
Citation: Wang, R.; Li, F.; Liu, S.; Li,

W.; Chen, S.; Feng, B.; Jin, D. Adaptive

Multi-Channel Deep Graph Neural

Networks. Symmetry 2024, 16, 406.

https://doi.org/10.3390/

sym16040406

Academic Editors: Calogero Vetro

and Sergei D. Odintsov

Received: 26 June 2023

Revised: 5 March 2024

Accepted: 16 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Adaptive Multi-Channel Deep Graph Neural Networks
Renbiao Wang 1,2,*, Fengtai Li 1, Shuwei Liu 1, Weihao Li 3, Shizhan Chen 1, Bin Feng 1 and Di Jin 1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China; lifengtai@tju.edu.cn (F.L.);
liushuwei@tju.edu.cn (S.L.); shizhan@tju.edu.cn (S.C.); fengbin@tju.edu.cn (B.F.)

2 Department of Computer Engineering, Zhonghuan Information College Tianjin University of Technology,
Tianjin 300380, China

3 Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601,
Australia; weihao.li1@anu.edu.au

* Correspondence: wangrenbiao8421@tju.edu.cn

Abstract: Graph neural networks (GNNs) have shown significant success in graph representation
learning. However, the performance of existing GNNs degrades seriously when their layers deepen
due to the over-smoothing issue. The node embedding incline converges to a certain value when
GNNs repeat, aggregating the representations of the receptive field. The main reason for over-
smoothing is that the receptive field of each node tends to be similar as the layers increase, which
leads to different nodes aggregating similar information. To solve this problem, we propose an
adaptive multi-channel deep graph neural network (AMD-GNN) to adaptively and symmetrically
aggregate information from the deep receptive field. The proposed model ensures that the receptive
field of each node in the deep layer is different so that the node representations are distinguishable.
The experimental results demonstrate that AMD-GNN achieves state-of-the-art performance on node
classification tasks with deep models.

Keywords: graph neural networks; graph representation learning; over-smoothing

1. Introduction

The purpose of graph representation learning is to encode graph information into
node embedding. In recent years, graph representation learning has been extensively
applied in various application scenarios, such as node classification [1–6], node cluster-
ing [7–10], link prediction [11–13], and graph classification [14–17]. Graph neural networks
(GNNs) [18] are generally considered one of the most effective graph representation learn-
ing methods. They have gained significant attention because they can naturally integrate
the information of graph structure and node attributes simultaneously. The message pass-
ing mechanism in GNNs is inspired by the convolution operation of convolutional neural
networks (CNNs) [19]. In CNNs, a deeper layer makes a larger receptive field size to
capture a more expressive representation. Typically, more depth leads to better recognition
performance [20,21]. However, some GNN models [5,6] always achieve the best expres-
siveness with shallow architectures, i.e., two or three layers. Generally, GNN architectures
contain fewer than three layers because of the over-smoothing problem [22,23].

In GNNs, over-smoothing means that as the depth of the neural network increases,
node representations gradually become indistinguishable. This phenomenon makes node
representations unrelated to the input features, leading to vanishing gradients and poor
performance in downstream tasks. The main reason for over-smoothing is that the number
of nodes in the receptive field for each node increases exponentially along with increases in
the depth of GNNs. Furthermore, the receptive field of different nodes tends to be similar.
Then, different nodes aggregate similar information. As a result, the representation of every
node becomes indistinguishable.

Some researchers [3,16,24–29] have worked on designing deep GNN models to over-
come the over-smoothing problem. For example, Xu et al. [27] selected the receptive field

Symmetry 2024, 16, 406. https://doi.org/10.3390/sym16040406 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16040406
https://doi.org/10.3390/sym16040406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym16040406
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16040406?type=check_update&version=1

Symmetry 2024, 16, 406 2 of 12

by adding the representation of each layer to the representation of the last layer, which is
the well-known JKNet algorithm. Rong et al. [26] proposed creating a random receptive
field by randomly removing a certain number of edges from the original graph, which is
the well-known DropEdge algorithm. However, these algorithms generally change aggre-
gation operations on the fixed receptive field or make a random receptive field. Recently,
adaptive selecting receptive field algorithms [16,29] have been proposed. For instance,
Ma et al. [16] used anonymous random walks and mutual information to capture node
structure information and then adaptively constructed a receptive field for each node with
structural information. Zhou et al. [29] applied the Dirichlet energy of node embedding to
quantify over-smoothing and adaptively build the receptive field by constraining Dirichlet
energy in an appropriate range. However, these methods construct the receptive field using
the entire feature vectors as a whole. In fact, not all feature vector dimensions play the
same role. We need to consider each dimension of information of the feature vector at a
fine granularity. Characterizing every dimension of the personalized feature vector may
help the node representations in deep receptive fields to be distinctive. At the same time,
the level of the feature vector can provide coarse-grained information.

To adaptively build a unique receptive field for each node, in this work, we devel-
oped a model with two different granularity channels called adaptive multi-channel deep
graph neural network (AMD-GNN), shown in Figure 1. Our method combines the node
embedding learned by the coarse-grained receptive field (i.e., feature vector level) and
the fine-grained receptive field (i.e., dimension level) in a certain ratio. Then, we obtain
a unique node embedding for each node. The unique receptive field can ensure node
embedding remains different for a deep model. In addition, we decouple transformation
and propagation to avoid feature over-smoothing in the propagation process. Meanwhile,
decoupling can significantly reduce the number of parameters in a multi-channel deep
model and optimize the training process. By combining decoupling and multi-channel
symmetrically aggregation of the receptive field, our deep graph neural network model can
prevent the over-smoothing issue and be trained quickly. In summary, this paper provides
the following three major contributions:

Symmetry 2024, 16, x FOR PEER REVIEW 2 of 12

Some researchers [3,16,24–29] have worked on designing deep GNN models to over-
come the over-smoothing problem. For example, Xu et al. [27] selected the receptive field
by adding the representation of each layer to the representation of the last layer, which is
the well-known JKNet algorithm. Rong et al. [26] proposed creating a random receptive
field by randomly removing a certain number of edges from the original graph, which is
the well-known DropEdge algorithm. However, these algorithms generally change aggre-
gation operations on the fixed receptive field or make a random receptive field. Recently,
adaptive selecting receptive field algorithms [16,29] have been proposed. For instance, Ma
et al. [16] used anonymous random walks and mutual information to capture node struc-
ture information and then adaptively constructed a receptive field for each node with
structural information. Zhou et al. [29] applied the Dirichlet energy of node embedding
to quantify over-smoothing and adaptively build the receptive field by constraining Di-
richlet energy in an appropriate range. However, these methods construct the receptive
field using the entire feature vectors as a whole. In fact, not all feature vector dimensions
play the same role. We need to consider each dimension of information of the feature vec-
tor at a fine granularity. Characterizing every dimension of the personalized feature vector
may help the node representations in deep receptive fields to be distinctive. At the same
time, the level of the feature vector can provide coarse-grained information.

To adaptively build a unique receptive field for each node, in this work, we devel-
oped a model with two different granularity channels called adaptive multi-channel deep
graph neural network (AMD-GNN), shown in Figure 1. Our method combines the node
embedding learned by the coarse-grained receptive field (i.e., feature vector level) and the
fine-grained receptive field (i.e., dimension level) in a certain ratio. Then, we obtain a
unique node embedding for each node. The unique receptive field can ensure node em-
bedding remains different for a deep model. In addition, we decouple transformation and
propagation to avoid feature over-smoothing in the propagation process. Meanwhile, de-
coupling can significantly reduce the number of parameters in a multi-channel deep
model and optimize the training process. By combining decoupling and multi-channel
symmetrically aggregation of the receptive field, our deep graph neural network model
can prevent the over-smoothing issue and be trained quickly. In summary, this paper pro-
vides the following three major contributions:
1. We propose a new deep GNN model that creates a unique receptive field for each

node by combining adaptive receptive fields at different granularities. The unique
receptive field ensures node embedding remains different for a deep model.

2. With decoupling transformation and propagation, the original features are retained
and the parameters and training time are reduced, which ensures the robustness of
the model in deep layers.

3. We conducted extensive experiments on four real datasets and compared them with
state-of-the-art models. The experimental results demonstrate the effectiveness of the
proposed model.

Figure 1. The framework of AMD-GNN model. AMD-GNN decoupled representation transformation
and propagation, and it obtained node representations from two channels. In fine-grained channel,
S is the set of projection vectors that compute retainment scores for different dimensions in a node
feature vector. In coarse-grained channel, α0, α1, αk represent the retainment scores of different nodes
feature vectors. β is the balance ratio between two channels.

1. We propose a new deep GNN model that creates a unique receptive field for each
node by combining adaptive receptive fields at different granularities. The unique
receptive field ensures node embedding remains different for a deep model.

Symmetry 2024, 16, 406 3 of 12

2. With decoupling transformation and propagation, the original features are retained
and the parameters and training time are reduced, which ensures the robustness of
the model in deep layers.

3. We conducted extensive experiments on four real datasets and compared them with
state-of-the-art models. The experimental results demonstrate the effectiveness of the
proposed model.

2. Related Works

In this section, we will give a brief introduction to graph neural networks related to
the over-smoothing issue.

Graph neural networks have a powerful ability to deal with graph data and have
attracted widespread attention in recent years. Chebyshev [18] generalized a convolutional
neural network (CNN) from regular grids (i.e., images) to irregular grids (i.e., graphs),
which is an early version of GNN. GCN [5] simplifies the previous work and has become a
popular GNN model. Based on guidance from the topological structure, GCN learns node
representations by aggregating information from neighboring nodes. GraphSAGE [30]
provides mean/max symmetrical aggregation methods and an asymmetric LSTM pooling
method to sample and aggregate features within a neighborhood. GAT [6] uses an attention
mechanism to learn the attention score between nodes and their neighbors. GIN [31] aims
at distinguishing different graph structures. SGC [32] simplifies GCN on the aspect of
nonlinearity and adjacency matrix normalization.

Unlike CNNs, node embeddings in GNNs tend to be similar as the layers deepen.
This phenomenon is called over-smoothing. There have been some related works focused
on this problem. ResNet [20] gives GNNs the ability of the original CNNs to deepen the
model by introducing residual connections and dense connections. JKNet [27] adds the
residual connections of each layer to the representation of the last layer, which flexibly
leverages the different neighborhood ranges of each node. Pairnorm [28] keeps the distance
between the features of all nodes as a constant at each layer, which prevents all the nodes’
representations from becoming indistinguishable. DropEdge [26] discards a certain number
of edges during each epoch training. In this way, over-smoothing is avoided. APPNP [25]
uses the personalized PageRank matrix to replace the power of the graph convolution
matrix, which extends the model to a deeper layer. GCNII [3] uses residual connections
from the initial layer and the identity mapping to overcome the over-smoothing problem.
Additionally, there are other methods that employ adaptive mechanisms for aggregating
multi-channel features, such as AM-GCN [33]; however, they do not explore the over-
smoothing problem.

We aimed to overcome over-smoothing by adaptively constructing unique receptive
fields to maintain the difference of deep node representation. Additionally, we decoupled
the transformation and propagation processes, resulting in the preservation of original
features while concurrently reducing parameters and training time, which ensures the
robustness of the model in deep layers.

3. Preliminary

In this section, we first introduce the semi-supervised node classification task and the
problem formulation. Then, we briefly review graph neural networks.

3.1. Semi-Supervised Node Classification

We consider an undirected unweighted graph G = (V, E) with |V| = n nodes and
|E| = m edges. The feature matrix is denoted as X = [x1, x2, · · · , xn]

T , where xi ∈ Rd

represents a d-dimensional feature vector of node vi. Every node belongs to a class, and c
is the number of classes in a given dataset. In a semi-supervised node classification task,
the goal is to predict the labels for nodes in the unlabeled set Vu with the supervision of
labeled set Vl .

Symmetry 2024, 16, 406 4 of 12

3.2. Graph Neural Networks

In the message-passing graph neural networks, the aggregating neighborhood uses
aggregation and combination operations to capture the information from neighbor nodes
that are one or more hops away from the target node. The operation on node vi at the k-th
graph neural network layer can be defined as follows:

h(l)i = COMBINE(l)
(

h(l−1)
i , a(l)i

)
(1)

where
a(l)i = AGGREGATE(l)

({
h(l−1)

j : vj ∈ N(vi)
})

(2)

where h(l)i is the feature vector of node vi in the l-th layer, and h(0)i = xi. N(vi) is a set of
neighbor nodes of vi. COMBINE (·) and AGGREGATE (·) result in different models for
different values of N(vi). For instance, the two-layer vanilla GCN equation [5] can be
described as follows:

Z = so f tmax
(

ÂReLU
(

ÂXW(0)
)

W(1)
)

(3)

where Â =
∼
D

− 1
2 ∼

A
∼
D

− 1
2
;
∼
D and

∼
A are the degree matrix and adjacency matrix with self-loops,

respectively.

4. AMD-GNN Model

We propose a novel adaptive method to obtain the receptive field, which combines the
coarse-grained and fine-grained receptive fields. The framework of the proposed approach
is shown in Figure 1. We decouple transformation and propagation to retain the original
features and optimize the training so that different nodes still retain differences when the
networks extend to the deep level. Next, we introduce each component of our approach
and conclude with the overall model architecture.

Decoupling. The number of parameters in representation transformation intertwine
with the receptive fields of propagation due to the entanglement of representation transfor-
mation and propagation [34]. When considering a large receptive field, every propagation
process requires a transformation function, leading to a large number of parameters. So, it
is hard to train a deep GNN with numerous parameters. In fact, representation transfor-
mation and propagation can be regarded as two separate operations. MLP performs well
without using graph structure information because the initial features of a node are used to
predict its class completely. Propagation uses the graph’s topology to make node represen-
tations similar if they belong to the same class. Based on the above analysis, representation
transformation produces effects using features, and propagation uses structure to play a
role. They are two independent processes. So, we decouple representation transformation
and propagation in Equation (3), described as

Z = MLP(X) ∈ Rn×c (4)

where
H(l) = ÂlZ ∈ Rn×c (5)

where MLP indicates a multi-layer perception network that transforms the original feature

matrix X to the node feature hidden representation matrix Z ∈ Rn×c.Â =
∼
D

−1/2∼
A

∼
D

−1/2
,

where
∼
D = D + I, and

∼
A = A + I. l denotes the number of layers, and Âl represents the

symmetric normalized adjacency matrix propagating the l-th layer, which means that H(l)

captures the node information from l-hop neighbors.
Coarse-Grained Channel. In Equation (5), the over-smoothing phenomenon is rep-

resented as lim
l→∞

Al H(0) = H∞, where the H∞ of different nodes become indistinguishable

Symmetry 2024, 16, 406 5 of 12

because of aggregating the same receptive field. This suggests that the model loses discrim-
inative information provided by the node features as the number of layers increases. In the
coarse-grained channel, we take the complete vector representation of nodes as the unit
and provide a learnable adaptive weight to the node representations of each layer. In this
simple way, AMD-GNN can adaptively control the contribution of the propagation step of
each layer. These learnable weights also show the topological information of a graph under
coarse granularity. The coarse-grained channel is described as

Zcoarse =
k

∑
l=0

α(l)H(l) ∈ Rn×c. (6)

where H(l) ∈ Rn×c is the node representations in the l-th layer, and H(0) = Z. α(l) =

diag
(

α
(l)
1 , α

(l)
2 , · · · , α

(l)
n

)
, where α

(l)
i , s.t.i = 1, 2, · · · , n denotes the learnable adaptive weight

in the l-th layer. Zcoarse indicates node embedding under the coarse-grained channel.
Fine-Grained Channel. In the fine-grained channel, we adaptively select the receptive

field by taking each dimension of the node representation as the unit. For each feature vector,
we assign an adaptive score to each feature dimension in each layer, which is obtained by
multiplying the learnable set of s =

{
s(1), s(2), · · · , s(c)

}
, s(j) ∈ Rc, s.t. j = 1, 2, · · · , d is a

trainable project vector. We describe the fine-grained channel as

S(l)
j = H(l)s(j), s.t. l = 0, 1, · · · , k, j = 1, 2, · · · , c ∈ Rn×1. (7)

S(l) = stack
(

S(l)
1 , S(l)

2 , · · · , S(l)
c

)
, s.t. l = 0, 1, · · · , k ∈ Rn×c (8)

Z(l)
f ine = S(l) ⊙ H(l), s.t. l = 0, 1, · · · , k ∈ Rn×c (9)

Z f ine =
k

∑
l=0

Z(l)
f ine, s.t. l = 0, 1, · · · , k ∈ Rn×c (10)

where S(l)
j is an adaptive score vector of node representations to the j-th feature dimension

in the l-th layer, and k is a hyper-parameter indicating the depth of AMD-GNN. The stack
function stacks all adaptive score vectors of feature dimensions along the first-dimension
axis to obtain an adaptive score matrix containing all feature dimensions of all nodes.
Z(l)

f ine denotes node embedding of the l-th layer under the fine-grained channel, which

can be obtained by the Hadamard product of S(l) and H(l). Z f ine indicates the final node

embedding under the fine-grained channel by summing over Z(l)
f ine belonging to various

layers. By adding the representations under the two channels in a certain ratio, we obtain
the representations of different nodes under the adaptive receptor field. The final output
can be expressed as

Xout = so f tmax
(
(1 − β)Zcoarse + βZ f ine

)
(11)

where β is a hyper-parameter used to balance the results of two channels, for which we
finally determined the optimal value to be 0.681 with the aid of prior knowledge and a grid
search with a step size of 0.001.

5. Experiments

In this section, we evaluate the performance of AMD-GNN against the state-of-the-art
graph neural network models on a wide variety of open graph datasets and demonstrate
the effectiveness of AMD-GNN.

5.1. Experimental Setup

Datasets. We used three real-world datasets, Cora, Citeseer, and Pubmed, for semi-
supervised node classification and used the Cornell dataset for stability analysis. Cora,

Symmetry 2024, 16, 406 6 of 12

Citeseer, and Pubmed are citation network benchmark datasets [35]. In these citation
datasets, nodes correspond to papers, and edges correspond to citations between papers.
Node features are the bag-of-words representation of papers, and node labels are academic
topics. Cornell is a webpage dataset, where nodes and edges represent web pages and
hyperlinks, respectively [36]. Node features are the bag-of-words representation of web-
pages, and node labels are page categories (student, project, course, staff, and faculty). The
statistics of the datasets are summarized in Table 1.

Table 1. Dataset statistics.

Dataset Classes Nodes Edges Features

Cora 7 2708 5429 1433
Citeseer 6 3327 4732 3703
Pubmed 3 19,717 44,338 500
Cornell 5 183 295 1703

Baselines. We compared our AMD-GCN with the following baseline methods: (1) Ba-
sic GNN models: GCN [5] and GAT [6]; (2) GNN models with a fixed receptive field:
APPNP [25] and JKNet [27]; (3) GNN models with a random receptive field: GCN + DropE-
dge [26] and IncepGCN + DropEdge [26]; (4) a GNN model with an adaptive receptive
field: DAGNN [22].

Settings. We conducted full-supervised node classification tasks and chose node clas-
sification accuracy as the metric to evaluate all models. Following the approach in [10,37],
we performed random training/validation/testing splits on all datasets, allocating 48%
of the nodes for training, 32% for validation, and the remaining nodes for testing. We
generated 10 random splits for all datasets and applied the same splits to all models. All
baseline models were implemented in PyTorch with the Adam optimizer [38], and their
hyper-parameters followed their original settings. For our AMD-GNN, we set β = 0.681
and 1 − β = 0.319 as the aggregation coefficients for two channels, respectively, based
on experiments and previous experience. Early stopping with a patience of 40 epochs
was employed. We tuned the remaining hyper-parameters of our model based on the
performance on the validation set, and detailed configurations can be found in Table 2. To
verify the performance of each model at different depths, we varied the number of layers
between 2, 4, 8, 16, 32, and 64. We ran experiments 10 times and report the mean values in
Table 3.

Table 2. The hyperparameters for AMD-GNN.

Dataset Hyperparameters

Cora hidden units: 64, lr: 0.01, dropout: 0.5, L2 : 0.005
Citeseer hidden units: 64, lr: 0.01, dropout: 0.5, L2 : 0.005
Pubmed hidden units: 64, lr: 0.01, dropout: 0.5, L2 : 0.005
Cornell hidden units: 64, lr: 0.01, dropout: 0.5, L2 : 0.005

Table 3. Summary of classification accuracy (%) results for different depths.

Dataset Method
Layers

2 4 8 16 32 64

Cora

GCN 86.29 84.53 55.47 29.56 29.46 29.54
GAT 82.9 82.9 21.15 16.38 OOM OOM
Jknet – 82.73 83.84 83.18 84.5 73

APPNP 14.37 57.1 84.72 86.11 85.65 85.63
GCN + DropEdge 81.49 83.1 29.54 29.54 29.54 29.54
Incep + DropEdge – 85.92 85.61 84.37 84.29 84.41

DAGNN 86.12 86.94 87.05 86.62 85.86 85.15
AMD-GNN 87.73 88.79 88.83 88.29 88.01 86.88

Symmetry 2024, 16, 406 7 of 12

Table 3. Cont.

Dataset Method
Layers

2 4 8 16 32 64

Citeseer

GCN 74.67 71.27 54.53 20.17 20.64 20.5
GAT 74.53 47.71 19.93 OOM OOM OOM
Jknet – 70.93 70.55 69.48 69.74 64.61

APPNP 5.99 52.62 72.54 72.82 73.01 73.45
GCN + DropEdge 71.32 69.27 33.3 21.72 19.67 18.77
Incep + DropEdge – 74.1 74.15 73.66 72.15 53.67

DAGNN 74.73 75.63 75.45 74.39 73.02 72.43
AMD-GNN 76.7 76.96 76.86 76.11 75.09 74.65

Pubmed

GCN 86.05 85.11 39.94 40.16 40.04 39.48
GAT 79.46 80.65 OOM OOM OOM OOM
Jknet – 80.44 80.2 76.08 76.23 77.37

APPNP 21.04 74.25 84.18 84.36 84.82 82.94
GCN + DropEdge 68.84 60.95 56.64 67.99 49.48 41
Incep + DropEdge – 87.89 86.6 84.28 OOM OOM

DAGNN 87.47 87.88 87.16 86.12 84.91 83.75
AMD-GNN 87.34 87.7 87.22 86.07 85.07 83.85

5.2. Analysis of the Deep Architecture

We investigated the performance of different deep methods under different depths
on the three citation datasets, as shown in Table 3, where the highest accuracy in each
column is highlighted in bold, and the second highest accuracy is underlined. Below are
the detailed observations.

Classification performance. As we can see from Table 3, DAGNN and AMD-GNN
with adaptive receptive fields are significantly capable of obtaining higher accuracy at
most depths on all three datasets. Furthermore, for the same number of layers, AMD-GNN
consistently achieves the best performance in all cases on the Cora and Citeseer datasets
and the best or second-best performance in most cases on the Pubmed dataset. Note that
AMD-GNN outperforms the classic GCN and GAT by 2.16% and 5.14% in mean accuracy,
respectively, compared with their best performance on the three datasets. These results
demonstrate the effectiveness of AMD-GNN on node classification.

Alleviating the over-smoothing problem. As shown in Table 3, for the basic GNN
models, GCN and GAT achieve the best results for shallow layers (i.e., two-layer or four-
layer). However, their performance decreases rapidly as the number of layers increases,
which indicates that GCN and GAT seriously suffer from over-smoothing. In particular,
memory overflow occurs in GAT as the number of layers increases. As the number of layers
increases, the performance of GCN with DropEdge declines. Particularly, its performance
drops sharply on the Cora and Citeseer datasets when the number of layers exceeds four.

The above observations indicate that GCN with DropEdge still suffers from over-
smoothing. Instead, the results of AMD-GNN are stable and significantly higher than those
of GCN, GAT, and GCN with DropEdge on the different datasets. Notably, AMD-GNN
with 64 layers can also achieve stable and comparable performance. Overall, the results
suggest that by adaptively selecting the optimal receptive field through dual granularity
channels, AMD-GNN alleviates the over-smoothing problem.

5.3. Ablation Study

We analyzed the node classification results of the fine-grained channel (AMDGNN-
Fine) and the coarse-grained channel (AMDGNN-Coarse) on various datasets (Cora, Cite-
seer, Pubmed). The horizontal axis represents the number of layers, while the vertical
axis denotes mean node classification accuracy on the test datasets. The detailed experi-
mental results are listed in Figure 2: (1) The blue bar represents AMD-GNN utilizing only
fine-grained channels for the node classification task. (2) The light blue bar represents
AMD-GNN utilizing only coarse-grained channels for the node classification task. (3) The

Symmetry 2024, 16, 406 8 of 12

cyan bar represents AMD-GNN utilizing both fine-grained and coarse-grained channels
for the node classification task.

Symmetry 2024, 16, x FOR PEER REVIEW 8 of 12

fine-grained channels for the node classification task. (2) The light blue bar represents
AMD-GNN utilizing only coarse-grained channels for the node classification task. (3) The
cyan bar represents AMD-GNN utilizing both fine-grained and coarse-grained channels
for the node classification task.

The experimental results from the three datasets demonstrate that AMD-GNN,
which aggregates information from two channels, achieves the highest accuracy. Addi-
tionally, the accuracy of AMD-GNN, only aggregating the fine-grained channel, surpasses
that of the coarse-grained channel. This finding suggests that each dimension’s im-
portance in the feature vector varies, and learning individual weights for each feature di-
mension aids in creating more distinguishable node representations. However, the exper-
iments also show that the combined results of both channels consistently outperform
those of the fine-grained channels alone, indicating that the coarse-grained channel pro-
vides structural information that the fine-grained channel cannot capture. Based on this
analysis, our two-channel design yields positive effects and proves more effective in mit-
igating over-smoothing.

(a) (b) (c)

Figure 2. These are the results of the ablation study with fine-grained channels and coarse-grained
channels: (a) Cora dataset results; (b) Citeseer dataset results; (c) Pubmed dataset results.

5.4. Model Depth Study
To study the ability of our model to mitigate the over-smoothing issue, we further

conducted experiments to assess the performance of our model with varying depths on
the Cora, Citeseer, and Pubmed datasets. The depths of our model ranged from 2 to 64,
increasing layer by layer, and the hyper-parameters followed the settings in Table 2. We
conducted 100 runs for each layer and show the relationship between the average test
accuracy and the number of layers in Figure 3. The results suggest that the performance
of our model remains stable or degrades slightly with an increasing number of layers. This
can be largely attributed to learning node representations through adaptive, receptive
field aggregation mechanisms combining fine-grained and coarse-grained channels in
AMD-GNN. Conversely, once the number of layers surpasses 32, certain deep learning
models like Jknet and DropEdge demonstrate significant performance deterioration,
whereas the traditional GCN experiences severe over-smoothing issues, as shown in Table
3.

Figure 2. These are the results of the ablation study with fine-grained channels and coarse-grained
channels: (a) Cora dataset results; (b) Citeseer dataset results; (c) Pubmed dataset results.

The experimental results from the three datasets demonstrate that AMD-GNN, which
aggregates information from two channels, achieves the highest accuracy. Additionally,
the accuracy of AMD-GNN, only aggregating the fine-grained channel, surpasses that of
the coarse-grained channel. This finding suggests that each dimension’s importance in the
feature vector varies, and learning individual weights for each feature dimension aids in
creating more distinguishable node representations. However, the experiments also show
that the combined results of both channels consistently outperform those of the fine-grained
channels alone, indicating that the coarse-grained channel provides structural information
that the fine-grained channel cannot capture. Based on this analysis, our two-channel
design yields positive effects and proves more effective in mitigating over-smoothing.

5.4. Model Depth Study

To study the ability of our model to mitigate the over-smoothing issue, we further
conducted experiments to assess the performance of our model with varying depths on
the Cora, Citeseer, and Pubmed datasets. The depths of our model ranged from 2 to 64,
increasing layer by layer, and the hyper-parameters followed the settings in Table 2. We
conducted 100 runs for each layer and show the relationship between the average test
accuracy and the number of layers in Figure 3. The results suggest that the performance of
our model remains stable or degrades slightly with an increasing number of layers. This
can be largely attributed to learning node representations through adaptive, receptive field
aggregation mechanisms combining fine-grained and coarse-grained channels in AMD-
GNN. Conversely, once the number of layers surpasses 32, certain deep learning models
like Jknet and DropEdge demonstrate significant performance deterioration, whereas the
traditional GCN experiences severe over-smoothing issues, as shown in Table 3.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 12

Figure 3. These are the results of AMD-GNN with different layers on the Cora, Citeseer, and Pub-
med datasets. The horizontal axis represents the number of layers, while the vertical axis denotes
the mean node classification accuracy on the three test datasets.

5.5. Convergence Speed Analysis
The convergence speed is an important factor for deep learning models. Conse-

quently, we conducted experiments using the Cora dataset as an example to verify the
convergence speed of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, 64).
We utilized identical hyper-parameters and followed the same training/validation/test
data splits as detailed in Section 5.1 for the Cora dataset. As shown in Figure 4, the con-
vergence speed of AMD-GNN remains stable with an increasing number of layers, achiev-
ing optimal performance within approximately 11 epochs. However, beyond 32 layers, a
slight decrease in convergence speed is observed, with even the 64-layer AMD-GNN con-
verging within approximately 30 epochs. This observation can be attributed to the decou-
pling mechanism of AMD-GNN, which effectively learns the graph structure and node
attributes while concurrently reducing training parameters and time through decoupled
transformation and propagation operation, thereby ensuring the robustness of our model
in deep layers.

Figure 4. These are the results of the correlation between the number of training iterations and the
test accuracy of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, and 64) on the Cora
dataset. The horizontal axis represents the number of iterations, while the vertical axis denotes the
test accuracy.

Figure 3. These are the results of AMD-GNN with different layers on the Cora, Citeseer, and Pubmed
datasets. The horizontal axis represents the number of layers, while the vertical axis denotes the
mean node classification accuracy on the three test datasets.

Symmetry 2024, 16, 406 9 of 12

5.5. Convergence Speed Analysis

The convergence speed is an important factor for deep learning models. Consequently,
we conducted experiments using the Cora dataset as an example to verify the convergence
speed of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, 64). We utilized
identical hyper-parameters and followed the same training/validation/test data splits
as detailed in Section 5.1 for the Cora dataset. As shown in Figure 4, the convergence
speed of AMD-GNN remains stable with an increasing number of layers, achieving optimal
performance within approximately 11 epochs. However, beyond 32 layers, a slight decrease
in convergence speed is observed, with even the 64-layer AMD-GNN converging within
approximately 30 epochs. This observation can be attributed to the decoupling mechanism
of AMD-GNN, which effectively learns the graph structure and node attributes while
concurrently reducing training parameters and time through decoupled transformation
and propagation operation, thereby ensuring the robustness of our model in deep layers.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 12

Figure 3. These are the results of AMD-GNN with different layers on the Cora, Citeseer, and Pub-
med datasets. The horizontal axis represents the number of layers, while the vertical axis denotes
the mean node classification accuracy on the three test datasets.

5.5. Convergence Speed Analysis
The convergence speed is an important factor for deep learning models. Conse-

quently, we conducted experiments using the Cora dataset as an example to verify the
convergence speed of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, 64).
We utilized identical hyper-parameters and followed the same training/validation/test
data splits as detailed in Section 5.1 for the Cora dataset. As shown in Figure 4, the con-
vergence speed of AMD-GNN remains stable with an increasing number of layers, achiev-
ing optimal performance within approximately 11 epochs. However, beyond 32 layers, a
slight decrease in convergence speed is observed, with even the 64-layer AMD-GNN con-
verging within approximately 30 epochs. This observation can be attributed to the decou-
pling mechanism of AMD-GNN, which effectively learns the graph structure and node
attributes while concurrently reducing training parameters and time through decoupled
transformation and propagation operation, thereby ensuring the robustness of our model
in deep layers.

Figure 4. These are the results of the correlation between the number of training iterations and the
test accuracy of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, and 64) on the Cora
dataset. The horizontal axis represents the number of iterations, while the vertical axis denotes the
test accuracy.

Figure 4. These are the results of the correlation between the number of training iterations and the
test accuracy of AMD-GNN with different numbers of layers (i.e., 2, 4, 8, 16, 32, and 64) on the Cora
dataset. The horizontal axis represents the number of iterations, while the vertical axis denotes the
test accuracy.

5.6. Analysis of the Heterophily Graphs

GCN is based on the homophily assumption that nodes with the same label or sim-
ilar attributes tend to connect [5]. The homophily ratio measures the fraction of edges
connecting nodes with the same label [38]. The existing GNN models perform well on
graphs with a high homophily ratio, and the existing deep models that overcome over-
smoothing are also generally applied to homophily graphs [3,26,39], i.e., Pubmed, Cora,
and Citeseer. However, their performance on heterophily graphs (i.e., a network structure
with a low homophily ratio in which nodes with distinct labels tend to be connected) is
not as good as that on homophily graphs. Consequently, we extended the full-supervised
node classification experiment to the Cornell dataset (i.e., a heterophily graph) to assess
the performance of AMD-GNN on heterogeneous graphs. We selected basic GNN models
(i.e., GCN [3] and GAT [4]), a GNN model with a fixed receptive field (i.e., APPNP [25]),
and the state-of-the-art GNN model with a random receptive field (i.e., DAGNN [22]) as
the baseline models, with the number of layers in the baseline model varying from 2 to 10.
The split of the Cornell dataset and the hyper-parameters setting of the baseline models
were the same as those for the homophily graph datasets. The detailed experimental results
on the heterophily graph Cornell dataset are listed in Figure 5.

As depicted in Figure 5, AMD-GNN consistently achieves superior mean accuracy for
the various depths, which proves that AMD-GNN can also maintain high performance
on heterophily graphs. Furthermore, it suggests that our model is more stable and less

Symmetry 2024, 16, 406 10 of 12

affected by the number of layers and performs with higher accuracy, for both homophily or
heterophily graphs in comparison to the baseline models.

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 12

5.6. Analysis of the Heterophily Graphs
GCN is based on the homophily assumption that nodes with the same label or similar

attributes tend to connect [5]. The homophily ratio measures the fraction of edges connect-
ing nodes with the same label [38]. The existing GNN models perform well on graphs with
a high homophily ratio, and the existing deep models that overcome over-smoothing are
also generally applied to homophily graphs [3,26,39], i.e., Pubmed, Cora, and Citeseer.
However, their performance on heterophily graphs (i.e., a network structure with a low
homophily ratio in which nodes with distinct labels tend to be connected) is not as good
as that on homophily graphs. Consequently, we extended the full-supervised node classi-
fication experiment to the Cornell dataset (i.e., a heterophily graph) to assess the perfor-
mance of AMD-GNN on heterogeneous graphs. We selected basic GNN models (i.e., GCN
[3] and GAT [4]), a GNN model with a fixed receptive field (i.e., APPNP [25]), and the state-
of-the-art GNN model with a random receptive field (i.e., DAGNN [22]) as the baseline
models, with the number of layers in the baseline model varying from 2 to 10. The split of
the Cornell dataset and the hyper-parameters setting of the baseline models were the same
as those for the homophily graph datasets. The detailed experimental results on the heter-
ophily graph Cornell dataset are listed in Figure 5.

Figure 5. These are the results of AMD-GNN with different layers on the heterophily graph Cornell
dataset. The horizontal axis represents the number of layers, while the vertical axis denotes the mean
node classification accuracy.

As depicted in Figure 5, AMD-GNN consistently achieves superior mean accuracy
for the various depths, which proves that AMD-GNN can also maintain high performance
on heterophily graphs. Furthermore, it suggests that our model is more stable and less
affected by the number of layers and performs with higher accuracy, for both homophily
or heterophily graphs in comparison to the baseline models.

6. Conclusions
In this paper, we proposed a deep GNN model to prevent over-smoothing by adap-

tively selecting the receptive field in different granularity conditions. In our model, the
receptive field of the nodes in the deep layer is distinct, so that the node representations
are distinguishable. We decouple nonlinear transformation and symmetrical propagation
to solve the problem of excessive parameters and the training challenges that arise from

Figure 5. These are the results of AMD-GNN with different layers on the heterophily graph Cornell
dataset. The horizontal axis represents the number of layers, while the vertical axis denotes the mean
node classification accuracy.

6. Conclusions

In this paper, we proposed a deep GNN model to prevent over-smoothing by adap-
tively selecting the receptive field in different granularity conditions. In our model, the
receptive field of the nodes in the deep layer is distinct, so that the node representations
are distinguishable. We decouple nonlinear transformation and symmetrical propagation
to solve the problem of excessive parameters and the training challenges that arise from
deep GNNs. Our comprehensive experiments show that AMD-GNN outperforms current
state-of-the-art models, demonstrating its superiority.

Author Contributions: Conceptualization, R.W. and F.L.; methodology, S.L.; software, B.F.; validation,
W.L. and S.C.; writing—review and editing, D.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Tianjin Municipal Education Commission scientific
research plan project, under grant No. 2021KJ077.

Data Availability Statement: Dataset are available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jin, D.; Yu, Z.; Jiao, P.; Pan, S.; He, D.; Wu, J.; Philip, S.Y.; Zhang, W. A survey of community detection approaches: From statistical

modeling to deep learning. IEEE Trans. Knowl. Data Eng. 2021, 35, 1149–1170. [CrossRef]
2. He, D.; Wang, T.; Zhai, L.; Jin, D.; Yang, L.; Huang, Y.; Feng, Z.; Philip, S.Y. Adversarial representation mechanism learning for

network embedding. IEEE Trans. Knowl. Data Eng. 2021, 35, 1200–1213. [CrossRef]
3. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and deep graph convolutional networks. In Proceedings of the International

Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 1725–1735.
4. Gao, H.; Wang, Z.; Ji, S. Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1416–1424.
5. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
6. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
7. Cui, G.; Zhou, J.; Yang, C.; Liu, Z. Adaptive graph encoder for attributed graph embedding. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 976–985.
8. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.

https://doi.org/10.1109/TKDE.2021.3104155
https://doi.org/10.1109/TKDE.2021.3103193

Symmetry 2024, 16, 406 11 of 12

9. Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; Zhang, C. Adversarially regularized graph autoencoder for graph embedding. arXiv
2018, arXiv:1802.04407.

10. Wang, C.; Pan, S.; Long, G.; Zhu, X.; Jiang, J. Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 889–898.

11. Cai, L.; Ji, S. A multi-scale approach for graph link prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7 February 2020; pp. 3308–3315.

12. Zhang, M.; Chen, Y. Weisfeiler-lehman neural machine for link prediction. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 575–583.

13. Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, Montréal, QC, Canada, 3–8 December
2018; pp. 5171–5181.

14. Gao, H.; Ji, S. Graph u-nets. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 4948–4960. [CrossRef] [PubMed]
15. Lee, J.; Lee, I.; Kang, J. Self-attention graph pooling. In Proceedings of the 36th International Conference on Machine Learning,

Long Beach, CA, USA, 9–15 June 2019; pp. 3734–3743.
16. Ma, Y.; Wang, S.; Aggarwal, C.C.; Tang, J. Graph convolutional networks with eigenpooling. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchoage, AK, USA, 4–8 August 2019; pp. 723–731.
17. Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; Leskovec, J. Hierarchical graph representation learning with differentiable

pooling. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, Montréal, QC, Canada, 3–8 December 2018; pp. 4805–4815.

18. Frasconi, P.; Gori, M.; Sperduti, A. A general framework for adaptive processing of data structures. IEEE Trans. Neural Netw. 1998,
9, 768–786. [CrossRef] [PubMed]

19. Zador, A.; Escola, S.; Richards, B.; Ölveczky, B.; Bengio, Y.; Boahen, K.; Botvinick, M.; Chklovskii, D.; Churchland, A.; Clopath, C.;
et al. Catalyzing next-generation artificial intelligence through neuroai. Nat. Commun. 2023, 14, 1597. [CrossRef] [PubMed]

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

22. Li, Q.; Han, Z.; Wu, X.M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 3538–3545.

23. Oono, K.; Suzuki, T. Graph neural networks exponentially lose expressive power for node classification. arXiv 2019,
arXiv:1905.10947.

24. Cong, W.; Ramezani, M.; Mahdavi, M. On provable benefits of depth in training graph convolutional networks. Adv. Neural Inf.
Process. Syst. 2021, 34, 9936–9949.

25. Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then propagate: Graph neural networks meet personalized pagerank. In
Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

26. Rong, Y.; Huang, W.; Xu, T.; Huang, J. Dropedge: Towards deep graph convolutional networks on node classification. arXiv 2019,
arXiv:1907.10903.

27. Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.i.; Jegelka, S. Representation learning on graphs with jumping knowledge
networks. In Proceedings of the International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15
July 2018; pp. 5453–5462.

28. Zhao, L.; Akoglu, L. Pairnorm: Tackling oversmoothing in gnns. arXiv 2019, arXiv:1909.12223.
29. Zhou, K.; Huang, X.; Zha, D.; Chen, R.; Li, L.; Choi, S.H.; Hu, X. Dirichlet energy constrained learning for deep graph neural

networks. Adv. Neural Inf. Process. Syst. 2021, 34, 21834–21846.
30. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural

Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 1024–1034.

31. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
32. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.
33. Wang, X.; Zhu, M.; Bo, D.; Cui, P.; Shi, C.; Pei, J. Am-gcn: Adaptive multi-channel graph convolutional networks. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Virtual Event, 23–27 August
2020; pp. 1243–1253.

34. Liu, M.; Gao, H.; Ji, S. Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 338–348.

35. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008, 29,
93. [CrossRef]

36. Pei, H.; Wei, B.; Chang, K.C.C.; Lei, Y.; Yang, B. Geom-gcn: Geometric graph convolutional networks. arXiv 2020, arXiv:2002.05287.

https://doi.org/10.1109/TPAMI.2021.3081010
https://www.ncbi.nlm.nih.gov/pubmed/33999813
https://doi.org/10.1109/72.712151
https://www.ncbi.nlm.nih.gov/pubmed/18255765
https://doi.org/10.1038/s41467-023-37180-x
https://www.ncbi.nlm.nih.gov/pubmed/36949048
https://doi.org/10.1609/aimag.v29i3.2157

Symmetry 2024, 16, 406 12 of 12

37. Jin, D.; Wang, R.; Ge, M.; He, D.; Li, X.; Lin, W.; Zhang, W. Raw-gnn: Random walk aggregation based graph neural network.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022;
pp. 2108–2114.

38. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015.

39. Liu, Z.; Chen, C.; Li, L.; Zhou, J.; Li, X.; Song, L.; Qi, Y. Geniepath: Graph neural networks with adaptive receptive paths. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4424–4431.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	Preliminary
	Semi-Supervised Node Classification
	Graph Neural Networks

	AMD-GNN Model
	Experiments
	Experimental Setup
	Analysis of the Deep Architecture
	Ablation Study
	Model Depth Study
	Convergence Speed Analysis
	Analysis of the Heterophily Graphs

	Conclusions
	References

