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Abstract: Li-ion batteries are integral to various applications, ranging from electric vehicles to mobile
devices, because of their high energy density and user friendliness. The assessment of the Li-ion state
of heath stands as a crucial research domain, aiming to innovate safer and more effective battery
management systems that can predict and promptly report any operational discrepancies. To achieve
this, an array of machine learning (ML) and artificial intelligence (AI) methodologies have been
employed to analyze data from Li-ion batteries, facilitating the estimation of critical parameters like
state of charge (SoC) and state of health (SoH). The continuous enhancement of ML and AI algorithm
efficiency remains a pivotal focus of scholarly inquiry. Our study distinguishes itself by separately
evaluating traditional machine learning frameworks and advanced deep learning paradigms to
determine their respective efficacy in predictive modeling. We dissected the performances of an
assortment of models, spanning from conventional ML techniques to sophisticated, hybrid deep
learning constructs. Our investigation provides a granular analysis of each model’s utility, promoting
an informed and strategic integration of ML and AI in Li-ion battery state of health prognostics.
Specifically, a utilization of machine learning algorithms such as Random Forests (RFs) and eXtreme
Gradient Boosting (XGBoost), alongside regression models like Elastic Net and foundational neural
network approaches including Multilayer Perceptron (MLP) were studied. Furthermore, our research
investigated the enhancement of time series analysis using intricate models like Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) and their outcomes with those of hybrid
models, including a RNN-long short-term memory (LSTM), CNN-LSTM, CNN-Gated Recurrent Unit
(GRU) and RNN-GRU. Comparative evaluations reveal that the RNN-LSTM configuration achieved
a Mean Squared Error (MSE) of 0.043, R-Squared of 0.758, Root Mean Square Error (RMSE) of 0.208,
and Mean Absolute Error (MAE) of 0.124, whereas the CNN-LSTM framework reported an MSE
of 0.039, R-Squared of 0.782, RMSE of 0.197, and MAE of 0.122, underscoring the potential of deep
learning-based hybrid models in advancing the accuracy of battery state of health assessments.

Keywords: Li-ion; SoH; machine learning; deep learning

1. Introduction

Li-ion batteries (LIBs) are widely used in different areas due to their high energy
capacity, fast charging, and light weight. The performances of LIBs, which are considered
the best energy storage systems for electric vehicles, are gradually decreasing due to their
chemical and physical mechanisms [1]. An efficient battery management system needs to
be developed due to high costs and limited repair opportunities. Moreover, in order to
effectively manage the performance of batteries, the health indicators of the battery must
be accurately predicted. Therefore, it is very important to estimate the state of health (SoH)
of batteries and monitor their life cycle for long-lasting and high-performance battery use.
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In the quest for advancing battery technology, the incorporation of symmetry plays a
crucial role in the analysis of Li-ion batteries. Symmetry, embodying balance and harmo-
nious patterns, has been systematically explored to unveil inherent structural regularities
within battery data. Investigating symmetrical properties provide a detailed comprehen-
sion of the fundamental mechanisms governing battery operation. This, in turn, contributes
to refining existing models and fostering the development of more resilient battery man-
agement systems.

Data-driven methods are being developed to analyze the dynamic behavior of a system
without investigating the electrochemical reactions that occur during the battery discharge
time. The data of raw measurements obtained from actual battery usage experiments
are utilized to analyze the dynamic behavior. Abundant data are needed for the training
of the models developed for these methods. For testing operations, the unused data in
training is provided as input to the model for the testing process, so this is performed
in data-based methods and statistically based approaches. In different studies, a fuzzy
logic theory has been used to predict the SoH of LIBs [2]. Moreover, in [3], a Genetic
Programming (GP)-based approach was developed to extract the optimal formula for the
SoH prediction of batteries. A hybrid model developed in [4] combines a Support Vector
Machine (SVM) with an Unscented Particle Filter (UPF) to improve the performance of
the SoH and state of charge (SoC) predictions in LIBs. In [5], an adaptive Wiener process
model using the Brownian motion process for RUL (remaining useful life) estimation
was proposed. Machine learning (ML) algorithms have received particular attention due
to their outstanding performance and minimal prediction errors. Cai et al. proposed a
prediction model using Support Vector Regression (SVR) for battery SoH prediction; a
Genetic algorithm was employed to optimize SVR parameters and feature selection [6]. Xue
et al. proposed a hybrid approach, a combination of an Adaptive Unscented Kalman Filter
(AUKF) and SVR, for the remaining useful life (RUL) prediction of LIBs. SVR parameters
were optimized using a genetic algorithm [7].

In general, data-driven methods achieve superior accuracy than model-based meth-
ods. Recently, research on improving the battery state estimation accuracy has shown
significant success. Several studies have conducted comparative analyses between machine
learning algorithms to predict the internal states of LIBs. For instance, a comparative study
of different machine learning algorithms such as SVR, Convolutional Neural Networks
(CNNs), and Long Short-Term Memory (LSTM) was conducted in [8].

In recent years, hybrid methods have been introduced to leverage multiple algorithms
to increase the precision of a prediction method. Further studies have suggested a com-
bination of LSTM networks with other methods to improve the prediction accuracy and
achieve the best results. Liu et al. combined LSTM with Bayesian Model Averaging (BMA)
for RUL estimations [9]. In a different study, the performance results of the proposed
GPR and LSTM methods were compared separately with the performance of Gaussian
Process Regression—Empirical Mode Decomposition (GPR-EMD) and an LSTM-EMD
combination [10]. Convolutional neural networks play a crucial role in feature mapping.
Combining CNN and LSTM networks increases the adequacy of diagnosis and prognosis
methods. Several studies have proposed a combined CNN-LSTM to improve the prediction
accuracy and overcome the performance degradation of batteries. Ren et al. applied a hy-
brid CNN-LSTM model for battery RUL prediction [11]. The method performed well using
a limited amount of data in the learning phase, and the prediction errors were satisfactorily
small [12]. In addition to all these methods, our research team discussed enhancements to
the LSTM (long short-term memory) and Bi-LSTM (Bidirectional Long Short-Term Memory)
methods. Evaluation metrics such as the Mean Squared Error (MSE), Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and R-squared were applied in our previous
publication [13].

Recent studies on data-driven methodologies underscore a pivotal shift toward lever-
aging comprehensive raw measurement datasets from actual battery usage to analyze
dynamic system behaviors, bypassing the need to investigate the intricacies of electrochem-
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ical reactions during discharge. These methodologies necessitate substantial data volumes
for model training, ensuring that the predictive models are robust and generalizable. In the
literature, the adoption of machine learning algorithms, particularly when optimized with
genetic algorithms, has been shown to significantly reduce prediction errors. Comparative
analyses have elucidated the superior efficacy of these data-driven approaches over tradi-
tional model-based methods, particularly highlighting the effectiveness of hybrid models
that combine CNN and LSTM networks to enhance feature extraction and sequential data
analysis. Such synergistic models are shown to be crucial in improving the predictive
accuracy and reliability of battery status estimations.

This study focused on analyzing the change in the discharge capacity of LIBs over time
and developing predictive models to anticipate capacity decline. In addition to analyzing
the change in the discharge capacity of LIBs over time, it aimed to develop predictive
models that predict the capacity decrease by taking into account the concept of symmetry.
For this goal, LIBs were charged/discharged, and discharge capacity values were obtained
by adhering to different temperature and charge/discharge procedures. Afterward, various
modeling approaches were explored, ranging from classical machine learning algorithms
to complex and hybrid deep learning models. The performances of algorithms such as
Random Forests (RFs) [14] and eXtreme Gradient Boosting (XGBoost) [15] were evaluated
alongside regression models like Elastic Net [16] and artificial neural network models like
Multilayer Perceptron (MLP) [17].

Furthermore, efforts were made to improve success rates in time series data analysis
by developing more sophisticated models. Complex architectures such as CNNs and
Recurrent Neural Networks (RNNs) were developed and compared within hybrid frame-
works like RNN-LSTM, CNN-LSTM, CNN-Gated Recurrent Unit (GRU), and RNN-GRU.
This comprehensive approach aimed to enhance our understanding of battery behavior
and facilitate the creation of more accurate prediction models for BMS applications for
determining the critical indicators of its aging status, which can be identified through
factors like increased internal resistance or diminished capacity. By effectively monitoring
and assessing these parameters, the BMS contributes significantly to maximizing battery
performance and longevity.

Unlike the hybrid methods mentioned in the literature, the methodology proposed
in this study provides researchers with a comparative analysis by outlining the feature
exploitation procedure for classical machine learning and two neural networks (CNN,
RNN). Therefore, for future studies, it elucidates which method will obtain more accurate
and faster results. Additionally, a comparison of the LSTM algorithm and GRU algorithms
was conducted to demonstrate the superiority of the proposed method. A CNN was
combined with an LSTM network for the SoH estimation and RUL assessment of LIBs.
Improving the proficiency of machine learning algorithms has always been a subject of
research. However, among these attempts, several studies have proposed more complex
RNN combinations [18]. Comparative results of an LSTM and GRU-based hybrid CNN and
RNN methods are included in the study to demonstrate the superiority of the proposed
methods. To compare observed and predicted discharge capacities, evaluation metrics such
as the MSE, MAE, RMSE and R-Squared were applied to the proposed methods [19].

The remainder of this paper is structured as follows; in the second section, the materials
and methods used are provided. In the third section, the LIB data preparation is first
discussed and then presented. The data were analyzed from different perspectives. In the
fourth section, based on data analysis, various (RF, XGBoost, Elastic Net, MLP, CNN, RNN,
CNN + LSTM, RNN + LSTM, CNN + GRU and RNN + GRU) models for LIB discharge
performance were proposed with machine learning and deep learning techniques. In the
following sections, the models are evaluated and compared in detail. Finally, the study
concludes by providing results and recommendations. Additionally, the limitations and
findings of the study are included. Thus, researchers are given predictions for future studies.
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2. Materials and Methods

This study aimed to examine the performances of different prediction methods as
a step toward improving the LIB discharge capacity prediction. These methods include
various approaches such as machine learning and deep learning. This comparative study
discusses the advantages, disadvantages, and application areas of each method in detail
and sheds light on the future development of LIB technology.

Test outcomes acquired under four distinct temperatures, two diverse discharge
capacities, and two varying charge cut-off current values can be utilized to instruct ma-
chine learning models in discerning data, such as capacity and voltage, for alternative
charge/discharge currents and temperature values.

2.1. Battery Tests

All the tests were obtained from open-access sources from Michael Pecht, Centre for
Advanced Life Cycle Engineering (CALCE), University of Maryland. The experiments
were described to be conducted with LiCoO2–Graphite cells [20].

All the charge/discharge tests were described to be conducted in the operation range of
3.0–4.4 V with different C-rates and temperatures. The number of cells and test parameters
are shown in Table 1. Every test condition (Test No.1, No.2, etc.) consists of 8 cells with
a total of 192 cells. Every eight cells applied four different temperatures, three different
discharge C-rates, and two different charge cut-off C-rates with C/5 and C/40 following
the constant charge–constant voltage (CCCV) protocol. Machine learning techniques were
utilized to train models using all obtained charge and discharge datasets. These datasets
served as input for the training process, enabling the models to learn and predict outcomes
based on historical data patterns.

Table 1. Test parameters applied to cells [20].

Discharge Ambient Temperature (◦C) Charge Cut-Off

C-Rate 10 25 45 60 C-Rate

0.7 C
Test No.1 Test No.7 Test No.13 Test No.19 C/5
Test No.2 Test No.8 Test No.14 Test No.20 C/40

1 C
Test No.3 Test No.9 Test No.15 Test No.21 C/5
Test No.4 Test No.10 Test No.16 Test No.22 C/40

2 C
Test No.5 Test No.11 Test No.17 Test No.23 C/5
Test No.6 Test No.12 Test No.18 Test No.24 C/40

2.2. Random Forrest (RF)

RFs, random decision forests, is a machine learning method for classification and
regression that works by performing a large number of decision trees. RF can be described
as a combination of decision tree algorithms. It has the ability to improve the accuracy of the
information in a single tree with information from many trees. RF eliminates over-reliance
on training data, and it presents successful results within a large amount of data. Therefore,
it is commonly used in many areas [14].

The RF technique combines the bagging technique with the random subspace tech-
nique. It was preferred by Breiman in 2001 over the bagging method because it provides
more randomization [21]. It is an algorithm with a lower margin of error and, accordingly,
a higher predictive power. This technique consists of randomly selected decision trees
from the original dataset. Different sets are created from the decision tree dataset through
bootstrapping. In total, 2/3 of the dataset is reserved as a learning dataset (in bag) and 1/3
as a test dataset (out of bag).

In RF, estimation is also performed for the data that is introduced later. Calculating
the importance of variables has also become an advantage for RF, especially if the dataset
contains many variables. The number of trees to be created and the number of variables to
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be selected are very important in this technique. Other factors will not change the result
much [21].

2.3. XGBoost Algorithm

The XGBoost algorithm is an efficient and widely used integrated learning method
proposed by Dr. Tianqi Chen from the University of Washington, based on Gradient-
Boosted Decision Trees (GBDTs) and RF. It can be applied to both classification tasks and
regression problems. Compared with GBDT and RF, XGBoost not only has better accuracy,
but also provides a parallel tree-boosting structure that solves many data science problems
quickly and accurately [22].

XGBoost is a tree model consisting of multiple decision trees (CART: Classification
and Regression Tree). The first step in XGBoost is to make the initial estimate (base score).
This estimate can be any number, as the correct result will be reached by converging with
the steps to be taken in the next steps. This number is 0.5 by default. In the next stage, a
decision tree that predicts errors is established, as in Gradient Boosting. The aim here is to
learn from the mistakes and get closer to the correct prediction. The prediction is examined
using the erroneous predictions (residuals) of the model. Errors are found by subtracting
the predicted value from the observed value. The predicted values of all decision trees are
summed as the final result, and multiple weak learners are integrated into a strong learner
using certain methods. The splitting process of a single decision tree in XGBoost is the
same as that of a CART regression tree, except that the objective function used is different.
The objective function of each tree is given in Equation (1):

OBJ = ∑n
i=1 l

(
yi, ŷ(t−1)

i + ft(xi)
)
+ Ω( ft) (1)

The objective function has two components. The first is the loss function, which is
employed to evaluate the loss or error between the model’s predicted value and its actual
value. The second component is the regularization term utilized to control the complexity
of the model. The regularization term tends to select simple models to avoid overfitting [23].
This prevents the overfitting of a model to its training data. An attempt is made to eliminate
a situation that causes a decrease in performance against new and unseen data. This
prevents overfitting and makes the model more generalizable. Thus, successful results can
be obtained in dense time series data such as those of LIBs.

2.4. Elastic Net

Elastic Net is a linear regularization and variable selection method that was proposed
to deal with the disadvantages of the Lasso and Ridge estimators by Zou and Hastie in
2005 [24]. Elastic Net was developed as a solution to the Lasso approach, which can be
unstable in the case of multiple types of data. The Lasso and Ridge estimators realize
variable selection and analysis; accordingly, Lasso makes irrelevant values zero, while
Ridge brings the values of irrelevant variables in the data closer to zero. Ridge regression
can be used while analyzing multivariate data. This is to keep the error value to a minimum
by finding the coefficients that make the sum of squares zero. Elastic Net consists of a
combination of the Ridge and Lasso estimators [25]. It is established on a combination of l1
(Lasso estimator) and l2-norm (Ridge estimator) penalization. Figure 1 shows these three
methods together. The outermost circular line is the Ridge approach, while the central
square pattern indicates the Lasso approach. The orange line between the two approaches
is a representation of Elastic Net.

The regression type with two parameters (a, λ) for adjustments can yield a more
efficient result. a is a hyperparameter for controlling the balance between the Ridge and
Lasso estimators. If a = 0, there is a relationship between the Elastic Net and Ridge
estimators. If a = 1, there is a relationship between the Elastic Net and Lasso estimators. λ
is a tuning parameter that detects an amount of regulation. Although Lasso ignores datasets
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with similar relationships, Elastic Net continues to reach saturation in case of multiple data.
It is an attractive method due to its high predictability and easy interpretation [26].
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2.5. Multilayer Perceptron

The perception model is an artificial neural network model. Since it is a supervised
learning algorithm, both input and output data are input to the network. One of the most
important points for the perceptron model is the threshold value. If this value is suitable
for the desired data, the model provides more accurate results. In this process, the learning
ability is improved by increasing the number of iterations [26].

Figure 2 shows a single-layer perception. The x values represent the inputs, the w
values represent the weights, and then the net input is calculated. The output value is
determined as zero if the input is below the threshold, and the output value is one if it
is higher.
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An MLP contains more hidden layers, unlike the single perception model. Multilayer
networks consist of the input layer, one or more hidden layers, and output layers, and a high
number of neurons in the hidden layers reduces the error rate. In this method, the network
is trained with samples, and the network determines the output result accordingly [27].
After the sample is trained between the input and hidden layers, it is transferred to the
output layer when the error is the lowest value. The Delta learning method is employed in
the MLP. The number of middleware depends on the complexity of the problem. Any of
the sigmoid, tang, linear, threshold and hard limiter functions can be used as the activation
function in this model [28].
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2.6. Convolutional Neural Networks

CNNs are deep learning models designed especially for image recognition and pro-
cessing tasks [29]. Time series data, which can be viewed as a 1-dimensional grid with
regular time intervals, and image data, which can be viewed as 2-dimensional pixels, can
be successfully processed with CNNs. CNNs consist of various layers, including an input
layer, convolution layer, pooling layer, ReLU layer, fully connected layer, and output layer.
The input layer receives the data and passes it to the convolution layer. In this layer, filters
are utilized to extract targeted nonlinear models from the input data, resulting in feature
maps. The pooling layer is utilized to downsample these feature maps. Then, the pooling
layer converts the multidimensional shape of the feature maps into a one-dimensional
shape and then sends it to the fully connected layer. The fully connected layer calculates
the final results based on these features [30,31]. Figure 3 shows an example of a CNN used
for time series forecasting, where a univariate time series is used as input, and the output
represents a forecast.
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This architecture was designed to predict a given time series data point
Xt, Xt+1, . . . , Xt−k+1 based on data from past time steps. A convolution layer is used
to extract local features by applying a series of filters on the data received from the input
layer. In this layer, the feature maps obtained as a result of each convolution process
represent different aspects of the input. The output of the layer is a combination of features
that better represent the time series patterns in the original dataset.

2.7. Recurrent Neural Networks

An RNN is a type of deep learning architecture and is called a recursive neural
network [18]. In neural networks other than RNNs, inputs are handled independently of
each other. The order in which the inputs arrive in the network does not matter. After the
processing of the input in the network is completed and the output is produced, the neural
network forgets the input. In areas such as image processing, one input can be provided at
a time. However, data such as weather cannot be input to the network at once. For this
reason, RNNs, which are neural networks with memory, have been produced as a solution.
RNNs progress by keeping the information of the previous data in memory while training
the network. Therefore, it can be successfully used in SoC predictions of LIBs containing
time series data. SoC time series data provided to an RNN are processed step by step in the
inner loop of the network, and an output is produced. During this process, information
from the previous layer (hidden state) is updated and transferred to the next layer through
repeating layers. Figure 4 shows the internal structure of the RNN architecture.
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In the internal structure shown in Figure 4, x0 takes the input and combines it with the
hidden state, produces an output, and then updates the hidden state. Meanwhile, it takes
the input x1, the current input, and the hidden state and sends it as input to the other layer.
After all these processes are completed, the hidden state is updated again. This structure
enables more accurate predictions about the future without forgetting past experiences.

2.8. Long Short-Term Memory

In examining an RNN, it is seen that predictions for the future are made using past
experiences. If transactions are made within a large network and we are trying to pro-
cess a long paragraph or history-dependent data, the value we will obtain will increase
exponentially. This may cause an increasing gradient explosion. As a solution to this
problem, LSTM [18] and GRU [31] models, which are specialized versions of RNNs, have
been proposed. The LSTM network architecture consists of four neural networks and
special memory blocks known as cells. By default, the LSTM network is designed to retain
information for long periods of time. Operations in the LSTM are performed by three gates.
The first of these is the forgetting gate ( ft), the second is the entry gate (it), and the last is
the exit gate (it). These gates determine the importance of information and decide what
should be kept or discarded. LSTM cell consists of two main blocks. The first of these is the
cell state (Ct−1) and the hidden state (ht−1). These states are constantly updated and carry
information from previous time steps to the present. While the cell state acts as a store for
long-term memory, latent states serve as a store for short-term memory. The architectural
structure of an LSTM network is shown in Figure 5.
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2.9. Gated Recurrent Unit

A GRU neural network is an improved model of an RNN that exhibits superior long-
term sequence memorization capabilities compared to the standard RNN. It functions
similarly to LSTM in solving the gradient explosion or disappearance problem of simple
RNNs. Unlike LSTM, in GRU, the forget and input gates are synthesized into a single
update gate and only one hidden state is processed to transmit information. A GRU can be
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thought of as a different version of LSTM with an easier design, fewer variables, and higher
convergence. The GRU base unit consists of an update gate and a reset gate. The update
gate decides how much of the new candidate state should be added to the existing hidden
state. The output of the previously hidden layer has a large impact on the current hidden
layer. The purpose of the reset gate is to manage how much of the previously hidden state
should be forgotten; a smaller value indicates that more information has been ignored, thus
reducing the dependence on past information. The basic architecture of a GRU is shown in
Figure 6.

Symmetry 2024, 16, 436 9 of 21 
 

 

update gate and only one hidden state is processed to transmit information. A GRU can 
be thought of as a different version of LSTM with an easier design, fewer variables, and 
higher convergence. The GRU base unit consists of an update gate and a reset gate. The 
update gate decides how much of the new candidate state should be added to the existing 
hidden state. The output of the previously hidden layer has a large impact on the current 
hidden layer. The purpose of the reset gate is to manage how much of the previously 
hidden state should be forgotten; a smaller value indicates that more information has been 
ignored, thus reducing the dependence on past information. The basic architecture of a 
GRU is shown in Figure 6. 

 
Figure 6. GRU basic architecture. 

3. Experimental Studies 
Within the scope of this study, various models were developed to estimate the dis-

charge capacities of LIBs, each employing distinct computational strategies. The initial 
deployed model was based on the RF algorithm, a well-established machine learning tech-
nique. Subsequent models included those based on XGBoost, CNNs, RNNs, and inte-
grated frameworks that combine CNN and RNN units with a GRU and LSTM to harness 
their respective strengths. The development of these models was meticulously structured, 
adhering to a prescribed sequence of steps. During the model development phase, the 
methodologies and procedural stages were rigorously followed as outlined in Figure 7, 
ensuring systematic progression and integrity in the model development. 

 
Figure 7. Model development and application steps. 

The process of developing a predictive model, as depicted in Figure 7, commences 
with the gathering and pre-processing of historical data pertinent to the predictive task, 
such as discharge capacity data. This foundation is followed by feature selection, where 
key data attributes are identified to accurately predict the outcome variable. Afterward, 
the dataset is partitioned into distinct training and testing sets. The training set informs 
the model learning phase, which varies according to the algorithm employed—a subject 
extensively covered in the Materials and Methods section. The model performance is then 
assessed on the test set, employing metrics like the RMSE to ascertain the predictive 

Figure 6. GRU basic architecture.

3. Experimental Studies

Within the scope of this study, various models were developed to estimate the dis-
charge capacities of LIBs, each employing distinct computational strategies. The initial
deployed model was based on the RF algorithm, a well-established machine learning
technique. Subsequent models included those based on XGBoost, CNNs, RNNs, and inte-
grated frameworks that combine CNN and RNN units with a GRU and LSTM to harness
their respective strengths. The development of these models was meticulously structured,
adhering to a prescribed sequence of steps. During the model development phase, the
methodologies and procedural stages were rigorously followed as outlined in Figure 7,
ensuring systematic progression and integrity in the model development.
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The process of developing a predictive model, as depicted in Figure 7, commences
with the gathering and pre-processing of historical data pertinent to the predictive task,
such as discharge capacity data. This foundation is followed by feature selection, where
key data attributes are identified to accurately predict the outcome variable. Afterward,
the dataset is partitioned into distinct training and testing sets. The training set informs
the model learning phase, which varies according to the algorithm employed—a subject
extensively covered in the Materials and Methods section. The model performance is
then assessed on the test set, employing metrics like the RMSE to ascertain the predictive
accuracy. The finalized model, upon validation, becomes a tool for real-world application,
capable of forecasting outcomes on novel data, thereby enabling empirical studies on actual
data scenarios.
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3.1. Data Collection and Pre-Processing

Table 1 presents the cycling test structure involving temperature, charge cut-off C-rate,
and discharge C-rates; three stress factors that resulted in 24 testing conditions. Each condi-
tion was subjected to testing using eight cells. All cycling data were logged by the battery
test system and were pre-processed for machine learning and deep learning purposes.

Pre-processing was applied to the obtained data, and missing values were checked.
Scaler transformation was applied to the data for artificial intelligence algorithms. Features
at different scales may cause the algorithm to over- or under-react to certain features, so
an attempt was made to normalize values that may become more dominant in model
training. Additionally, in deep learning models, the normalization of features helps train
the model faster and more effectively. Normalization enables optimization algorithms such
as gradient descent to converge faster and more effectively.

In working with deep learning models used in structures such as time series, image
processing, or sequential data, the need to transform the data into a three-dimensional ten-
sor is necessary to make the data suitable for the input format expected by the model so that
the model can process the data correctly and learn effectively. Within the scope of the study,
firstly, ‘X’ and ‘y’ variables were determined as the feature matrix and target vector. Here
‘X’ is an attribute matrix consisting of columns ‘Cycle_Index’, ‘Temperature’, ‘Voltage(V)’,
and ‘Current(A)’. ‘y’ is the target vector defined by the ‘Discharge_Capacity(Ah)’ column.
With the expression ‘X.values.reshape(−1, 4, 1)’, the ‘X’ matrix was subjected to appropriate
resizing. With this process, each sample is transformed into a three-dimensional tensor in
which it has four features, and these features are arranged in a single column. Thus, the
dataset was made suitable to use in time series analysis or deep learning models.

3.2. Data Partition

The process of dividing the data prepared for the estimation of discharge capacity
should be different according to the classification type of data because time-dependent data
on discharge capacity have a sequential structure, and this structure must be preserved
during the training and testing processes of the model. The problem addressed in this
study was to predict future data based on past data. Therefore, if data division is not taken
into consideration, it may create a model that tries to predict the past based on future
information, which will create an undesirable situation in real problems. The data obtained
within the scope of this study was divided on a time-based basis. With this partitioning
process, a part of the dataset (75%) (usually old data) is reserved for training the model,
and the remaining part (new data) is reserved for testing the model.

Given the limited size of the dataset in this study, a direct validation set was not
allocated for rapid prototyping purposes. Instead, the test set, separated from the training
set, served a secondary function as the validation set. Utilizing the test set in lieu of directly
allocating a validation set presents a pragmatic solution by enlarging the dataset size,
thereby ensuring that the model has sufficient data for training while also somewhat testing
the model’s generalization capability [21]. In this scenario, the ‘train_test_split’ function
allocated 25% of the dataset as the test set, with the remaining 75% used as the training
set. During model training, this test set was employed as the validation set, thus providing
real-time feedback on the model’s performance throughout the training process.

3.3. Model Development

During the model development phase, the RF, XGBoost, Elastic Net, CNN, RNN, and
hybrid structures of these models with a GRU and LSTM were developed. Different model
development parameters were used for each model. RF is a very effective model as an
ensemble learning algorithm. However, to make an RF model better and increase its per-
formance, regular training data and feature selection need to be conducted well. Limiting
the cycle to 300 and the clean training data we used enabled us to increase the success of
RF. Additionally, the ‘n_estimators’ value was set to 100. Thus, the Random Forest model
was prepared to include 100 decision trees. In this study, we set the ‘n_estimators’ param-
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eter to 100 to provide a balance between model complexity and the ability to generalize
beyond the training data. A lower value of this parameter tends toward a more simplistic
model that is less likely to overfit, while a higher value contributes to an increase in the
model’s complexity.

The second model developed within the scope of this study is XGBoost. XGBoost is a
powerful implementation of gradient boosting algorithms and delivers high-performance
models when used successfully. XGBoost has many hyperparameters: number of trees,
learning rate, depth, number of sub-features, etc. Carefully tuning the hyperparameters is
important for optimizing our model. The hyperparameters of the XGBoost model that we
used are listed in Table 2.

Table 2. XGBoost model hyperparameters.

Name of Parameter Value

n_estimators 100
learning_rate 0.1
max_depth 3

random_state 42

The selection of hyperparameters for the XGBoost model as presented in Table 2 reflects
a balanced approach aiming to ensure a robust model performance without overfitting.
Among the parameters presented in Table 2, ‘n_estimators’ indicates the number of trees.
The number of trees is set similarly to that of the RF model. Moreover, learning_rate is used
with and often interacts with other hyperparameters. Therefore, a higher learning_rate
requires a larger number of trees (n_estimators). On the other hand, a larger max_depth
value should be balanced with a lower learning_rate. The random_state parameter is
a hyperparameter used for XGBoost and many other machine learning algorithms. A
max_depth of three helps in preventing the model from becoming overly complex and
capturing noise, thereby fostering a model that generalizes well to unseen data. Lastly,
a random_state of 42 ensures the reproducibility of results, facilitating consistent model
evaluations and comparisons.

Another model developed within the scope of this study was Elastic Net. It is a
regression method that can be used to estimate the discharge capacity of LIBs. Elastic
Net combines L1 (Lasso) and L2 (Ridge) regularization terms and, thus, can both perform
variable selection and control overfitting. Within the scope of this study, “alpha = 1” was
chosen. In this case, Elastic Net uses only L1 regularization. This situation is equivalent
to Lasso regression. Additionally, ‘l1_ratio = 1’ was set, and only L1 regularization (Lasso
regression) was set to be effective. ‘random_state’ was set to 42, similar to XGBoost.

Another model developed within the scope of this study was an MLP, which is a
type of deep learning and artificial neural network model. There may be complex and
non-linear relationships between factors affecting the LIB capacity. An MLP has the capacity
to capture such non-linear relationships and can model complexities. Table 3 shows the
hyperparameters used when developing the MLP model.

Table 3. MLP model hyperparameters.

Name of Parameter Value

hidden_layer_sizes 100, 50
activation Relu

learning_rate 0.001
batch_size min (200, n_samples)

random_state 42

As stated in Table 3, the first hidden layer had 100 neurons. This layer is used to process
input data. The second hidden layer has 50 neurons. This layer receives and processes the



Symmetry 2024, 16, 436 12 of 21

outputs from the first hidden layer. The output of the second layer is often used to produce
the outputs of the last layer. This means that an MLP has a structure with one or two hidden
layers, and these hidden layers contain 100 and 50 neurons, respectively. Additionally,
Relu, which is more computationally efficient than some other activation functions, was
used. Relu has a non-zero derivative value on positive inputs. This reduces the problem of
gradients disappearing during training. The MLP structure’s final layer would typically
have a single neuron for regression tasks, outputting the continuous value prediction. The
Relu activation function mentioned applies only to hidden layers; often, the output layer in
a regression setup would have no activation function (i.e., it is a linear neuron).

In examining the developed models, it can be considered that the MLP is a subset of
deep learning models in the process experienced from an RF to an MLP. An MLP is known
as a neural network consisting of an input layer, one or more hidden layers, and output
layers. Deep learning models, on the other hand, refer to neural networks containing
more layers. These models can consist of much deeper networks (tens or hundreds of
layers). MLPs are simpler models that handle smaller datasets and require less computing
power. However, deep learning models are more complex and larger models that require
larger datasets and higher computing power. Therefore, their success is higher. The
first deep learning model developed within the scope of this study is CNN-based. The
hyperparameters used in the developed CNN model are presented in Table 4.

Table 4. CNN model hyperparameters.

Name of Parameter Value

Convolution layer filters 64
Convolution layer kernel size 3

Activation function of the convolution layer Relu
Convolution layer padding same

Pooling layer pool size 2
Pooling layer padding Same

Batch size 16
Learning rate 0.001

Optimizer Adam
Loss function Mean_squared_error

Number of Epochs 100

The convolution layer filters parameter determines the depth of the amount of in-
formation that the model can learn. Generally, a larger value of the state size allows
more complex features to be learned. However, it also increases the risk of overfitting.
Therefore, it must be determined according to the amount of data. The hyperparameters
specified for the CNN model in Table 4 were judiciously chosen to strike a balance between
model complexity and computational efficiency while ensuring effective learning. Utilizing
64 filters in the convolution layer with a kernel size of three and ‘same’ padding enables the
extraction of meaningful features without losing spatial dimensions. In order to increase
the calculation efficiency and generalization ability of the model, the batch size value was
determined to be 16. ‘Relu’ was used as the activation function in the model. The MSE was
chosen as the loss function of the model. The MSE is a metric commonly used in regression
tasks that takes the average square of the difference between predicted values and actual
values. After the parameters were determined, the model was trained for 100 epochs. In
this way, it was aimed for the model to achieve sufficient learning from the training dataset
and at the same time avoid the risk of overfitting. Each of these parameters was carefully
selected to optimize both the performance and generalization of the model. After the
completion of the CNN training, a different deep learning model, the RNN model, was
developed within the scope of this study. Similar hyperparameters to those listed in Table 3
were used in the development of the RNN, which was designed to process sequential data
and temporal dependencies. Thus, preparations were made for comparing experimental
results and interpreting them on similar infrastructures.
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The time dependencies for the RNN developed in this study are related to its ability to
process sequential data and temporal dependencies. Unlike feed-forward neural networks,
RNNs have a memory that captures information about what has been calculated so far,
integrating past information to the current task. This memory is crucial for tasks involving
sequences, where the context and the order of elements are important for understanding
or prediction. In the context of estimating the discharge capacity of LIBs, the RNN model
would leverage its capacity to process sequential data to model how the battery’s discharge
capacity changes over time. This involves analyzing time series data of battery usage,
including charge/discharge cycles at various C-rates and temperatures, to predict the
future capacity or identify patterns indicating battery health.

4. Results

Several studies have been conducted for years on the development of better material
compositions for LIBs, their maintenance, and the improvement of their cycle life. In
addition to all these parameters, the accurate estimation of the SoH in battery management
systems where these batteries are used is essential as it significantly affects the performance
of the systems. Especially with the increasing interest in electric vehicles, the tendency to
study SoH prediction for LIBs has increased. Therefore, determining the SoH is of great
importance. However, due to SoH determination, which is an output of a chemical reaction
series that occurs in the LIB during cycles, there is still no consensus of how it can be
defined. Thus, following various approaches using statistical methods appears to be the
best way at the moment.

4.1. Evaluation Metrics

More than one method was utilized to test the models prepared within the scope of
this study. The RMSE, a metric employed to evaluate the accuracy of statistical predictions,
was used in the initial testing processes [33]. The RMSE is calculated as the square root
of the mean square of the differences between the predicted values and the actual values
(Equation (2)):

RMSE =

√√√√ n

∑
i=1

(âi − ai)
2

n
(2)

When the RMSE is used to test a developed model, the RMSE is expected to be low.
A high RMSE means that the predictions are very different from the actual values. This
situation shows a low performance of the model. A lower RMSE value indicates that
the predictions are closer to the actual values, and therefore, the model performs better.
Additionally, MSE results are also provided, which penalize larger errors more.

Another approach used for model testing in experimental studies is the MAE [34].
Often used to measure the performances of regression models, the MAE represents the
mean absolute difference between predicted values and actual values. In other words, it
tries to determine how ‘wrong’ each prediction is. The MAE is calculated as expressed in
Equation (3):

MAE = (1/n)
n

∑
i=1

|yi − ŷi| (3)

For each prediction, the difference between the predicted value and the actual value is
calculated, as shown in Equation (3). Then, the absolute value of this difference is taken.
Here, n represents the number of data points. While yi refers to the true value (observation),
ŷi, refers to the value predicted by the model. Essentially, the MAE measures the magnitude
of forecast errors and treats each error with the same weight. Additionally, the R-squared
error was used as an evaluation metric in this study. The R-squared error measures the
explanatory power of the model on the data and expresses how much of the variance of the
dependent variable it explains. For this reason, it was used within the scope of the study to
measure the effect of independent variables on the dependent variable and to evaluate the
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explanatory ability of the model. In addition, it is known that the MSE and RMSE metrics
do not cover the forecast trend in the time series. For this reason, Prediction of Change
in Direction (POCID) was used in this study, which solves the problem by counting the
number of correct direction changes [35]. The POCID is a percentage measure calculated as
in Equations (4) and (5):

POCID =
1

N − 1

N−1

∑
t=1

D(t) · 100 (4)

D(t) =
{

1, i f (Y(t + 1)− Y(t))
(
Ŷ(t + 1)− Ŷ(t)

)
> 0

0, otherwise
(5)

4.2. Estimation of Discharge Capacities with Tree and Regression-Based Approaches

XGBoost and RF are two different models, both of which are considered ensemble
learning methods and are employed to solve machine learning tasks such as classification
and regression. XGBoost aims to create a strong model by combining weak learning models
(usually decision trees) with gradient boosting. XGBoost can be thought of as a library that
develops and optimizes the gradient boosting method. RF, on the other hand, collects the
results by bringing together many decision trees. Each tree is constructed using a random
subset of features. XGBoost splits trees by sorting them with a certain feature. This allows
for better trees to be created. The success rates of the RF and XGBoost models developed
within the scope of this study are presented in Table 5. Discharge capacity estimations
were calculated using the different models; accordingly, RF seems to be the best estimation
method compared with XGBoost.

Table 5. Performance comparison of RF and XGBoost models.

Model MSE R-Squared RMSE MAE POCID

RF 0.022 0.877 0.148 0.099 83.38
XGBoost 0.026 0.853 0.162 0.110 83.31

In examining Table 5, RF achieved better results. It is desirable for the MSE to be low,
and a good regression model should have low MSE values. However, the absolute value of
MSE alone is not always sufficient for evaluating the quality of a model. Therefore, it should
be evaluated together with other metrics. In the examinations, the low R-squared value of
RF means that the model can explain only a small part of the variance of the independent
variables on the dependent variable. This indicates that the model has weak explanatory
power. The RMSE, on the other hand, always depends on the problem and data context.
The datasets used in these experiments may have higher RMSE values because the dataset
inherently had more variance. Therefore, data characteristics and problem requirements
should be taken into consideration while interpreting the RMSE value. Based on this
information, it can be predicted that XGBoost can achieve better results when there are
more dependent variables. However, preliminary results showed that RF achieved better
results. Figure 8 illustrates the actual values produced by the RF and XGBoost models and
the distribution of the predicted values.

Within the scope of this study, a different approach that could be used in the regression
analysis, such as that of XGBoost and RF, was included in the experiments. Elastic Net is a
regression method and is used specifically for linear regression problems. While Elastic
Net is used for basic regression analyses and variable selection, XGBoost is preferred for
more complex and high-performance classification and regression tasks. Therefore, the
Elastic Net model was also developed in this study. The Elastic Net model’s results are
included with the performance comparison of the RF and XGBoost models in Table 6.
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Table 6. Performance comparison of RF, XGBoost, and Elastic Net models.

Model MSE R-Squared RMSE MAE POCID

RF 0.022 0.877 0.148 0.099 83.38
XGBoost 0.026 0.853 0.162 0.110 83.31

Elastic Net 0.136 0.243 0.369 0.217 72.25

Different machine learning algorithms such as Elastic Net, XGBoost, and RF have dif-
ferent structures and capabilities. Elastic Net creates a linear regression model. This means
a model of lower complexity that can express simpler relationships. Figure 9 demonstrates
the actual values produced by Elastic Net and the distribution of the predicted values.
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4.3. Estimation of Discharge Capacity with Deep Learning-Based Algorithms

Although Elastic Net and other machine learning approaches provide successful
results, they did not achieve the desired level of success. Therefore, deep learning-based
models were developed within the scope of this study. First of all, a simple MLP model
belonging to the field of deep learning was developed. Then, CNN and RNN models
were used, and comparative results were obtained. Table 7 shows the results of the deep
learning models.
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Table 7. Performance comparison of deep learning-based models.

Model MSE R-Squared RMSE MAE POCID

MLP 0.059 0.670 0.243 0.135 80.74
RNN 0.046 0.743 0.213 0.127 83.19
CNN 0.042 0.761 0.207 0.124 81.70

The MLP, RNN, and CNN models in Table 7 are different neural network architectures,
and each has advantages and disadvantages. The MLP works specifically with flat feature
vectors that do not contain a structural pattern or sequential data. That is, its ability to
recognize a structural pattern or infer features in sequential data is limited. The CNN
and RNN can better handle structured and sequential data, such as visual or textual data.
Hence, the changing conditions of LIBs over time were better captured. Moreover, with the
RNN, LSTM and GRU models were employed in line with the desire to make better use of
historical data. In addition to the RNN and CNN models used, two LSTM layers of 64 and
48 units, respectively, both using ‘tanh’ activation, were included in the developed models.
Likewise, two GRU layers of 64 and 48 units, respectively, were included. However, the
‘Relu’ activation function was chosen for the GRU. Experimental studies have shown that
LSTM and GRU models provide similar results. Nevertheless, considering that hybrid
models will yield more successful results, hybrid structures of RNN and CNN models with
LSTM and GRU models were developed in this study. Performance comparisons of the
hybrid structures are presented in Table 8.

Table 8. Performance comparison of deep learning-based hybrid models.

Model MSE R-Squared RMSE MAE POCID

RNN + LSTM 0.043 0.758 0.208 0.124 83.24
RNN + GRU 0.040 0.774 0.201 0.121 83.17

CNN + LSTM 0.039 0.782 0.197 0.122 82.81
CNN + GRU 0.039 0.779 0.199 0.122 83.04

In examining Table 8, it is seen that the hybrid models achieved better results than
the basic models. A decrease in the MSE indicates that the model has a better fit and its
predictions are closer to the actual data. However, the R-Squared value increased slightly.
High R-Squared values suggest that the models, particularly those combining an RNN
with LSTM or a GRU and CNN with LSTM or a GRU, effectively capture the underlying
patterns in the data, leading to accurate predictions. This provided a better explanation of
the comparative results. The results obtained highlight our efforts to predict the discharge
capacities of LIBs using different models, from simple to complex.

5. Discussion

In this study, we examined the challenges that predictive models, which play a critical
role in monitoring the discharge capacity of LIBs, face as they grapple with the evolving
technology landscape and increasing complexity. To address the symmetry in battery
degradation and charging patterns, we also explored the advantages that deep learning-
based models can offer in overcoming these challenges, particularly focusing on how
these models can exploit symmetry to enhance predictive accuracy. We also explored the
advantages that deep learning-based models can offer in overcoming these challenges and
highlighted the importance of these benefits. The advantages of the technology, which
emerge through the use of advanced prediction models, make LIBs more efficient and
adaptable in terms of battery management and scalability.

Unlike traditional machine learning methods, tree-based and deep learning-based,
complex and comprehensive models offer more dynamic structures that can increase the
operational efficiency. However, the integration of deep learning-based Li-ion discharge
capacity prediction models with contemporary technologies such as decision support
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systems and big data analytics will increase efficiency and manageability, especially by
incorporating symmetry considerations to better mirror the inherent characteristics of
battery behavior.

The most important disadvantage of machine learning models is that there is no
standard way to determine model parameters. Model parameters were chosen based on
default values that are widely accepted. These parameters may vary depending on the
dataset and problem used, and similar parameters used as much as possible in order to
better evaluate the common results of different models. When the results were examined, it
could be seen that RF is the most successful method among the different models created
for estimating the discharge capacity of batteries. The fact that the RMSE and MAE values
were close to zero and the R-Squared value was close to 1 showed that our proposed
model is more successful. In addition, when the POCID and other evaluation criteria were
examined, it was seen that the RF model was more successful than other machine learning
models and minimized the prediction error. Based on the experiments conducted with the
RF machine learning model, an estimation graph is shown in Figure 10, and a discharge
capacity estimation graph is shown in Figure 11.
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In examining Figure 10, it is seen that the SoH estimation decreases regularly in line
with the cycle increase. Figure 11 is presented to better visualize this situation. If the results
are considered as part of a regression problem, it can be said that the results obtained
provide important information about discharge capacities. The experiments carried out
in this study were compared with complex processes from many studies. So, in order
to demonstrate understandability within the scope of this study, the experiments were
carried out on many models, from basic machine learning approaches to hybrid deep
learning approaches. The strategic use of various evaluation metrics notably improved
the explainability of our findings, making the sophisticated processes more accessible and
comprehensible. This comprehensive evaluation approach ensures that complex modeling
processes are broken down into more understandable parts, facilitating clearer insights into
how the model performs under different conditions.
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We proposed a decision support system designed for the prediction of discharge
capacities through the application of an RF-based model approach. This approach achieved
the best results on the dataset used in this study. The integration of factors such as feature
selection, the development of different models, and hyperparameter settings contributed
to improving the efficiency of LIBs. The findings of this study will make a valuable
contribution to the development of efficient and high-performance battery technologies
in the energy sector by further advancing the integration of LIB technology into future
decision support systems and electronic devices that use batteries. There are many articles
published in the literature on solving the problem of estimating discharge capacities. In
these studies, test data containing different temperatures and charge and discharge currents
are generally used to estimate the discharge capacities of LIBs from traditional machine
learning and hybrid models. Considering these data, machine learning-based prediction
methods such as SVM, KNN, RF, and MLP are frequently used for prediction algorithms
and models. Table 9 shows a comparison of the proposed model with those of previous
studies. However, the data, methods, and success rates obtained vary from study to study.

Table 9. Performance comparison of models from previous studies in the literature.

Ref. Datasets ML Algorithms R-Squared RMSE MAE

[36] Oxford Dataset SVR 0.89 1.11 -
[37] Oxford Dataset LSTM 0.98 0.06 -
[38] Shu et al. (2022) RF - 0.54 1.63
[39] Wang et al. (2021) RF 0.59 - -
[40] Hannan et al. (2021) LSTM - 1.69 0.54
[40] Hannan et al. (2021) DNN - 11.05 8.64

The comparative performance analyses as shown in Tables 7–9 show that the MLP,
RNN, and CNN models have different degrees of effectiveness in comparison to the
benchmark literature values as measured using the R-squared, RMSE and MAE metrics. In
particular, the hybrid deep learning models RNN + LSTM, RNN + GRU, CNN + LSTM,
and CNN + GRU outperform their counterparts and the cited literature models. The
improved performances of these hybrid models are attributed to their superior handling of
the complexities inherent in the dataset used in this study, showcasing their robustness in
modeling and prediction tasks.



Symmetry 2024, 16, 436 19 of 21

6. Conclusions and Future Trends

This study presented an end-to-end model research on predicting the discharge capac-
ity of LIBs and achieved significant results. Our research started with collecting original
data and applying data pre-processing steps, followed by conducting a series of exper-
iments to evaluate the performances of various machine learning algorithms and deep
learning models.

The results obtained show that this study, when using original data, could develop
powerful models that can successfully predict the discharge capacity of LIBs. Traditional
machine learning algorithms such as RF, XGBoost, and MLP yielded valuable results in
terms of prediction performance. In addition, hybrid models developed with deep learning-
based CNN and RNN architectures demonstrated high performances on time series data,
and their performance effects became more explainable when analyzed within the scope of
the concept of symmetry. Hybrid models developed with deep learning-based CNN and
RNN architectures demonstrated high performance on time series data. The performances
of hybrid models such as CNN-LSTM, CNN-GRU, RNN-LSTM, and RNN-GRU highlighted
the power of deep learning approaches in time series forecasting. On the other hand, the
first values obtained showed that RF-based models achieved more successful results.

This study offers important insights for guiding future researchers in estimating the
discharge capacity of LIBs, which are an important component of energy storage technolo-
gies. This study shows that deep learning models have great potential in LIB capacity
prediction. Future works might focus on further improving and extending deep learning
methods. LIBs are used under many different models and operating conditions. Future
research might contribute to better establishing generalizations by considering different
battery models and environmental conditions, with a particular focus on symmetrical
behaviors. Collecting more data and improving data pre-processing methods can improve
model performances. Future works might also focus more on choosing optimal models
and algorithms for specific applications. Techniques such as automatic model selection and
hyperparameter tuning may help researchers.

This research laid the foundation for future innovations and developments in the field
of LIBs and energy storage systems and contributes to researchers making further progress
in this field. Future studies may build on this foundation to achieve further achievements
and contributions in this field.
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Mechanism with ConvLSTM Model for Global Aerosol Time Series Forecasting. Mathematics 2023, 11, 1744. [CrossRef]

22. Jin, Z.; Shang, J.; Zhu, Q.; Ling, C.; Xie, W.; Qiang, B. RFRSF: Employee Turnover Prediction Based on Random Forests and
Survival Analysis. Lect. Notes Comput. Sci. 2020, 12343, 503–515. [CrossRef]

23. Yan, N.; Yao, Y.-B.; Jia, Z.-D.; Liu, L.; Dai, C.-T.; Li, Z.-G.; Zhang, Z.-H.; Li, W.; Wang, L.; Wang, P.-F. Online battery health
diagnosis for electric vehicles based on DTW-XGBoost. Energy Rep. 2022, 8, 121–128. [CrossRef]

24. Wei, D.S. Strong Approximation for a Toric Variety. Acta Math. Sin. Engl. Ser. 2021, 37, 95–103. [CrossRef]
25. Noriega, L. Multilayer Perceptron Tutorial. 2005. Available online: https://api.semanticscholar.org/CorpusID:61645526 (accessed

on 27 March 2024).
26. Han, Y.; Li, C.; Zheng, L.; Lei, G.; Li, L. Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising

Transformer-Based Neural Network. Energies 2023, 16, 6328. [CrossRef]
27. Sumayli, A. Development of advanced machine learning models for optimization of methyl ester biofuel production from papaya

oil: Gaussian process regression (GPR), multilayer perceptron (MLP), and K-nearest neighbor (KNN) regression models. Arab. J.
Chem. 2023, 16, 104833. [CrossRef]

28. Rahimi, A.; Gönen, M. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets. Bioinformatics
2018, 34, i412–i421. [CrossRef] [PubMed]

29. Camacho Olmedo, M.T.; Paegelow, M.; Mas, J.F.; Escobar, F. Geomatic Approaches for Modeling Land Change Scenarios; Part of the
Lecture Notes in Geoinformation and Cartography Book Series (LNGC); Springer International Publishing: New York, NY, USA,
2018; pp. 1–8. [CrossRef]

30. Duman, E.; Erdem, O.A. Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder. IEEE Access 2019, 7,
183914–183923. [CrossRef]

31. He, K.; Yang, Q.; Ji, L.; Pan, J.; Zou, Y. Financial Time Series Forecasting with the Deep Learning Ensemble Model. Mathematics
2023, 11, 1054. [CrossRef]

https://doi.org/10.1016/j.apenergy.2019.114408
https://doi.org/10.1109/TII.2017.2684821
https://doi.org/10.1109/TPEL.2020.2987383
https://doi.org/10.1016/j.neucom.2019.09.074
https://doi.org/10.2339/politeknik.417757
https://doi.org/10.1109/ACCESS.2019.2937798
https://doi.org/10.1109/TIE.2020.2973876
https://doi.org/10.3390/pr11092731
https://doi.org/10.1016/j.est.2022.104520
https://doi.org/10.3390/app14062306
https://doi.org/10.3390/rs12101687
https://doi.org/10.1016/j.jco.2009.01.002
https://doi.org/10.1109/ITEC.2019.8790533
https://doi.org/10.1109/ICRMS.2018.00067
https://doi.org/10.7717/peerj-cs.623
https://doi.org/10.1016/j.jpowsour.2019.226830
https://doi.org/10.3390/math11071744
https://doi.org/10.1007/978-3-030-62008-0_35
https://doi.org/10.1016/j.egyr.2022.09.126
https://doi.org/10.1007/s10114-021-8193-7
https://api.semanticscholar.org/CorpusID:61645526
https://doi.org/10.3390/en16176328
https://doi.org/10.1016/j.arabjc.2023.104833
https://doi.org/10.1093/bioinformatics/bty239
https://www.ncbi.nlm.nih.gov/pubmed/29949993
https://doi.org/10.1007/978-3-319-60801-3_1
https://doi.org/10.1109/ACCESS.2019.2960654
https://doi.org/10.3390/math11041054


Symmetry 2024, 16, 436 21 of 21

32. Rincón-Maya, C.; Guevara-Carazas, F.; Hernández-Barajas, F.; Patino-Rodriguez, C.; Usuga-Manco, O. Remaining Useful Life
Prediction of Lithium-Ion Battery Using ICC-CNN-LSTM Methodology. Energies 2023, 16, 7081. [CrossRef]

33. Srinivasan, A.R.; Lin, Y.-S.; Antonello, M.; Knittel, A.; Hasan, M.; Hawasly, M.; Redford, J.; Ramamoorthy, S.; Leonetti, M.;
Billington, J.; et al. Beyond RMSE: Do Machine-Learned Models of Road User Interaction Produce Human-Like Behavior? IEEE
Trans. Intell. Transp. Syst. 2023, 24, 7166–7177. [CrossRef]

34. Khair, U.; Fahmi, H.; Al Hakim, S.; Rahim, R. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute
Percentage Error. J. Phys. Conf. Ser. 2017, 930, 012002. [CrossRef]

35. Cocianu, C.L.; Uscatu, C.R.; Avramescu, M. Improvement of LSTM-Based Forecasting with NARX Model through Use of an
Evolutionary Algorithm. Electronics 2022, 11, 2935. [CrossRef]

36. Lin, M.; Yan, C.; Meng, J.; Wang, W.; Wu, J. Lithium-ion batteries health prognosis via differential thermal capacity with simulated
annealing and support vector regression. Energy 2022, 250, 123829. [CrossRef]

37. Lim, L.D.; Tan, A.F.J.; Tomacruz, J.G.T.; Castro, M.T.; Remolona, M.F.M.; Ocon, J.D. Cyclic Degradation Prediction of Lithium-Ion
Batteries using Data-Driven Machine Learning. Chem. Eng. Trans. 2022, 94, 787–792. [CrossRef]

38. Shu, X.; Shen, J.; Chen, Z.; Zhang, Y.; Liu, Y.; Lin, Y. Remaining capacity estimation for lithium-ion batteries via co-operation of
multi-machine learning algorithms. Reliab. Eng. Syst. Saf. 2022, 228, 108821. [CrossRef]

39. Wang, G.; Fearn, T.; Wang, T.; Choy, K.-L. Machine-Learning Approach for Predicting the Discharging Capacities of Doped
Lithium Nickel–Cobalt–Manganese Cathode Materials in Li-Ion Batteries. ACS Central Sci. 2021, 7, 1551–1560. [CrossRef]

40. Hannan, M.A.; How, D.N.T.; Lipu, M.S.H.; Mansor, M.; Ker, P.J.; Dong, Z.Y.; Sahari, K.S.M.; Tiong, S.K.; Muttaqi, K.M.; Mahlia,
T.M.I.; et al. Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised
transformer model. Sci. Rep. 2021, 11, 19541. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en16207081
https://doi.org/10.1109/TITS.2023.3263358
https://doi.org/10.1088/1742-6596/930/1/012002
https://doi.org/10.3390/electronics11182935
https://doi.org/10.1016/j.energy.2022.123829
https://doi.org/10.3303/CET2294131
https://doi.org/10.1016/j.ress.2022.108821
https://doi.org/10.1021/acscentsci.1c00611
https://doi.org/10.1038/s41598-021-98915-8

	Introduction 
	Materials and Methods 
	Battery Tests 
	Random Forrest (RF) 
	XGBoost Algorithm 
	Elastic Net 
	Multilayer Perceptron 
	Convolutional Neural Networks 
	Recurrent Neural Networks 
	Long Short-Term Memory 
	Gated Recurrent Unit 

	Experimental Studies 
	Data Collection and Pre-Processing 
	Data Partition 
	Model Development 

	Results 
	Evaluation Metrics 
	Estimation of Discharge Capacities with Tree and Regression-Based Approaches 
	Estimation of Discharge Capacity with Deep Learning-Based Algorithms 

	Discussion 
	Conclusions and Future Trends 
	References

