
Citation: Deng, W.; Wu, M.; Wen, X.;

Heng, Y.; You, L. A Feature-Selection

Method Based on Graph Symmetry

Structure in Complex Networks.

Symmetry 2024, 16, 549. https://

doi.org/10.3390/sym16050549

Academic Editor: Theodore E. Simos

Received: 21 March 2024

Revised: 24 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Feature-Selection Method Based on Graph Symmetry Structure
in Complex Networks
Wangchuanzi Deng 1, Minggong Wu 1, Xiangxi Wen 1,* , Yuming Heng 2 and Liang You 3

1 Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710051, China;
dwcz_2023@163.com (W.D.); wuminggong@sohu.com (M.W.)

2 Unit of 95129, Kaifeng 475000, China; 13419886627@163.com
3 Equipment Management and Unmanned Aerial Vehicle Engineering College, Air Force Engineering

University, Xi’an 710051, China; you_liang2022@163.com
* Correspondence: wxxajy@163.com

Abstract: This study aims to address the issue of redundancy and interference in data-collection
systems by proposing a novel feature-selection method based on maximum information coefficient
(MIC) and graph symmetry structure in complex-network theory. The method involves establishing a
weighted feature network, identifying key features using dominance set and node strength, and em-
ploying the binary particle-swarm algorithm and LS-SVM algorithm for solving and validation. The
model is implemented on the UNSW-NB15 and UCI datasets, demonstrating noteworthy results. In
comparison to the prediction methods within the datasets, the model’s running speed is significantly
reduced, decreasing from 29.8 s to 6.3 s. Furthermore, when benchmarked against state-of-the-art
feature-selection algorithms, the model achieves an impressive average accuracy of 90.3%, with an
average time consumption of 6.3 s. These outcomes highlight the model’s superiority in terms of both
efficiency and accuracy.

Keywords: feature selection; MIC; graph symmetry structure; dominating sets; UNSW-NB15

1. Introduction
1.1. Literature Review

Feature selection (FS) is a crucial issue in the fields of machine learning (ML) and data
mining (DM) [1–3]. Selecting the most relevant and informative features from a dataset can
not only enhance the predictive performance and generalization ability of the model but
also reduce the complexity and computational cost. It has been widely applied in various
domains, such as text classification, image recognition, and bioinformatics.

Common feature-selection methods can be categorized into Filter [4–6], Wrapper [7–9],
and Embedded methods [10–12]. These methods preserve key features by selecting and
retaining them from the original dataset [13]. Filter methods are simple in design and fast
in computation. HAHS [14] employs significance tests on sample mean differences for
feature selection, but its screening capability is limited, leading to the presence of noise and
redundant features in the selected subset that are unable to guarantee the optimality of the
feature subset. Wrapper methods combine classification techniques with search algorithms,
continuously evaluating the classification performance of selected features to identify the
best ones. GUYON [15] uses a recursive feature-elimination algorithm to find the optimal
features. However, due to the inclusion of the classification process during iteration, the
computational burden is often significant. Embedded methods incorporate penalties for
features into the loss function, enabling the model to automatically select the most relevant
features during training, complete automatic screening, and the adjustment of features.
Common algorithms include Lasso regression [16], Ridge regression [17], and Elastic Net
regression [18].
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Apart from methods that eliminate redundant features, analyzing the interrelation-
ships among features is also a crucial means of feature selection. Pearson [19] utilizes the
Pearson correlation coefficient to measure linear relationships, which is fast and easy to
compute. However, if the relationship is nonlinear, even if two variables have a one-to-one
correspondence, the Pearson correlation may approach zero. The use of the Spearman
correlation coefficient to eliminate redundant features and retain key ones can result in
excessive deletion of information, leading to the loss of critical information. Additionally, in
practical operations, these algorithms tend to have large computational burdens and longer
runtimes. Reshef [20] proposed a new metric based on information theory, utilizing mutual
information and the maximal information coefficient to reflect nonlinear relationships
between features. However, its results on different datasets are not comparable, and it has
limitations in handling continuous variables.

In summary, there are still some limitations to current feature-selection methods.
(1) The curse of dimensionality. As the number of features increases, the difficulty of feature
selection also rises. The computational complexity of searching for the optimal feature
subset in high-dimensional spaces increases exponentially, and more data are required
to support model training and generalization. (2) Ignoring feature interactions. Some
features may seem unimportant when considered individually but may provide crucial
information when combined with other features [21,22]. Common feature-selection meth-
ods require pre-determined feature combinations, potentially ignoring complex interactive
relationships among features. (3) Limited methods for handling continuous variables and
nonlinear features.

1.2. Related Works

Based on the aforementioned issues, this paper presents a graph symmetric structure
complex-network-based feature-selection (CNBFS) approach with three key advantages.
(1) Uncover non-linear relationships. Extract the inherent connections among features
from a global viewpoint to more effectively capture the intricate structure between fea-
tures. (2) Adapt to high-dimensional sparse data. Adapting to high-dimensional sparse
data improves its robustness, facilitating better coping with high-level and sparse data,
identifying potentially significant features and feature combinations, and being able to
handle large-scale feature space. (3) Strong interpretability. To begin, the MIC is utilized
to determine the connected edges and weights of the symmetric complex network. Next,
determine the optimal feature set by combining the dominating set and discrete binary
particle-swarm optimization (BPSO) algorithm. Finally, confirm the validity of the exper-
iment by evaluating the UNSW-NB15 dataset and least squares support vector machine
(LS-SVM) classification algorithm. The experimental results demonstrate that the method
adeptly and efficiently identifies the most representative features, thus significantly im-
proving classification accuracy, reducing redundant features, and enhancing classification
performance and generalization capabilities.

2. Construction of Feature Network

As complex relationships exist between features in a dataset, it is possible to construct
a feature network by analyzing their correlations. The feature network is a symmetric
complex network consisting of features (nodes) and correlations between features (edges),
denoted as G = (V, E, W). The set V = {v1, v2, . . . , vn} represents the nodes in the network,
which correspond to the various features in the system. The set E = {e1, e2, . . . , en}
represents the edges, which reflect the interrelationships between features, and the set
W = {w1, w2, . . . , wn} represents the edge weights, which indicate the degree of association
between features in the feature network. When constructing a feature network, it is
necessary to identify the nodes and the connected edges. Since the nodes of a complex
network are the features of that dataset, the following subsections will focus on explaining
how to determine the connected edges.
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2.1. Determination of the Maximum Information Coefficient

The key to building a feature network model is determining the connected edges. The
MIC not only measures the linear and nonlinear relationships between the features but also
reflects the non-functional dependencies between the features. In this paper, we determine
the connected edges of the feature network based on the MIC values between the features.

The MIC is obtained by mutual information and mesh-partitioning methods. The
specific calculation process of the MIC is as follows.

Given a finite set of ordered pairs D{(xi, yi), i = 1, 2 . . . n}, the scatterplot containing
xi and yi in D is gridded with x× y, and the mutual information in each grid is calculated.
For two random variables X = {xi, i = 1, 2 . . . n} and Y = {yi, i = 1, 2 . . . n}, n is the
number of samples. Equation (1) is used to calculate the mutual information.

I(X, Y) =∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(X, Y) is the joint probability densities of X and Y, and p(X) and p(Y) are the edge
probability densities of X and Y, respectively. max(I(X, Y)) denotes the maximum value
of I(X, Y) under different information, which is selected as the mutual information value
for dividing the x × y grid. Then, mic(I(X, Y)) represents the result obtained after its
normalization.

Equation (2) is used to calculate the MIC.

mic(X : Y) = max
|X||Y|<B

max(I(X, Y))
log2(min(|X|, |Y|)) (2)

The matrix B in Equation (4) is the upper limit of the grid division x × y, which is
correlated with the number of samples. The best outcome is demonstrated empirically for
n0.6, and the same approach is used in the remaining portion of this study. Additionally,
mic(I(X : Y)) ∈ [0, 1]: when mic = 0, it indicates that two features are probabilistically
independent; when mic = 1, it implies that two features are fully correlated and interchange-
able. As the maximum MIC rises, any two traits become more relevant to one another.
Buda Andrzej’s analysis of the use of the correlation coefficient in his work showed that
the correlation coefficient is at [0, 0.2], and the correlation between the two features is
extremely weak or does not exist [23]. Therefore, in this paper, the MIC is used to evaluate
the feature-to-feature correlation when it is used to determine whether two nodes i and
j have a connected edge. When mic(i, j) < 0.2, there is no edge between the two feature
nodes, and the correlation is seen as being small. There is a connected edge, and the two
nodes are regarded as correlated when mic(i, j) ≥ 0.2. The edge weight between any two
nodes is set to mic(i, j).

2.2. Analysis of Network Topology

The collected features are constructed as a feature network through the feature nodes
and correlations between them. This network is an undirected weighted network because
the MIC between any two features are equivalent. The adjacency matrix of the feature
network is denoted as A and the weights are stored in matrix B. Equations (3) and (4) are
used to derive matrices A and B.

A =

∣∣∣∣∣∣∣∣∣
0 a12 · · · a1N

a21 0 · · · a2N
...

...
. . .

...
aN1 aN2 · · · 0

∣∣∣∣∣∣∣∣∣,
{

aij = 0 if micij < 0.2
aij = 1 if micij ≥ 0.2

(3)
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B =

∣∣∣∣∣∣∣∣∣
0 b12 · · · b1N

b21 0 · · · b2N
...

...
. . .

...
bN1 bN2 · · · 0

∣∣∣∣∣∣∣∣∣,
{

bij = 0 if micij < 0.2
bij = 1 if micij ≥ 0.2

(4)

Figure 1 shows a typical topology diagram of a feature network. The following
feature-node analysis is performed with the help of this diagram.
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Figure 1. A Feature-network topology.

Observing Figure 1, it is noteworthy that the nodes’ size and the number of connected
edges denote the correlation of features between different nodes. The larger nodes and the
more connected edges indicate a higher number of features between the nodes, as shown
by the highlighted nodes in boxes and circles. The nodes identified by the boxes exhibit
greater connectivity to other nodes, suggesting that they hold more informative value and
potentially serve as the optimal feature selection. Furthermore, these nodes serve as the
genesis and foundation of the concepts presented in this paper.

3. The Proposed Algorithm

In the feature-selection problem, on the one hand, it is necessary to identify features
that contain as much information as possible about all features in order to achieve better
accuracy in later classification. On the other hand, it is important to reduce the redundant
features as much as possible. When evaluating redundancy, if there is a high correlation
between two feature points, then there is redundant information. This approach can
effectively reduce the cost and computational complexity of subsequent algorithms and
improve efficiency.

3.1. The Concept of Dominating Set

From the process of constructing the feature network in the previous section, it can be
seen that there are edges between nodes in the feature network, indicating that there is a
correlation between nodes and that they contain each other’s information. The higher the
weight of the edges, the higher the correlation between the nodes. To find the minimum set
of features that contains all the information, it is required that the selected set of feature
points in the feature network have edges to all the remaining points, which is consistent
with the concept of a dominating set in graph theory. The concept of the dominating set is
introduced below.

Definition 1. In an undirected graph G, if S ⊆ V (S ̸= ∅), and for ∀x ∈ V − S, x are directly
connected to at least one node in S, then S is considered to be a dominating set of G.
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According to the analysis in previous sections, the feature subset that contains all the
information with the least correlation is selected to be the dominating set in the feature
network, which can also be denoted as the optimal feature set.

Figure 2 illustrates the dominant set with two typical dominating sets of a graph rep-
resented by the blue nodes. It can be observed that a graph may have multiple dominating
sets. Both network features (a) and (b) have 11 nodes v1, v2, · · · , v11, but their dominating
sets differ. Sa = {v3, v4, v8, v11} has four nodes, and Sb = {v3, v5, v6} has three nodes. It
is evident that, for a symmetric complex network G, there is no unique dominating set.
Consequently, it remains unclear which obtained dominating set represents the optimal
feature set. In the selection process of the dominating set, when the connected edges (i.e.,
whether there is a nonlinear relationship between features) are considered but their weights
(i.e., the correlation coefficients between the features) are not, the correlations between
the features cannot be reflected. Feature selection hopes that the identified nodes contain
as much classification information as possible [24]. Therefore, we choose to construct
the connected edges based on the correlations between the features. If the weight of a
connected edge connected to a node is larger, it means that the number of nodes connected
to the node is larger, and the correlation is larger. This indicates that this node contains
more information. The node strength of a selected feature node is explained as follows.
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Definition 2. The node strength of node vi is the sum of the edge powers wij of the connected edges
through the node, denoted as S(i). Equation (5) is used to calculate the node strength:

S(i) = ∑
j∈Pi

wij (5)

where Pi is the set of nodes that form a connected edge with node vi. The node strength reflects
the total amount of influence that neighboring nodes have on it. The higher the node strength, the
higher the correlation between the feature node and the features, indicating that it contains more
information. Therefore, when selecting the dominant set, it is necessary to find as many nodes with
high node strength as possible as the final features.

3.2. Optimal Dominating Set Based on BPSO Algorithm

The optimal dominating set is defined as the minimum number of nodes within
a graph required to form a set that covers every node in the graph. This set, known
as the dominating set, can be either directly or indirectly connected to other nodes in
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the graph. The objective of identifying the optimal dominating set is to locate a set of
nodes that dominates the entire graph while utilizing minimal resources and incurring
minimal cost. The set must be composed of the least possible number of nodes to ensure
comprehensive coverage.

Taking the above considerations into account, when the feature network is analyzed
to find the optimal set of features, the selected set of features needs to meet the following
requirements.

1. The selection of features should be minimized to improve the classification efficiency,
which is beneficial for later stages;

2. The node strengths of the selected features should be as large as possible so that the
selected features can contain more classification information.

Meanwhile, the selected set of feature nodes must be the dominant set of the whole network.
The essence of this problem is to find a subset of features from N feature nodes that

meets the requirements. Thus, the solution space of the problem can be transformed into
the selection of an N-dimensional vector. The vector x has N dimensions, representing N
features. The value of the xi dimension corresponds to whether the node vi in the feature
network is selected, with one indicating the node is selected and zero indicating the node
is not selected. In this way, the problem is transformed into a 0–1 programming problem.
In order to solve this problem, the binary particle-swarm optimization algorithm (BPSO
algorithm) is selected here.

In this paper, we outline the steps to solve the optimal dominating set based on the
BPSO algorithm; they are as follows:

Step 1: Construct the adjacency matrix.
Use the MIC to create the adjacency matrix A for the feature network. The element Aij

in the matrix indicates whether node i and node j have connecting edges. If a connecting
edge exists between i and j, the value of Aij is 1. Otherwise, the value of Aij is 0;

Step 2: Generate Random Binary Strings.
Create multiple random binary strings with a size of n, where n denotes the number

of nodes. These strings pertain to the possible nodes in a dominating set with a length of n.
For the i-th node, the i-th bit equates to one to signify that it will serve as the dominating
point and zero to signify that it will not;

Step 3: Encode the objective function.
Record the optimal set of domination points as the mechanics optimization objective;
Step 4: Update string velocity and position.
Transcoding is accomplished by using the Sigmoid function to determine the ideal

location of each particle and the overall optimal position by updating the velocity and
position of each binary string while maintaining the original set of dominant optimal points;

Step 5: Iterative updating.
Iterate until the maximum number of iterations is reached or the optimal solution is

found. After each iteration, the current set of dominating points should be compared to the
previous iteration’s set, and the optimal set of dominating points should be updated if the
current set is better;

Step 6: Return the optimal set of features.
The global set of optimal dominating points formed by these nodes, i.e., the dominating

set, is used to cover all nodes in the graph.
The BPSO algorithm is based on the basic particle-swarm algorithm, which specifies

that zero and one are only considered as the values that the particles can pick up and
change in the state space and is transcoded by the Sigmoid function. Each dimension
of the velocity vij represents the possibility of taking one for each bit of the position xij.
Therefore, the vij update formula in the continuous particle swarm remains the same, but
the individual extremum as pbest and the global optimal solution gbest consist of zero and
one only. Equations (6) and (7) are used to calculate the position updates.

s
(
vi,j

)
= 1/[1 + exp(−vi,j)] (6)
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xi,j =

{
1, r < s

(
vi,j

)
0, others

(7)

In Equation (7), r is the random number generated in the U(0, 1) distribution.
Equation (8) is used to calculate the velocity updates.

vi,j = ω·vi,j + c1·rand()·(pi,j − xi,j) + c2·rand()·(pg,j − xg,j) (8)

where pi,j, xi,j, pg,j, xg,j, respectively, represent the individual optimal position, individual
current position, global optimal position, and the current position of the population. The
rand() is the random number that is the same as the r in Equation (7).

Based on the analysis in Section 3, the optimization objective is to find a dominating set
from all the points in the network, with as few points as possible, while maximizing their
total point strength. As mentioned earlier, the solution x is a binary string of length 41, and
its value corresponds to whether the corresponding feature is selected or not. Therefore,
the number of selected features is ∑ xi. The node strength of the selected feature node
represented by x is the sum of its corresponding row in the weighting matrix B, denoted
as sum(Bx).

Equation (9) is used to calculate the optimization objectives.

f(x) = min(
N

∑
i=1

xi − k ∗ sum(Bx)) (9)

where k is a coefficient to regulate the relationship between the number of samples selected
and the amount of information contained.

The constraint is that the selected set of points must be a dominating set. According to
the definition of a dominating set, all points in the network must have a direct connection
with at least one point in the selected set S. The adjacency matrix corresponding to the
points in set S is represented by the rows of A, denoted as Asi. Equation (10) is the merging
operation for Asi.

Q = As1 ∪As2 ∪ · · · ∪Ast (10)

Let t be the number of the selected features and Q be a 1 × n-dimensional 0–1 type
row vector. According to the definition of a dominating set, we can get that all positions
should be one except for the position of element xi in the dominating set S, where the
corresponding value can be zero.

Therefore, we can obtain the final optimization objective. Equation (11) is used to
calculate the final optimization objective.

f(x) = min(
N
∑

i=1
xi − k ∗ sum(Bx))

xi =

{
1, vi as the dominating point
0, vi not as the dominating point

s.t. Q(xi=0) ⊆ Zi

(11)

where Zi denotes the set of connected dominating nodes for a given graph G(V, E), and
Q(xi=0) denotes the set of nodes with element 0 in the row vector Q.

3.3. Algorithm Flow

According to the analysis above, the flow of the proposed algorithm is shown as follows.
Step 1: Information Collection and Processing.
Relevant data is collected through existing network-management systems, and spe-

cific network features are obtained through data processing such as data cleaning and
normalization;

Step 2: Construct the feature network.
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Perform a correlation analysis on the processed set of features, calculate the MIC
between the features, and determine whether two nodes (features) are connected based on
their MIC values. This process enables the construction of a feature network;

Step 3: Finding the Optimal Dominating Set.
In the constructed feature network, the optimal set of dominating nodes is searched

using the BPSO algorithm, with the optimization objective defined by Equation (9). In this
paper, if the set of solutions does not correspond to the dominating set of the network, the
objective value is set to a very large number (e.g., 10,000);

Step 4: Solve for the optimal feature set.
Map the nodes found in the dominating set back to features to obtain the optimal

feature set.
The pseudo-code for Algorithm 1 is shown below.

4. Simulation Verification and Analysis

Because LS-SVM can process massive datasets with fewer parameters and exhibits su-
perior generalization ability and compatibility, this study favors the LS-SVM algorithm for
classification learning and utilizes the suggested selection approach founded on symmetric
complex network characteristics for validating the UNSW-NB15 dataset.

4.1. Dataset

The UNSW-NB15 dataset was created by the Cyber Range Lab at UNSW Canberra,
Australia, using the IXIA Perfect Storm tool, and includes both normal and abnormal
network traffic captured from real network operations [24–27]. The dataset contains 100 GB
of raw data and includes 49 features, which are described in detail in Algorithm 1. After
cleaning the collected data, including script, sport, dtsip, dsport, stime, ltime, and handling
abnormal and missing values, a 41-dimensional dataset was obtained. This dataset has the
characteristics of high dimensionality and large sample size, which meets the experimental
requirements of this study and can be used as experimental data. The selected records are
shown in bold in Table 1.

Table 1. UNSW-NB15 intrusion detection dataset.

Feature Category Feature Name

flow features srcip, sport, dstip, dsport, proto
base features state, dur, sbytes, dbytes, sttl, dttl, sloss, dloss, service, sload, dload, spkts, dpkts

content features swin, dwin, stcpb, dtcpb, smeansz, dmeansz, trans_depth, res_bdy_len
time features sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt, synack, ackdat

additional generated
features—general purpose features is_sm_ips_ports, ct_state_ttl, ct_flw_http_mthd, is_ftp_login, ct_ftp_cmd

additional generated
features—connection features

ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ltm, ct_src_dport_ltm, ct_dst_sport_ltm,
ct_dst_src_ltm

labeled features attack_cat, Label

The data used in this experiment contains 41 dimensions (attribute categories), such
as time, number of bytes, and number of messages, which have various dimensions and
greatly differ in data ranges. This situation can affect the accuracy of the classifier. To
improve the classification accuracy, the data needs to be normalized. The normalization
method is the maximum–minimum method. Equation (12) is used to obtain the normal-
ized results.

X∗ =
X− Xmin

Xmax − Xmin
(12)

In other words, the constructed feature network is a symmetric complex network
with 41 nodes. The illustration of the feature-network model obtained from the correlation
analysis of the UNSW-NB15 dataset is shown in Figure 3.
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Algorithm 1 Computer the optional dominating set through complex network and BPSO algorithm.

Input: Dataset, Particle-swarm-size NP, Objective function f(), Maximum number of iterations G, Dimension D, Velocity Vij,
Random position xij, Individual best position pij-best, Global best position gbest
Output: the optional dominating set Q

▷Stage 1 Construct feature network
1: function MIC-MATRIX (data frame, dataset)
2: compute mic(I(X:Y)) according to Equation (3)
3: if mic(I(X : Y) <0.2 then
4: Aij = 0
5: else
6: Aij = 1
7: end if
8: return adjacency matrix Aij
9: end function

10: edges← A ij
11: G(V, E, W)← nx.Graph()

▷Stage 2 Compute the optional dominating set through BPSO algorithm
12: Function BPSO (NP, D, G, Vij, xij)

//Initialization particle swarm and velocity:
13: for i = 0→ NP do
14: for j = 0→ D do
15: vij, xij ← random()//Initialize velocity and position with random values
16: pij−best[ij]← xij[ij]//Set initial individual best position as xij
17: if f (xij[i]) < f (pij−best[i]) then
18: pij−best[i] = xij[i]//Update individual best position
19: end if
20: if f (xij[i]) < f (gbest[i]) then
21: gbest[i] = xij[i]//Update global best position
22: end if
23: end for
24: end for

//Iteration loop
25: for t = 0→ G do

//Update velocity and position
26: for i = 0→ NP do
27: computer vij[ij] according to Equation (8)
28: xij[i, j] = sigmoid(vij[i, j])//Apply activation function
29: if xij[i, j] > 1 then
30: xij[i, j] = 1
31: end if
32: if xij[i, j] < 1 then
33: xij[i, j] = 0
34: end if
35: end for

//Update individual and global best positions
36: for i = 0→ NP do
37: if f (xij[i]) < f (pij−best[i]) then
38: pij−best[i] = xij[i]//Update individual best position
39: end if
40: if f (xij[i]) < f (gbest[i]) then
41: gbest[i] = xij[i]//Update global best position
42 end if
43: end for
44: end for
45: return gbest
46: end function
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4.2. Principles of LS-SVM

LS-SVM is an improved support vector machine algorithm based on statistical theory.
It was originally proposed by Suykens. This algorithm can effectively overcome overfitting
problems by transforming the learning-optimization problem into a linear equation problem
and solving local extremes in the process [28]. At present, the LS-SVM algorithm has been
applied in various fields, including data regression and time-series system prediction.

Given m n-dimensional datasets {xi, yi}, yi ∈ {−1, 1}, xi ∈ Rn, i = 1, 2, 3 · · ·m, the
mapping of the input space to the feature space is implemented through a nonlinear func-
tion φ(xi), which constructs the optimal decision function f(x), as shown in Equation (13).

f(x) = b + ⟨φ(x), w⟩ (13)

where w is the weight vector, and b is the bias term.
Equation (14) is used to calculate the objective function and constraints of the algorithm.

minJ(w, e) = min( 1
2∥w∥

2 + 1
2γ

N
∑

i=1
e2

i )

s.t. yi = ⟨w,φ(xi)⟩+ b + ei
i = 1, 2, · · ·N
γ>0

(14)

where γ is the penalty factor, and ei denotes the regression error.
Therefore, by constructing a Lagrangian function and performing the derivatives,

a linear equation system can be obtained. Solving this system of linear equations gives
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the classification expression of the algorithm. Equation (15) is used to obtain the final
classification result.

y(x) =
N

∑
i=1

αiK(xi, x) + b (15)

where K(xi, x) is the kernel function, which usually can be a radial basis kernel function, a
polynomial kernel function, a linear kernel function, and so on.

There are several advantages of using the radial basis function (RBF):

1. Nonlinear mapping: The radial basis kernel function can map the original feature
space to a higher dimensional space through nonlinear mapping, thus enabling
support vector machines to handle nonlinear problems. This allows better adaptation
to complex data patterns and decision boundaries;

2. Flexibility: The radial basis kernel function is a parameter-free kernel function that
does not require a priori determination of the form of the mapping function. It
determines the weights of the sample points by calculating the distances between the
sample points and the support vectors, so it can be adapted to various irregular data
distributions and decision boundary shapes;

3. Efficient computation: The computation of the radial basis kernel function is relatively
simple and efficient. It only involves calculating the distance between the sample
points and the support vectors without explicit feature mapping. This saves computa-
tional resources and allows high-dimensional data to be handled; In summary, the
radial basis kernel function is selected in this paper.

4.3. Algorithm Stability Analysis

First, this section will analyze the validity of the proposed method. For feature-
selection problems using machine-learning methods, different training samples can affect
the set of selected features and, thus, result in different models. In particular, the BPSO
algorithm used in this paper for sample selection may affect the final search results due to
the initialization of the algorithm and the randomness of the intermediate speed changes.
Therefore, assessing the stability of the algorithm’s operation is a crucial method to evaluate
its effectiveness.

For feature network construction and feature selection, 10,000 samples are randomly
selected from the whole dataset, and the classification accuracy without feature extraction
and through other methods is compared. The experiment is repeated 200 times, and the
classification accuracy of each time is counted. The results are expressed by box-line
plotting and shown in Figure 4.
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It can be seen that the model boxes established by the feature sets processed by the
above methods are compact, which indicates that these methods are stable. Specifically,
the average classification accuracy of the proposed method based on the samples of this
experiment reaches 90.1%, which is comparable to that based on the complete dataset,
regardless of variations during specific tests. Meanwhile, its box is also the most compact
with a difference between the upper and lower bounds of only 0.71%, which indicates that
integrating symmetric complex-network theory into feature selection, as represented by
the proposed method, is stable and effective.

The algorithms are tested for significance, and it is hypothesized that there is no
significant difference in performance between the algorithms.

H0: There is a significant difference in performance between the algorithms.

H1: There is no significant difference in performance between the algorithms.

The level of significance is 0.05. The ANOVA results are shown in the Table 2.

Table 2. The ANOVA results for different algorithms.

Variable Value Sample Size Average Value Variance F p

GR 1000 90.262 0.0976

99.4489 0.000 ***

ReliefF 1000 90.533 0.1192
SU 1000 90.363 0.0174
GA 1000 90.075 0.1813
PSO 1000 90.801 0.1655
EA 1000 91.164 0.1487

CNBFS 1000 90.288 0.0343
sum 7000 90.498 0.1319

*** in 0.000 *** is a labeling method used by statistical software to indicate that the p-value is very small and meets
the significance level standard set by the software.

The ANOVA results show a p-value of 0.000 *** ≤ 0.05; therefore, the statistical results
are significant, indicating that the different algorithms have significant differences in
feature selection.

4.4. Feature-Selection Experiment
4.4.1. Feature Selection

During the validation process of our proposed algorithm based on the UNSW-NB15
dataset, the main factor to consider is the number of selected features. Therefore, the
coefficient k of the node strength is set to 0.1. After conducting a BPSO search, we obtained
four advantageous feature nodes, as shown in Figure 5.

The red dots in Figure 5 are the dominant nodes. It can be seen from the figure that
the selected feature nodes have connections with other non-dominant nodes, indicating the
effectiveness of the proposed algorithm. Moreover, the selected feature set contains only
four features, which greatly reduces the burden on the information-gathering system. The
specific features are listed in Table 3.

Table 3. Results of the feature selection.

Feature Name Feature Description Feature Name Feature Description

dur Record total duration service http, ftp, smtp, ssh, dns, ftp-data, irc, and
(-) if not much used service

sbytes Source to destination
transaction bytes sload Source bits per second
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The UNSW-NB15 dataset is very large. We randomly selected 10,000 normal data and
3000 abnormal data for training, and an additional 4000 samples were randomly selected
for testing. Some of the training results are shown in Figure 6.
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4.4.2. Comparison of the Classification Prediction Based on the Original Dataset and the
Selected Features

To demonstrate the effectiveness of the CNBFS method, we first compare the classifi-
cation prediction results based on the selected features by using it with those based on the
original dataset. As shown in Table 4, we compare the number of features, classification
accuracy, and algorithm running time.

Table 4. Comparison of the classification prediction based on the original and the selected data.

Dataset Original Dataset CNBFS Filtered Dataset

Number of features (pcs) 41 4
Classification accuracy (%) 96.62 90.3

Algorithm time (s) 29.8 6.3

The table shows that, after feature selection using CNBFS, the number of features in
the data is reduced to only four. Although the classification accuracy after data filtering
is slightly lower compared to using the LS-SVM algorithm to classify the original dataset,
the decrease is only 6.32%, which is within an acceptable range. From the perspective of
algorithm running time, since feature selection greatly reduces the amount of data, the
operating speed is improved significantly, and the overall running time (feature selection
and model training) has been reduced from 29.8 s to 6.3 s. The above results indicate that,
compared to traditional classification algorithms, the proposed method can obtain the most
concise features, with only a small gap in classification accuracy compared to the original
data, while significantly shortening the running time of the classification. For scenarios that
do not require very high target accuracy, it is already sufficient to meet the requirements
of target classification. For scenarios that demand high accuracy, it can help improve the
screening efficiency as the initial screening step (reducing time from 29.8 s to 6.3 s), making
it easier to conduct more precise screening in subsequent steps.

4.4.3. Comparison between the Proposed Method and Some Typical
Feature-Selection Algorithms

To validate the superiority of the proposed method, some state-of-the-art wrapper
algorithms, including CMIM [29], JMI [30], DISR [31], mRMR [32], Relax-mRMR [33],
IBSCA3 [34], and EOSSA [35] and some traditional filter algorithms, including Gini index,
Fisher score, FS-OLS [36], ReliefF [37], and Kruskal–Wallis [38] are used for comparison.
The LS-SVM algorithm is used to test the dataset after feature selection. The experimental
results are shown in Tables 5 and 6.

Table 5. Comparison between the performance of the proposed method and some wrapper methods.

Methods CMIM JMI DISR mRMR Relax-mRMR CNBFS IBSCA3 EOSSA

Number of features (pcs) 20 22 18 23 25 4 6 5
Classification accuracy (%) 90.2 89.6 88.3 89.1 88.8 90.3 90.1 89.9

Algorithm time (s) 7.9 8.7 10.4 8.5 19.1 6.3 6.7 7.1

CMIM = conditional mutual information maximization; JMI = joint mutual information; DISR = double input
symmetrical relevance; mRMR = max-relevance and min-redundancy; CNBFS = conditional mutual breadth first
search; IBSCA = binary improved sine cosine algorithm; EOSSA = elite opposite sparrow search algorithm.

Table 6. Comparison between the performance of the proposed method and some filter methods.

Methods Gini Index Fisher Score Kruskal–Wallis ReliefF FS-OLS CNBFS

Number of features (pcs) 19 20 21 18 18 4
Classification accuracy (%) 89.3 90.0 88.7 89.9 90.5 90.3

Algorithm time (s) 17.9 10.4 16.3 21.5 13.1 6.3

FS-OLS = feature selection–orthogonal least squares; CNBFS = complex-network-based feature selection.
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The results show that the CNBFS method outperforms all selected wrapper-based
and filter-based feature-selection methods in every aspect of the comparison experiments.
First of all, the average number of the selected features through the selected methods
for comparison is 20.4, the smallest number is 18, and the largest is 25. In contrast, the
proposed method results in a number of four. Furthermore, the classification accuracy of
the proposed method is 90.3%, while the average accuracy of the selected methods for
comparison is only 81.3%. The highest value is 90.5%, and the lowest is 88.3%. In terms of
the operation speed, the running time of the proposed method is only 6.3 s, the average
running time of the selected methods for comparison is 12.16 s, and the shortest one is
7.9 s. Based on the comparison with the limited sample of these algorithms, the proposed
method is arguably the optimal.

4.4.4. Comparison of the Performance of the Proposed Method Based on Different Datasets

In order to better validate the effectiveness of the algorithm, several datasets from the
UCI machine-learning repository are selected for repeated validation [39,40]. The selected
datasets are listed in Table 6. In each dataset, 90% of the samples are randomly selected
for feature-network construction and feature selection, so as to compare the classification
accuracy without feature extraction and through the proposed method. This represents the
average number of samples each feature has and is used to represent the dimensionality of
a dataset. The selected filter algorithm is the ReliefF algorithm, and the selected wrapper
algorithm is the EA algorithm, since they outperform other algorithms within their own
categories in the previous comparison experiments. The experiments are to be repeated
200 times, and the classification accuracy and algorithm running time are counted each
time. The results are shown in Tables 7 and 8, and Figure 6.

Table 7. UCI datasets for comparison.

Dataset
Number of

Original
Features (N)

Number of
Samples (D)

Number of
Categories (C) D/N

Parkinson’s 22 195 2 8.9
SPECT Heart 22 267 2 12.1

Statlog
(German Credit Data) 24 1000 2 41.7

Breast Cancer Wisconsin 30 569 2 19.0
WDBC 31 569 2 18.4

Ionosphere 33 351 2 10.6
Dermatology 34 358 6 10.5

Soybean (small) 35 47 4 1.3
Chess (KR vs. KP) 36 3196 2 88.8

Connectionist Bench 60 208 2 3.5
Libras Movement 90 360 15 4.0

Semeion Handwritten
Digit 256 1593 10 6.2

Arrhythmia 279 452 13 1.6
UJIIndoorLoc 520 21,048 3 40.5

Gisette 5000 6000 2 1.2
BCW = breast cancer wisconsin; Chess = chess (KR vs. KP); CB = connectionist bench; LM = Libras movement;
SHD = Semeion handwritten digit.

The proposed method outperforms all other selected methods for comparison. As
shown in Figure 7, the classification accuracy of all tested algorithms for the same dataset
is ranked to obtain the average prediction accuracy ranking for the 15 datasets. It can
be seen that the average prediction-accuracy ranking of the CNBFS algorithm on the LS-
SVM classifier using the MIC is 3.13, which is the best. The second-ranked algorithm
is Relax-mRMR with an average prediction accuracy ranking of 4.13, and the lowest-
ranked algorithm is Kruskal–Wallis, with an average prediction accuracy ranking of 9.8.
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The maximum information coefficient is the most important factor that influences the
betterment of the results algorithm because an established feature network by MIC can
effectively search for nodes rich in information, thus significantly improving the search
efficiency and accuracy of the algorithm.

Table 8. Sizes of the candidate feature subset of different feature-selection methods based on differ-
ent datasets.

Dataset CMIM JMI DISR mRMR Relax-
mRMR IBSCA3 EOSSA Gini

Index
Fischer
Score

Kruskal–
Wallis ReliefF FS-OLS CNBFS

Parkinson’s 16 14 11 15 13 14 10 13 14 13 12 16 4
SPECT Heart 14 15 12 13 12 8 5 10 13 15 12 15 3

Statlog 15 14 15 14 10 12 4 12 15 12 11 18 4
BCW 16 15 16 15 11 9 13 13 16 14 15 17 4

WDBC 16 18 17 16 12 13 15 15 18 13 17 19 5
Ionosphere 15 19 16 14 11 12 11 17 20 15 16 18 6

Dermatology 17 18 18 15 13 16 17 18 18 16 17 19 4
Soybean 16 19 17 18 14 17 16 17 19 17 18 18 6

Chess 18 20 19 17 16 17 18 17 19 17 18 20 5
CB 23 21 20 18 17 19 20 21 21 19 20 22 7
LM 25 23 22 25 22 23 25 20 26 23 22 24 9

SHD 32 34 31 40 38 31 32 31 29 35 37 38 88
Arrhythmia 42 48 45 52 47 41 42 43 38 41 45 44 93

UJIIndoorLoc 283 293 254 299 279 254 261 260 253 256 254 267 103
Gisette 3328 3103 2994 3127 3047 3106 2856 2951 2876 2954 2763 2845 1839
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There are variations between distinct subsets and diverse data distributions. The
dataset comprises several subsets, including binary classification, multiclass classification,
large-scale multiclass classification, regression, and other subsets. These subsets present
disparities in data volume, feature dimensions, data distribution, number of categories, data
quality, and more, consequently causing the same algorithm to produce different outcomes.
In particular, the CNBFS method achieves better performance with high D/N data (e.g.,
“Chess (KR vs. KP)”, “UJIIndoorLoc”), and mundane performance with low D/N data [38].
The results are not as good as before (e.g., “Soybean (small)”, “Arrhythmia”). Similarly, the
CNBFS method also performs better with large volume data (D > 1000), even though their
D/N ratios may be low (e.g., “Gisette”) because the MIC among the data can be adequately
processed due to the large sample size to obtain a more accurate dominant set.

The average running time of all the tested methods for all the tested datasets is shown
in Figure 8. All operations are done using Matlab version 2018b. The results show that the
CNBFS method runs faster than most of the tested algorithms, and only the Fisher score
is faster than the CNBFS method; none of the selected state-of-the-art feature-selection
algorithms outperforms the CNBFS method. In particular, the average running time of
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Relax-mRMR is seven times that of the CNBFS method, and that of ReliefF is five times
that of the CNBFS method.
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The experiments on different datasets show that although the results vary on different
datasets, the proposed method achieves relatively optimal performance, since both its
prediction accuracy and feature reduction efficiency are better than those of the tested
conventional approaches. The three sets of experiments prove that the proposed method can
achieve better performance when applied in both the binary and multi-classification·fields.

Moreover, the conclusion of this paper is verified by these comparison experiments,
and the proposed algorithm is able to find out almost all the classification information by
means of dominating sets. This paper proposes the construction of a feature network utiliz-
ing symmetric complex networks, primarily by utilizing pre-existing network features and
weights. To iterate on the network, simple addition and subtraction operations are typically
used and the computational space required is small. In contrast, traditional machine-
learning algorithms, including logistic regression, decision trees, support vector machines,
plain Bayes, and others rely on fitting parameters to classifiers based on provided data. This
process requires constant training and testing of the classifiers, resulting in high operation
costs. Overall, the CNBFS algorithm can effectively reduce the computational effort of
feature selection and can obtain a streamlined dataset and high classification accuracy.

4.5. Algorithm Limitations and Future Improvements

The method of feature selection proposed in this paper based on symmetric complex
networks requires high-quality data and has the following algorithm limitations:

1. Data Size: Symmetric complex networks usually require a large amount of data to
construct accurate network models for better feature selection. This requirement may
be limited for problems with small data size;

2. Data quality requirement: Symmetric complex networks usually require high data
quality, and special processing methods may be needed for problems with more noise
and missing data.

Considering issues such as the high demand for raw data and future research hotspots,
this paper suggests that the next step could be to further optimize the following aspects:

1. Data Size: Complex networks usually require a large amount of data to construct
accurate network models for better feature selection. This requirement may be limited
for problems with small data size;

2. Optimize algorithm efficiency: Develop faster and more efficient algorithms to reduce
the computation time of the feature-selection algorithm and improve its efficiency;
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3. Introduction of feedback mechanism: Through the introduction of the feedback mech-
anism, the feature-selection algorithm can adaptively adjust the network structure
and parameters so that its performance on different data sets is more universal;

4. Integrating deep-learning methods: by combining deep-learning methods, the char-
acterization ability of neural network models can be utilized to further improve the
accuracy and efficiency of feature selection.

5. Conclusions

In this paper, a methodology, called CNBFS, is proposed to solve feature-selection prob-
lems with high-dimensional data based on the combined use of a maximum information
coefficient and a symmetric complex network.

The use of BPSO in CNBFS allows feature-selection problems to be solved in a more
accurate and efficient way compared to the traditional methods in the UNSW-NB15 dataset
and state-of-the-art feature-selection algorithms. The methodology is focused on the degree
of correlation of information between the nodes and the topology of the overall network.
The experimental results show that the model’s running speed is significantly reduced,
decreasing from 29.8 s to 6.3 s. Furthermore, when benchmarked against advanced feature-
selection algorithms, the model achieves an impressive average accuracy of 90.3% with an
average time consumption of 6.3 s. These results prove that the proposed method is stable
and reliable, can accurately identify relevant features, has a greatly reduced running time,
and provides new insight into solving feature-selection problems.
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