HARB and UTwente
datasets presented in Sections 3.2.1 and 3.2.2, significant insights can be derived regarding
the impact of accelerometer, gyroscope, and fused sensor data on performance across
various sensing modalities.

The accelerometer and gyroscope data from the WISDM-HARB dataset perform well,
but the gyroscope exhibits slightly higher accuracy. This indicates the value of both data
types in modeling activities, as depicted in Figure 11a. Moreover, improving sensor capabil-
ities enhances effectiveness and validates the additional and supplementary information.

Upon analysis of the UTwente dataset, it becomes evident that accelerometer data out-
perform gyroscope data in activity recognition. This is indicated by the significantly higher
accuracy values across all models, as illustrated in Figure 11b. However, data fusion further
enhances performance, underscoring the advantages of integrating diverse measurements.

Our proposed CNN-ResBiGRU-CBAM architecture consistently outperforms all three
modalities across public benchmark datasets. This highlights its effectiveness in accurately
representing diverse sensor signals and applying this expertise to various datasets.
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Figure 11. Comparison results of the proposed CNN-ResBiGRU-CBAM using data from different
types of sensors: (a) WISDM-HARB dataset; (b) UTwente dataset.

5.2. Impact of Different Types of Activities

To assess the effectiveness of our CNN-ResBiGRU-CBAM model in identifying various
activity types, we devised two distinct experimental situations. In the first scenario, the
network was trained and tested using only periodic symmetric activity data, such as
walking, running, and leaping. In the second scenario, only more intricate asymmetric
activity data weree used, including writing, eating, and smoking.
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By examining the recognition performance results shown in Figure 12, we can assess the
influence of activity type, symmetric vs. asymmetric, on our CNN-ResBiGRU-CBAM model.
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Figure 12. Comparison results of the proposed CNN-ResBiGRU-CBAM for classifying different types
of activities: (a) symmetric activities; (b) asymmetric activities.

The accelerometer sensor demonstrates exceptional accuracy of 99.68% for symmetric
operations, surpassing the gyroscope’s accuracy of 73.97% by a significant margin. This is
consistent with the idea that symmetric movements are periodic patterns that may be better
understood by examining acceleration along the axes. By integrating sensors, the accuracy
of symmetric activity detection is enhanced to 99.76%, demonstrating the inclusion of
additional, although very insignificant, supplementary data. The model design efficiently
handles these cyclic time series.

Regarding activities that are not symmetrical, the accelerometer has an accuracy of
96.66%, while the gyroscope achieves a corresponding accuracy of 94.81%. Both sen-
sors give valuable distinguishing indications. Integrating sensor data dramatically im-
proves the accuracy of detecting asymmetric activity, reaching a validation rate of 98.15%.
This highlights the need to combine diverse data sources to identify complex contex-
tual information accurately. Our model’s precision, recall, and F1-score exhibit consis-
tent patterns of comparison, indicating reliable and generalized performance rather than
exaggerated accuracy.

6. Conclusions

In conclusion, the CNN-ResBiGRU-CBAM model proposed in this study significantly
advances HAR using wearable sensors. By effectively combining residual connections,
BiGRU, and channel-wise attention, our approach addresses the long-standing challenge
of accurately distinguishing between symmetric and asymmetric human activities. The
model’s ability to automatically learn discriminative features eliminates manual feature
engineering, streamlining the process and improving overall performance. By integrating a
ResNet backbone and dual attention blocks, the CNN-ResBiGRU-CBAM model efficiently
captures spatial feature hierarchies and prioritizes the most salient aspects of complex
asymmetric activities. Furthermore, its ability to process long activity sequences overcomes
the limitations of earlier recurrent models, enhancing its versatility and applicability.

Extensive evaluations on the WISDM-HARB and Utwente benchmark datasets have
demonstrated the superiority of our model in accurately recognizing a wide range of
activities, including periodic locomotions and intricate asymmetric gestures. Additionally,
our study offers valuable insights into the patterns of confusion between symmetric and
asymmetric classes and the importance of temporal attributes in activity recognition. The
CNN-ResBiGRU-CBAM model sets a new standard for HAR using wearable sensors,
providing a robust and precise approach for recognizing both balanced and subtle real-life
human gestures. This advancement can revolutionize contextual understanding in various
applications, such as wearable computing and ambient assisted living.
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While the proposed model represents a significant stride forward, there remain oppor-
tunities for further research and improvement. Investigating the integration of continuous
HAR and conducting additional studies into model uncertainty could enhance the robust-
ness and reliability of the proposed strategy, paving the way for even more accurate and
dependable activity recognition systems.
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