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Abstract: In longitudinal studies, subjects are repeatedly observed at a set of distinct time points
until the terminal event time. The time-varying coefficient model extends the parametric method and
captures the dynamic trajectories of time-dependent covariate effects, thus enabling it to describe the
potential relationship between the longitudinal variable and the observed time points. In this study,
we propose a novel approach to the estimation of medical costs using a symmetric kernel smoothing
method in the time-varying coefficient joint model. A smooth function of medical costs is derived by
weighting the values of longitudinal data at all distinct observed time points via the combination
of the kernel method and the inverse probability weighting method. For the simulation study, we
first set up the true functions of time-varying coefficients; we then generated random samples for
covariates and censored survival times. Subsequently, the longitudinal data of response variables
could be produced. Further, numerical simulation experiments were conducted by using the proposed
method and applying R code to the generated data. The estimated results for the parameters and
non-parametric functions were compared with different settings. The numerical results illustrate that
as the sample size increases, the bias and model-based standard errors decrease, and the performance
improves with larger sample sizes. The estimates of functions in the model almost coincide with
the true functions, as shown in the figures of the simulation study. Furthermore, the consistency
of the obtained estimator is demonstrated via theoretical analysis, and a numerical simulation is
performed to illustrate the performance of the proposed estimators. The proposed model is applied to
a real-world data set acquired from a multicenter automatic defibrillator implantation trial (MADIT).

Keywords: varying coefficients; survival model; kernel function; medical cost; right censoring

1. Introduction

In medical cost studies, researchers need to use appropriate methods to evaluate the
average medical cost of a patient across their whole life. Due to censoring mechanisms, the
survival function is generally not identifiable. Bang and Tsiatis [1] introduced a class of
weighted estimators that appropriately account for censoring; although extensive simula-
tion studies showed that the estimators perform well in finite samples, even with heavily
censored data, the estimator is not efficient, and the computations are complex. Lin et al. [2]
partitioned the entire time period of interest into a number of small intervals and esti-
mated the average total cost to minimize the bias induced by censoring. Furthermore, the
estimators were proven to be asymptotically normal. Huang and Lovato [3] formulated
weighted log-rank statistics in a marked point process framework and developed the
asymptotic theory. The above methods have been applied to estimate the cumulative mean
function. However, in addition to censoring mechanisms, data often consist of longitudinal
outcomes, time-dependent/independent covariates, event times, and censoring times. In
longitudinal studies, subjects are repeatedly observed at a set of distinct time points until
the terminal event time. The joint model [4] contains both a longitudinal sub-model, to
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express the effect on longitudinal measurements from time-dependent covariates, and a
survival sub-model, to reveal the survival function association with the longitudinal part.
Time-independent covariates are generally present in the survival sub-model due to the
absence of repeated measurements.

Deng [5] considered a linear parametric regression model to describe longitudinal data
and used the joint modeling technique and the inverse probability weighting method [6] to
estimate the cumulative mean function. Although this method can also solve the problem
of handling time-dependent covariates and right-censored time-to-event data, it may still be
restrictive for capturing initial data.The main reason for this is that the effects of covariates
on longitudinal outcomes are considered time-independent constants.

Thus, some researchers have focused on non-parametric longitudinal sub-models (e.g.,
Hoover et al. [7]; Zhao et al. [8]; Li et al. [9]; Do et al. [10]). There have been numerous
approaches to estimating non-parametric estimators in the recent literature, such as kernel,
smoothing spline, regression spline, and wavelet-based methods. For instance, Eubank
and Speckman [11] proposed a well-behaved non-parametric kernel regression model in
a small-sample study with bias-corrected confidence bands and proved the asymptotic
properties. Wu et al. [12] minimized the local square criterion and obtained the asymptotic
distributions for kernel estimators. However, when the covariate dimension is too high, the
smooth estimation of general multivariate non-parametric regression may require a large
sample size, and the smoothing results may be difficult to interpret.

Several time-varying coefficient longitudinal models have been considered in recent
studies. For instance, You et al. [13] considered the time-varying coefficient as a polynomial
basis regression spline, proposed a mixed-effects model for multiple longitudinal outcomes
using the local polynomial method, and provided tuning parameters and variable selection.
However, this model can only be used in continuous longitudinal outcomes. Observed
data tend to be discrete in many applications. Moreover, time-independent covariates
were not considered in their study [13]. The joint model with kernel smoothing varying
coefficients in the longitudinal sub-model can be used to estimate the cumulative mean
function with discrete data. Therefore, in this study, we estimate the cumulative mean
function with time-dependent/independent covariates using the kernel method in a joint
time-varying coefficient model based on right/interval censoring history process data. In
our method, the estimator of the mean state function is unbiased at time points where
all subjects are observed. The reason for this is that, after smoothing the function with
the kernel method, the values of the original sample points are not changed. Thus, we
can utilize all the known information for estimation without data bias. Moreover, in our
simulation study, the estimator of the cumulative mean state function is almost equal to the
value of the preassigned function at any time point.

The remainder of the paper is organized as follows: Section 2 establishes the joint
varying coefficient model and proposes the estimators of time-varying coefficients based
on our method. Section 3 demonstrates the feasibility of this method through numerical
simulations. Section 4 applies the proposed model to a real-world data set from a multicen-
ter automatic defibrillator implantation trial (MADIT). Section 5 discusses the influence of
bandwidth h selection and concludes this paper. Finally, the appendices provide the proofs
of the main results.

2. Estimation for a Time-Varing Coefficient Model

It is assumed that history process data are right-censored. Let T denote the terminal
event time, and C denote the censoring event time. Let Y(t) denote the state process
which is related to the time-dependent covariate X(t) and time-independent covariate
W . The state process satisfies Y(t) = 0 when t ⩾ T. For i = 1, 2, . . . , m, let Ti and Ci
denote the true values of T and C for the ith subject. Further, δi = I(Ti ⩽ Ci) denotes the
censoring indicator. Assume that censoring time is independent of terminal event time and
the state process. Let yi(t), q-dimensional vector xi(t) = (xi1(t), xi2(t), . . . , xiq(t))T , and
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p-dimensional vector wi = (wi1, . . . , wip)
T be the observed history of Y(t), X(t), and W for

the ith subject.
Now, the time-varying coefficient joint model can be formed as follows:{

yi(t) = xi(t)T β(t) + ϵi(t),
hi(t) = h0(t) exp{wiγ + α(yi(t)− ϵi(t))},

(1)

where β(t) is time-varying coefficient parameter, α is the association coefficient of the
longitudinal outcome to the hazards for occurring event, h0(t) is the baseline hazards
function, which is known in our model, and ϵi(t) is the random error with ϵi(t) ∼ N(0, σ2).
Further, it is assumed that ϵ(t) is independent of terminal event T conditional on X(t)
and W.

2.1. Estimation of Time-Varying Coefficient in Longitudinal Model

We should notice that the observations for ith subject (i = 1, 2, . . . , m) are not con-
tinuous but only able to be obtained at some special times tij, (j = 1, 2, . . . , ni). The state
process Y(t) can be the observed until the event time T∗

i = min(Ti, Ci) Thus, let yi(tij) be
the observed state history. For the sake of illustration, assume yi(tij) = 0 when t ⩾ T∗.

For convenience, define sets ∆i = {tij, j = 1, 2, . . . , ni} for i = 1, 2, . . . , m and
∆ = {t(k); k = 0, 1, 2, . . . , N}, where 0 = t(0) < t(1) < t(2) < . . . < t(N) are the observed
distinct time points for all subjects. N denotes the number of all the distinct observed
time points.

The estimator β̂(t) of the time-varying coefficient β(t) can be calculated by minimizing
the following equation:

LN(t) =
N

∑
k=1

Wk,h(t − t(k))

{
m

∑
i=1

[I{T∗
i ⩾ t(k)}{yi(t(k))− xi(t(k))

T β(t)}]2
}

, (2)

where

Wk,h(t − t(k)) =
Kh(t − t(k))

∑N
k=1 Kh(t − t(k))

,

Kh(·) is the kernel weight function. The bandwidth, which is generally selected according
to the observed time points, reveals the distance of t and t(k). There is a major distinction
between the estimation from Equation (2) and the estimation in Wu [12] since the censoring
mechanism, indicator I{T∗

i ⩾ t(k)}, is necessary in order to avoid incomplete data due
to censoring.

Remark 1. We assume that Kh(·) is the Epanechnikov kernel function. The cross-validation method
can be used to select the appropriate kernel function. The kernel function with the smallest induced
error is considered the best. More details on kernel function selection can be found in [14].

Equivalently, we write Equation (2) in the matrix form:

LN(t) =
N

∑
k=1

(Yk − Xkβ(t))TD̃k(t)(Yk − Xkβ(t)), (3)

where

Yk =

y1(t(k))
...

ym(t(k))

,

Xk =

 x11(t(k)) · · · x1q(t(k))
... · · ·

...
xm1(t(k)) · · · xmq(t(k))

,
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and
D̃k(t) = diag

(
Wk,h(t − t(k))I{T∗

1 ⩾ t(k)}, . . . , Wk,h(t − t(k))I{T∗
m ⩾ t(k))

)
,

It is assumed that
(

∑N
k=1 XT

t(k)
D̃kXt(k)

)
is also invertible. By minimizing Equation (3),

β̂(t) can be expressed as the following q-dimensional column vector:

β̂(t) =

(
N

∑
k=1

XT
k D̃k(t)Xk

)−1( N

∑
k=1

XT
k D̃k(t)Yk

)
. (4)

The traditional method for bandwidth selection is K-fold cross-validation (CV). Time-
varying coefficients complicate the calculation. However, ‘leave-one-subject-out’ cross-
validation proposed by Rice and Sliverman [15] can be used in such scenarios. In this case,
the kernel weight function is K(t − t(k); h), the estimator of time-varying coefficient β(t) is
β̂(t; h). Minimizing the following equation:

CV(h) =
N

∑
k=1

m

∑
i=1

E[I{T∗
i ⩾ t(k)}{yi(t(k))− xi(t(k))

T β(−i)(t(k); h)}]2,

where β̂
(−i)

(t(k); h) is the kernel estimator computed with all measurements except the
measurements of ith subject . Then, the cross-validation bandwidth can be obtained.

2.2. Estimation of Survival Model

Define mi(t) = yi(t)− ϵi(t) = xi(t)T β(t), and then the estimate of mi(t) is

m̂i(t) = xi(t)T β̂(t).

The data related to survival sub-model consist of {(xi(t), wi, T∗
i , δi, ); i = 1, 2, . . . , m}.

For each given t ∈ R,

hi(t) = h0(t) exp{wiγ + αmi(t)},

The Cox partial maximum likelihood function [4] is

Lp(γ, α) =
m

∏
i=1

 exp{wiγ + αmi(T∗
i )}∫ T∗

i
0 exp{wiγ + αmi(s)}ds

δi

. (5)

The log-partial likelihood function for Equation (5) is

LL(θ) = log Lp(γ, α)

=
m

∑
i=1

δi

[
wiγ + α(mi(T∗

i ))− log
∫ T∗

i

0
exp{wiγ + αmi(s)}ds

]
.

(6)

Then, replacing mi(t) by the estimator m̂i(t), the estimator θ̂ = (γ̂, α̂) can be obtained
by maximizing Equation (6).

We define the survival function of T as:

ST(t) = P(T > t).

The estimate of ST(t) can be obtained from the hazards function in joint model:

ŜT(t) = exp
{
−
∫ t

0
h0(s) exp{wTγ̂ + α̂m̂(s)}ds

}
.
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Theoretically, the estimate ŜT(t) is related to the values of covariates x(s) for s ∈ [0, t].
Since x(t) generally is not continuously observed, the estimate ŜT(t) can not be derived
even at observed time points. ŜT(t) can be calculated only if x(t) can be observed continu-
ously. Thus, we replace ŜT(t) with the Kaplan–Meier estimator [16]. Alternatively, in terms
of the law of large numbers, the survival function can also be estimated as follows:

Ŝ(t) =
1
m

m

∑
i=1

I{Ti ⩾ t}. (7)

Moreover, the estimate of the survival function of Ŝ∗(t) = P(T∗ > t) for T∗ can be obtained
in a similar way.

2.3. Estimation of Cumulative Mean State Function

Suppose ν(t) is the mean function of Y(t), that is, given X(t), ν(t) = E(Y(t) | X(t)).
Because of the censoring, the proposed estimator ν̂(t) for the mean state function ν(t) at
any time is as follows:

ν̂(t) =
1
m ∑m

i=1 I{T∗
i ⩾ t}Ŷi(t)

Ŝ∗(t)
, (8)

where Ŷi(t) = xi(t)β̂(t) is the fitted value of Yi(t) at time point t.
Then, the cumulative mean function µ(t) for any time point t can be obtained as:

µ̂(t) =
∫ t

0
ν̂(s)ds. (9)

2.4. The Asymptotic Property of Estimators

Here, we discuss the asymptotic property of estimators. To rigorously define the
statements, we introduce various notations. Let R(t) denote the observed covariate pro-
cesses, such as baseline information, study time, and so on, that is, R(t) = {x(t), w}. Then,
let Z̄R(t) denote the longitudinal covariate history prior to time t and Z̄Y(t) denote the
response history prior to time t, that is, Z̄R(t) = {R(s) : s < t} and Z̄Y(t) = {Y(s) : s < t}.
Furthermore, we use ∥ · ∥ to denote the Euclidean norm in real space and R′(t) to denote
the derivative of R(t) with respect to time t. It is assumed that all observed time points tij
are independent of each other and follow a distribution FT with density fT .

Assumption 1. X(t) is Lipschitz-continuous with order λ0, |E(XT
l Xl)− E(XT

s Xs)| ⩽ C0|t(l) −
t(s)|λ0 for any t(l) and t(s) in support of fT and some C0 > 0, and β(t) and fT are Lipschitz-
continuous with orders of λ1 > 0 and λ2 > 0, respectively.

Assumption 2. o(t) = lim∆t→0 E{ϵ(t + ∆t)ϵ(t)} and w(t) = E{ϵ2(t)} are continuous.

Assumption 3. Wk,h(·) is square-integrable that integrates to one and satisfies
∫

uWk,h(u)du = 0,
m1 =

∫
u2Wk,h(u)du < ∞, and m2 =

∫
W2

k,h(u)du < ∞ , while h → 0 and Nh → ∞ as
N → ∞.

Assumption 4. The bandwidth satisfies h = N−1/5M0 for some constant M0.

Assumption 5. limn→∞ N−6/5 ∑n
i=1 ni = U for some 0 ⩽ U < ∞

Theorem 1. Under Assumptions (1)–(5), the estimator β̂(τ) defined in Equation (4) is asymptoti-
cally multivariate normal for any τ ∈ [0, T] as m → ∞.

We summarize the asymptotic normality of β̂(τ) at a fixed point τ, where τ ∈ R in
Appendix A.
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Remark 2. Most assumptions are similar regularity conditions as that in Wu et al. [12]. As-
sumptions 1 and 2 are rigorous statements for which

(
∑N

k=1 XT
t(k)

D̃kXt(k)

)
is positive-definite and

invertible asymptotically. Assumption 3 ensures that Wk,h(·) has a compact support on R. Assump-
tions 4 and 5 are results from finite moments in Assumptions 1 and 2. More discussions about the
asymptotic risk for the kernel estimators can be found in [12].

Theorem 2. It is assumed that for t ∈ (0, T), E(yi(t) | xi(t)) = E(Y(t) | X(t)), the estimator
ν̂(t) defined in Equation (8) is an unbiased estimator for any t ∈ ∆.

The proof can be found in Appendix B.
Based on Zeng and Cai [17], the following assumptions are imposed on the joint model.

Assumption 6. For any t ∈ [0, T], the covariate process R(t) is fully observed and conditional on
Z̄R(t), Z̄Y(t), and T ⩾ t; the distribution of R(t) depends only on Z̄R(t). R(t) is continuously
differentiable in [0, T] and maxt∈[0,T] ∥ R′(t) ∥< ∞ with a probability of one.

Assumption 7. The censoring time C depends only on Z̄R(t) and R(t) for any t < T conditional
on Z̄R(t), Z̄Y(t), R(t) and T ⩾ t.

Assumption 8. Full-rank P(XTX ) is positive. Additionally, if there is an existing constant vector
C0 satisfying X(t)TC0 = g(t) for a deterministic function g(t) for all t ∈ [0, T] with a positive
probability, then C0 = 0 and g(t) = 0.

Assumption 9. The true value of parameter θ =
(
σ2, γT , α

)
satisfies ∥ θ ∥⩽ Q0, σ2

0 > Q−1
0 for a

known positive constant Q0.

Assumption 10. The baseline hazard function h0(t) is bounded and positive in [0, T].

Assumption 11. There is an existing positive constant a > 0 satisfying ST(T) ⩾ a.

Remark 3. Assumption 6 serves as a fundamental statement in joint models, indicating that the
association between the history process and the survival time is due to observed covariate processes,
such as baseline information, study time, and so on, denoted by R(t). Assumption 7 means that
there exist some appropriate measures such that the intensity function of Nc(t) exists. Assumption 8
is the identifiability assumption in a linear mixed-effects model. Assumptions 9–11 imply that,
conditional on Z̄R(t) and R(t), the probability of a subject surviving after time τ is at least some
positive constant. Theorem 3.1 in Zeng and Cai [17] states the strong consistency of the maximum
likelihood estimator. More discussions on the assumptions can be found in [17].

Theorem 3. Under Assumptions (1)–(11), the estimators ν̂(t) defined in Equation (8) and µ̂(t)
defined in Equation (9) are consistent for any t ∈ [0, T].

The proof can be found in Appendix C.

3. Simulation

In this section, some numerical results are presented. In our simulation, the joint
model can be described as:{

Y(t) = x(t)β(t) + ϵ(t),
h(t) = h0(t) exp{γw + α(Y(t)− ϵ(t))},

where Y(t) is the state function, x(t) = (1, x1(t), · · · , xp(t)) is the vector of covariates for
regression parameters, β(t) = (β0(t), β1(t), · · · , βp(t))T is the time-varying coefficients,
w is the covariates for regression parameter γ, α is the association parameter, and ϵ(t) ∼
N(0, 0.1).
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The standard deviation (Std.dev) and the root mean square errors (RMSE) with
RMSE = [ 1

N ∑N
k=1(ĝ(t(k))− g(t(k)))2]

1
2 of overall estimates calculated by R 4.3.1 [18] are

used to assess the quality of estimators. We summarize the steps in the following procedure:

1. Set the sample size n, the true function β(t) = (β0(t), β1(t), β2(t)), the true value of
parameters α, γ, and the rate of censoring r;

2. Generate a random sample gi ∼ U[0, 1];
3. Derive the random sample si of lifetime with the hazards function h(t);
4. Generate a random sample of censoring Ci ∼ U[a, b];
5. Set ti = min{vi, ci}, δi = I{vi ≤ ci};
6. Generate the random sample of the time-dependent covariates x1(s), x2(s), and the

baseline hazards function h0(s).
7. For s = {1, 2, . . . , ti}, generate the response variables y(s) = β0 + β1x1(s) + β2x2(s).

Output the estimated function β̂(t), µ̂(t), the estimated value of parameters α̂ and γ̂,
the bias and the std.err of parameters α and γ, and the RMSE of the estimated function
ν̂(t), µ̂(t).

We utilize packages of ‘MASS’, ‘splines’, ‘survival’, ‘nlme’, ‘JM’, ‘lattice’, ‘mvtnorm’,
‘tibble’ and ‘ggplot2’ in our simulation study.

Now, we consider the following scenarios:
Scenario 1: Set x(t) = (1, x1, x2), x1 = r(1.5 sin(t) + 1) where r ∼ Bernouli(0.5),

x2 ∼ U[1, 2], β(t) = (β0, β1, β2)
T , β0(t) = 1.5t, β1(t) = 1.2t0.5, β2(t) = t0.2, w ∼ U[0, 1],

γ = 1.0, α = 0.25, and h0(t) = h0.
Scenario 2: Set x(t) = (1, x1, x2), x1 = r log(t) where r ∼ N(1, 0.5), x2 ∼ exp(0.5),

β(t) = (β0, β1, β2)
T , β0(t) = t, β1(t) = t0.5, β2(t) = sin(t), w ∼ U[0, 1], γ = 1.0, α = 0.15,

and h0(t) = h0.
The following is the form based on the joint model:{

Y(t) = β0(t) + β1(t)x1(t) + β2(t)x2 + ϵ(t),
h(t) = h0(t) exp{γw + α(β0(t) + β1(t)x1(t) + β2(t)x2}.

After 1000 replications in R, we obtain the results of the estimation at different sample
sizes. In each scenario, we control the censoring rate by about 25%.

In scenario 1, we set the true values of parameters as α = 0.25 and γ = 1.0. In the
scenario 2, we set the true values of parameters as α = 0.15 and γ = 1.0. From the proposed
estimators given in Equations (8) and (9), fitted values of the state function v(t) and the
cumulative mean function µ(t) for any time points can be computed.

Tables 1 and 2 present the estimates of the root of mean square errors (RMSEs) of the
state function v(t) and the cumulative mean function µ(t) with different numbers of time
points N for the two scenarios. The RMSE is small when N = 106 because the estimators
of v(t) are unbiased at observed time points. Since the estimators are biased at other time
points, the RMSE increases as N increases.

Table 1. The estimates of RMSE with different numbers of N for scenario 1.

Parameter N = 106 N = 221 N = 441

ν(t) 0.9019575 1.291602 1.762792
µ(t) 11.42673 15.1283 27.13671

Table 2. The estimates of RMSE with different numbers of N for scenario 2.

Parameter N = 106 N = 221 N = 441

ν(t) 1.830297 2.434687 3.582806
µ(t) 19.03169 45.26685 84.30626
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Tables 3 and 4 summarize the main findings of fixed parameters. The results show
that as the sample size increases, the bias and model-based standard errors decrease, which
coincides with empirical results reasonably well. The performance improves with larger
sample size. Note that it is common for the Std. Err. of γ to be very large, sometimes
reaching as large as 0.2 in small samples for linear mixed-effects models (see Table 1 in [5]).
In the semi-parametric model estimation based on polynomial regression, the Std. Err. of γ
even reaches 0.3 (see Tables 1 and 2 in [19]). Compared with these methods, the Std. Err. of
γ in our paper is less.

Table 3. The estimate results of the event process for scenario 1.

Parameter True
n = 125 n = 250 n = 500

Bias Std. Err. Bias Std. Err. Bias Std. Err.

α 0.25 −0.0345 0.0300 −0.0302 0.0212 −0.0300 0.0154
γ 1.00 −0.0119 0.2590 0.0275 0.1730 −0.0040 0.1260

Table 4. The estimate results of the event process for scenario 2.

Parameter True
n = 125 n = 250 n = 500

Bias Std. Err. Bias Std. Err. Bias Std. Err.

α 0.15 −0.0286 0.0311 −0.0230 0.0188 −0.0223 0.0116
γ 1.00 0.0219 0.1170 0.0208 0.1160 0.0235 0.1120

Figures 1 and 2 present the proposed estimated functions of β(t) as a continuous curve
and true values of β(t) at time points t ∈ ∆ as a series of points. Figures 3 and 4 present the
estimated functions of β(t) using the local polynomial regression method. In Scenario 1,
our method is not significantly superior to polynomial regression. However, in Scenario 2,
the term regression method does not fit β2(t) well, and our method estimates β̂2(t) close
to the true value. This is because β2(t) is set up as a trigonometric function rather than
a linear combination of power functions. It can be seen that while the local polynomial
regression method is suitable for power basis functions, the kernel smoothing method fits
the function better, even in such cases.

(a) β0(t) (b) β1(t)

(c) β2(t)

Figure 1. True values at observed time points and estimated function of β(t) for scenario 1.
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(a) β0(t) (b) β1(t)

(c) β2(t)

Figure 2. True values at observed time points and estimated function of β(t) for scenario 2.

(a) β0(t) (b) β1(t)

(c) β2(t)

Figure 3. Polynomial regression estimator of β(t) for scenario 1.

(a) β0(t) (b) β1(t) (c) β2(t)

Figure 4. Polynomial regression estimator of β(t) for scenario 2.

Furthermore, Figures 5 and 6 show the true curves and fitted values of the state
function v(t) and the mean of cumulative mean function µ(t). In each figure, the estimated
functions approximate to the values of true functions. Figures 7 and 8 show the results of
the local polynomial regression method. Similar to the previous conclusion, the method we
proposed works better.
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(a) v(t) (b) µ(t)

Figure 5. True values at observed time points and estimated function of v(t) and µ(t) for scenario 1.

(a) v(t) (b) µ(t)

Figure 6. True values at observed time points and estimated function of v(t) and µ(t) for scenario 2.

(a) v(t) (b) µ(t)

Figure 7. Polynomial regression estimator of v(t) and µ(t) for scenario 1.

(a) v(t) (b) µ(t)

Figure 8. Polynomial regression estimator of v(t) and µ(t) for scenario 2.

4. An Application to MADIT Data

In this section, we validate the proposed estimator with a real data set from a multicen-
ter automatic defibrillator implantation trial (MADIT). MADIT data contain 181 subjects
(patients) from 36 centers in the USA that were observed at a total of 134,853 discrete time
points. With the 181 patients, 89 of them chose to implant cardiac defibrillators, while
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another 92 did not. Throughout this section, we encode the ‘implanted’ group as ICD = 1
and ‘not implanted’ group as ICD = 0. Since the effect of treatment of whether to implant
cardiac defibrillators (ICDs) did not directly induce any medical costs but actually affected
the expected survival time, we consider it as the time-independent covariate in the survival
sub-model.

The observed patients have six types of costs that can be observed daily from the start
to the death time or censoring time: Type 1: hospitalization and emergency department
visits; Type 2: outpatient tests and procedures; Type 3: physician/specialist visits; Type 4:
community services; Type 5: medical supplies; Type 6: medication. These costs directly
drive medical costs, thus they should be considered as time-dependent covariates in the
longitudinal process sub-model. It should be pointed out that the whole observation
contains quite a lot of data points, so the R-code cannot work for the daily cost data.
Therefore, we merge the data by combining 12 days into one time unit.

These data also include the patients’ ID codes, observed survival times in days, and
death indicators.

Now, in the data set, we encode the total 181 patients as follows:

1. ID code (from 1 to 181);
2. Treatment code (1 for ICD and 0 for conventional);
3. Observation of survival time;
4. Death indicator(1 for death, 0 for censored);
5. Merged medical costs of type 1–6.

To analyze this data set, we describe the model as follows:
Yi(t) =β0(t) + β1(t)x1i(t) + β2(t)x2i(t) + β3(t)x3i(t) + β4(t)x4i(t)

+ β5(t)x5i(t) + β6(t)x6i(t) + ϵi(t),
hi(t) = h0(t) exp{γwi + α(Yi(t)− ϵi(t))},

where for r = 1, 2, . . . , 6, xir(t) = 1 if type = 1, otherwise, xir(t) = 0, wi = 1 for the ICD
group and wi = 0 for the not implanted group. The estimated parameters γ̂ and α̂ in
survival sub-model are obtained by Cox partial maximum likelihood method, they are
always asymptotically normal. The estimates of γ and α in this paper are attained by calling
‘coxph()’ and ‘method = peicewise-PH-GH’ in the JM package. The Std. Err. and p-value
are automatically produced.

In this case, β(t) can be considered the relationship between the natural logarithm
of medical cost and time unit. The fitted curve is illustrated in Figure 9. Time-varying
parameters more accurately describe the effect of covariates on state function over time,
such as β5(t); after a certain time point, x5(5) does not affect the state function, although
the in early stage it does.

Table 5 shows the estimates of the survival sub-model. The association effect α is
positive, which corresponds to reality, that is, patients in a serious life condition require
more medical attention. In other words, serious illness leads to higher medical costs,
corresponding to lower survival rates. This further supports that our model is efficient and
reasonable. However, due to the large p-value of the result, this conclusion is not specific,
which should be further tested using a large sample in future research. The treatment effect
γ is negative, which corresponds to reality, that is, an automatic defibrillator implantation
trial can reduce the risk of death. In other words, the ‘implanted’ group (ICD = 1) has a
lower risk of death. This conclusion is supported by the small p-value of the result.
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(a) β0(t) (b) β1(t)

(c) β2(t) (d) β3(t)

(e) β4(t) (f) β5(t)

(g) β6(t)

Figure 9. Estimated function of β(t).
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Table 5. Estimate results of the event process.

Parameter Value Std. Err. p-Value

Treatment −1.2219 0.3362 0.0003
Association effect 0.2519 0.2087 0.2274

Table 6 presents the estimated values of the cumulative cost for 5 years and the total
treatment period. Comparing Sub-figure(a) with Sub-figure(b) in Figures 10 and 11, we
realize that the fitted points for the mean medical cost based on the current approach better
describe the elaborate trajectories of medical costs, and the result for the fitted points of
the cumulative mean medical cost based on the current approach exhibit a similar trend to
Li’s [19] result; however, the result is more accurate and shows continuous change, which,
in turn, leads to improved understanding of real-world data.

Table 6. Estimated cumulative costs for 5 years and total period.

Year 1 Year 2 Year 3 Year 4 Year 5 Total

21,661.83 45,403.10 67,981.31 101,983.30 134,749.20 135,412.00

(a) Fitted values of cost based on current approach.

(b) Fitted points of cost based on the semi-parametric estimating approach.

Figure 10. Fitted points of cost based on current approach and the semi-parametric estimating approach.



Symmetry 2024, 16, 389 14 of 19

(a) Fitted values of cumulative cost based on current approach.

(b) Fitted points of cumulative cost based on the semi-parametric estimating
approach .

Figure 11. Fitted points of cumulative cost based on current approach and the semi-parametric
estimating approach.

Compared with parametric/semi-parametric estimation, our method suggests a
smoother time-varying mean medical cost function, which is no longer a straight line
with an observable change rate, but exhibits more fluctuations over time. In practical
situations, government agencies or insurance companies would not know which treatment
was selected by a patient. The estimated cumulative mean function provides them with
a more accurate statistical decision recommendation for macro allocation. For example,
we should consider the additional changes in medical costs because they would suddenly
increase or decrease at distinct time points.

Moreover, the estimated marginal survival function is smoother compared with the
Kaplan–Meier estimator. The result is similar to research by Li’s [19], as shown in Figure 12.
The solid line is the estimated survival rate, and the dotted line represents the 95% confi-
dence interval of the estimated survival rate.
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Figure 12. Marginal survival compared with Kaplan–Meier estimator.

5. Discussion

Generally, some estimate methods can lead to biased estimates in the model, and the
time-varying coefficient model compensates for this shortcoming. In this study, we provide
an estimation of the time-varying coefficient using the kernel function technique. When
the covariates are continuous, the continuous state function can be obtained, allowing
for the derivation of the continuous cumulative mean state function. In summary, our
method is more precise because the kernel function smooths the estimator; more impor-
tantly, the proposed estimator at the original observed true points is unbiased. Theorem 2
demonstrates this perspective. In our numerical simulation and application analysis, we
consider the observation interval to be a unit of 1, and we chose a bandwidth h of 1 in
the kernel smoothing function. Notably, in cases where the observation time interval is
not 1 or involves interval censoring, we must choose the appropriate bandwidth. Many
studies on kernel function have proposed methods for choosing the bandwidth. In general,
too large a bandwidth distorts data, and too small a bandwidth does not lead to a smooth
continuous function. Moreover, as h → ∞, β(t) turns out to be a series of constants, that is,
a time-independent parametric estimator.

In this study, we do not consider the random effect coefficients in the longitudinal data
model, and the correlation that may exist among repeated observations within individuals
is ignored. If we consider the random effect coefficients, we will not obtain Theorem 2, but
we can still obtain Theorem 3. In future studies, random effects should be considered in
longitudinal models, which may yield better results.

Furthermore, the estimation of the time-varying coefficient using the kernel function
technique can be extended to multiple longitudinal outcomes, and the justification for the
survival sub-model would need a multi-dimensional association coefficient. The methods
proposed in [20] may be applicable.
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Appendix A. The Asymptotic Normality of β̂(τ)

For each t(l) ∈ ∆, denote

β(t(l)) = (β1(t(l)), β2(t(l)), . . . , βq(t(l))).

For all r, c = 0, . . . , q, denote

brz(t(l)) = E[xir(t(l))I{T∗
m ⩾ t(l)}xic(t(l))];

ur(t(l)) =M3/2
0

q

∑
z=1

m1[β
′
z(t(l))b

′
rz(t(l)) f ((t(l))

+ β
′
z(t(l))brz(t(l)) f

′
(t(l))

+ (1/2)β
′′
z(t(l))brz(t(l)) f (t(l))];

G(t(l)) = ( f (t(l)))
−1E[XT

l Xl ]
−1(t(l))(u0(t(l)), . . . , uq);

Vrz(t(l)) = m2(t(l))brz(t(l)) f ((t(l))m2 + UM0oϵ(t(l))brz(t(l)) f 2((t(l));

V(t(l)) =

D00(t(l)) · · · D0q(t(l))
... · · ·

...
Dq0(t(l)) · · · DQq(t(l))

;

W(t(l)) = ( f (t(l)))
−2E[XT

l Xl ]
−1V(t(l))E[XT

l Xl ]
−1.

Then,
(mh)1/2(β̂(t(l))− β(t(l))) → N(G(t(l)), W(t(l)))

Appendix B. Proof of Theorem 2

Proof of Theorem 2. For each t(l) ∈ ∆,

β̂(t(l)) =

(
N

∑
k=1

XT
k D̃k(t(l))Xk

)−1( N

∑
k=1

XT
k D̃k(t(l))Yk

)
,

where

D̃k(t(l)) = diag
(

Wk,h(t(l) − t(k))I{T∗
1 ⩾ t(l)}, . . . , Wk,h(t(l) − t(k))I{T∗

m ⩾ t(l)}
)

.

When t(l) = t(k),

D̃l(t(l)) = diag
(

Wk,h(t(l) − t(l))I{T∗
1 ⩾ t(l)}, . . . , Wk,h(t(l) − t(l))I{T∗

m ⩾ t(l)}
)

= diag
(

I{T∗
1 ⩾ t(l)}, . . . , I{T∗

m ⩾ t(l)}
)

,

when t(l) ̸= t(k),

D̃k(t(l)) = diag
(

Wk,h(t(l) − t(k))I{T∗
1 ⩾ t(l)}, . . . , Wk,h(t(l) − t(k))I{T∗

m ⩾ t(l)}
)

= diag(0, . . . , 0).
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β̂(t(l)) can be written as

β̂(t(l)) =
(

XT
l D̃l(t(l))Xl

)−1(
XT

l D̃l(t(l))Yl

)
=

(
m

∑
i=1

xT
i (t(l))D̃l(t(l))xi(t(l))

)−1( m

∑
i=1

xT
i (t(l))D̃l(t(l))yi(t(l))

)
.

Under the assumption that ϵ(t) is independent of X(t), and Eϵ(t) = 0. Then from Gauss–
Markov theory,

Eβ̂(t(l)) = β(t(l)). (A1)

Combining Equations (7) and (8), the estimator ν̂(t(l)) of mean state function at time
point t(l) is

ν̂(t(l)) =
∑m

i=1 I{T∗
i ⩾ t(l)}Ŷi(t(l))

∑m
i=1 I{T∗

i ⩾ t(l)}
,

where Ŷi(t(l)) is the fitted value of Yi(t(l)) at time point t(l) from the joint model:

Ŷi(t(l)) = xi(t(l))β̂(t(l)).

By Assumption E(yi(t) | xi(t)) = E(Y(t) | X(t)), we have

ν(t(l)) = E(Y(t(l)) | X(t(l))) =
∑m

i=1 I{T∗
i ⩾ t(l)}E

[
Y(t(l)) | X(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

=
∑m

i=1 I{T∗
i ⩾ t(l)}E

[
yi(t(l)) | xi(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

=
∑m

i=1 I{T∗
i ⩾ t(l)}

[
xi(t(l))β(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

.

Thus, for any t(l) ∈ ∆, from Equation (A1), we have

Eν̂(t(l))− ν(t(l)) =
∑m

i=1 I{T∗
i ⩾ t(l)}E

[
xi(t(l))β̂(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

−
∑m

i=1 I{T∗
i ⩾ t(l)}

[
xi(t(l))β(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

=
∑m

i=1 I{T∗
i ⩾ t(l)}

[
xi(t(l))

]
∑m

i=1 I{T∗
i ⩾ t(l)}

(
Eβ̂(t(l))− β(t(l))

)
= 0.

This completes the proof of Theorem 2.
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Appendix C. Proof of Theorem 3

Proof of Theorem 3. From Equation (8), we have

ν̂(t)− ν(t) =
1
m

m

∑
i=1

I{Ti ⩾ t}
ŜT(t)

Ŷi(t)− EY(t)

=
1
m

m

∑
i=1

I{Ti ⩾ t}
ŜT(t)ST(t)

Ŷi(t)[ST(t) − ŜT(t)]

+
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

(Ŷi(t)− Yi(t))

+
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

Yi(t)− EY(t)

=(I) + (I I) + (I I I).

Under the assumption that ϵ(t) is independent of T and C conditional on X(t) and W, from
the law of large numbers,

(I I I) =
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

Yi(t)− EY(t) → 0 a.s. as m → ∞.

For the second term (I I), we have

(I I) =
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

(Ŷi(t)− Yi(t))

=
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

xi(t)(β̂(t)− β(t))

+
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

(−ϵi(t))

≡(IV) + (V).

By Assumption (6), ∥ xi(t) ∥⩽ C0 for some positive constants C0. By Theorem 3.1 in
Zeng and Cai [17] and Assumption (11), we have that

(IV) ⩽
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

∥ xi(t) ∥∥ β̂(t)− β(t) ∥⩽ C0

a2 ∥ β̂(t)− β(t) ∥ a.s. as m → ∞.

By Theorem 1 in Wu et al. [12] and Assumptions (1)–(5), we have that

(IV) ⩽
C0

a2 ∥ β̂(t)− β(t) ∥→ 0 a.s. as m → ∞.

Also, from the law of large numbers,

(V) =
1
m

m

∑
i=1

I{Ti ⩾ t}
ST(t)

(−ϵi(t))

= E
(

I{T ⩾ t}
ST(t)

(−ϵ(t))
)
=

E(I{T ⩾ t})
ST(t)

E(−ϵ(t)) = 0 a.s. as m → ∞
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Similarly, by Assumption (9), Theorem 3.1 in Zeng and Cai [17], and Theorem 2 in
Phadia and Ryzin [21], we have that

(I) =
1
m

m

∑
i=1

I{Ti ⩾ t}
ŜT(t)ST(t)

xi(t)β̂(t)[ST(t)− ŜT(t)]

⩽
1
m

m

∑
i=1

I{Ti ⩾ t}
ŜT(t)ST(t)

∥ xi(t) ∥∥ β̂(t) ∥| ST(t)− ŜT(t) |

⩽
M0C2

0
a4 | ST(t)− ŜT(t) |→ 0 a.s. as m → ∞.

Now, ν̂(τ) converges to ν(τ) almost uniformly in τ ∈ [0, T].
Then, based on Egoroff Theorem in Bartle [22],µ̂(τ) converges to µ(τ) in probability.

This completes the proof of Theorem 3.
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