
Citation: Mestiri, H.; Barraj, I.; Bedoui,

M.; Machhout, M. An ASCON

AOP-SystemC Environment for

Security Fault Analysis. Symmetry

2024, 16, 348. https://doi.org/

10.3390/sym16030348

Academic Editors: Fajiang Yu,

Kuo-Hui Yeh and Zhangyi Wang

Received: 5 February 2024

Revised: 8 March 2024

Accepted: 11 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An ASCON AOP-SystemC Environment for Security
Fault Analysis
Hassen Mestiri 1,2,3,* , Imen Barraj 1,4,5, Mouna Bedoui 3 and Mohsen Machhout 3

1 Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam
Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2 Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse 4002, Tunisia
3 Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir,

Monastir 5000, Tunisia
4 Systems Integration & Emerging Energies (SI2E), Electrical Engineering Department, National Engineers

School of Sfax, University of Sfax, Sfax 3029, Tunisia
5 Higher Institute of Computer Science and Multimedia of Gabes (ISIMG), University of Gabes,

Gabes 6029, Tunisia
* Correspondence: h.mestiri@psau.edu.sa

Abstract: Cryptographic devices’ complexity necessitates fast security simulation environments
against fault attacks. SystemC, a promising candidate in Electronic System Levels (ESLs), can achieve
higher simulation speeds while maintaining accuracy and reliability, and its modular and hierarchical
design allows for efficient modeling of complex cryptographic algorithms and protocols. However,
code modification is required for fault injection and detection. Aspect-Oriented Programming
(AOP) can test cryptographic models’ robustness without modifications, potentially replacing real
cryptanalysis schemes and reducing the time and effort required for fault injection and detection.
Through the utilization of a fault injection/detection environment, this paper presents a novel
approach to simulating the security fault attacks of ASCON cryptographic systems at the ESL. The
purpose of this methodology is to evaluate the resistance of ASCON SystemC models against fault
attacks. The proposed methodology leverages the advantages of AOP to enhance the fault injection
and detection process. By applying AOP techniques, we inject faults into the SystemC models without
making any changes to the main codebase. This approach not only improves the efficiency of testing
cryptographic systems but also ensures that the main functionality remains intact during the fault
injection process. The methodology was validated using three scenarios and SystemC ASCON as a
case study. The first simulation involved evaluating fault detection capabilities, the second focused
on the impact of AOP on executable file size and simulation time, and the third focused on the ESL
impact on the ASCON design process. Simulation results show that this methodology can perfectly
evaluate the robustness of the ASCON design against fault injection attacks with no significant
impact on simulation time and file executable size. Additionally, the simulation results prove that
the ASCON development life cycle at the ESL reduces the amount of time devoted to the design
procedure by 83.34%, and the ASCON security attack simulations at the ESL decrease the simulation
time by 40% compared to the register transfer level (RTL).

Keywords: aspect-oriented programming; SystemC; AspectC++; lightweight cryptography; ASCON;
fault attacks

1. Introduction

Electronic cryptographic devices are crucial in embedded systems for securing secret
information and protecting sensitive data. These devices use advanced algorithms and
protocols to encrypt and decrypt information, ensuring that only authorized individuals can
access it. Additionally, cryptographic devices play a vital role in preventing unauthorized
tampering or modification of data, providing an extra layer of security for embedded

Symmetry 2024, 16, 348. https://doi.org/10.3390/sym16030348 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16030348
https://doi.org/10.3390/sym16030348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7226-3975
https://doi.org/10.3390/sym16030348
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16030348?type=check_update&version=1

Symmetry 2024, 16, 348 2 of 18

systems. They store the secret key and cryptographic algorithm, which are designed to
protect against mathematical attacks; however, when implemented on hardware systems,
they are vulnerable to physical attacks. Attackers aim to gain knowledge of the secret
key and confidential information, or to disrupt normal execution behavior. Fault injection
attacks are an efficient method for obtaining these keys and compromising the security of
cryptographic devices.

Currently, developers’ capacity to design and verify cryptographic embedded systems
is inadequate in regard to the escalating complexity of such systems. This is due to the
growing demand for secure and efficient cryptographic algorithms, as well as the need
to protect sensitive data in various applications, such as IoT devices, mobile devices, and
cloud computing. As a result, developers are facing challenges in ensuring the correct
implementation and integration of cryptographic algorithms within these systems while
also meeting performance and power constraints. SystemC [1], a standard language for
complex system modeling and verification, has been deemed suitable for simulated fault
injection of System on Chip (SoC) and hardware designs due to its ability to accurately
model and simulate the behavior of cryptographic algorithms. By using SystemC, devel-
opers can evaluate the security and robustness of their cryptographic implementations
by injecting faults and analyzing the system’s response [2–4]. This allows for thorough
testing and validation, ultimately leading to more reliable and secure cryptographic sys-
tems. Nevertheless, majoritively developers need to make changes to the SystemC code
in order to introduce and identify errors, and the AOP is an approach that circumvents
the need to make modifications to the cryptographic algorithm source code under exam-
ination, allowing for the clean modularization of separate concerns. AOP achieves this
by separating cross-cutting concerns, such as fault injection and detection, from the core
functionality of the cryptographic algorithms [5]. This not only simplifies the testing pro-
cess but also enhances code reusability and maintainability, making it easier for developers
to analyze and improve the robustness and security of their cryptographic implementa-
tions. The challenge in cryptography involves separating the cryptographic algorithm
model, fault detection schemes and fault attack process. These modules are combined
through weaving throughout the process of compilation (not the coding one) to create a
comprehensive cryptographic system that is resistant to fault attacks. By separating these
components, developers can focus on optimizing each module individually, ensuring that
the cryptographic system is efficient and secure.

This paper proposes a new technique for testing the resilience of the ASCON systemC
model against fault injection attacks at the electronic system level. The methodology
makes use of SystemC for hardware design while using AspectC++ as application-level
programming [6]. The proposed methodology aims to provide a comprehensive evaluation
of the cryptographic system’s resilience by simulating various security fault attacks. By
utilizing SystemC as the hardware design language and AspectC++ as an AOP language,
the methodology enables the analysis of fault injection attacks at the ESL, offering valuable
insights into the robustness of cryptographic designs. Furthermore, this approach allows
for efficient and accurate assessment of potential vulnerabilities, aiding in the development
of more secure cryptographic systems.

We summarize our contributions as follows:

• We proposed a new methodology to simulate the security fault attacks of ASCON
cryptographic systems at the ESL.

• We proposed a fault injection/detection environment to test the resistance of ASCON
cryptographic SystemC models against fault injection attacks.

• We used SystemC as a system level modeling language for hardware design and
AspectC++ as an AOP programming language to test the robustness of the ASCON
cryptographic models without any code modifications.

• We proved that the proposed environment perfectly evaluates the robustness
of the ASCON cryptographic design against fault injection attacks without any
code modifications.

Symmetry 2024, 16, 348 3 of 18

• We proved that the impact of AOP on simulation time and file executable size is
not significant.

• Finally, we proved that using SystemC and AOP for ASCON security verification in
ESL enables a speedier design process and simulation execution in comparison to RTL.

This paper is organized as follows: Sections 2 and 3 discuss the background knowledge
and the related work, respectively. Section 4 discusses the proposed ASCON security
SystemC-AOP methodology, which will be evaluated in Section 5 through simulation
security analysis. Section 6 concludes the paper.

2. Backgrounds

This section provides a comprehensive review of the necessary background informa-
tion and definitions for the following paper.

2.1. Aspect-Oriented Programming

AOP is a new paradigm that enables modularity in object-oriented languages, allowing
crosscutting concerns to be encapsulated in a single aspect code module. This allows for
cleaner and more maintainable code by separating the core functionality of an object from
its crosscutting concerns, such as logging or security. Additionally, AOP promotes code
reusability and reduces code duplication by providing a centralized location for managing
these concerns across multiple objects or modules. This aspect code, inserted during
runtime or compile-time, helps to separate concerns from the system, reducing system
tangles and improving overall system flexibility. By encapsulating crosscutting concerns in
separate aspects, developers can easily modify or update these concerns without impacting
the core functionality of the objects. This separation also allows for easier testing and
debugging, as each aspect can be independently tested and maintained. Overall, AOP
provides a powerful tool for managing complex systems and promoting code organization
and reusability. Figure 1 presents the combining aspect module with original code.

Symmetry 2024, 16, x FOR PEER REVIEW 3 of 19

• We proved that the proposed environment perfectly evaluates the robustness of the
ASCON cryptographic design against fault injection attacks without any code modi-
fications.

• We proved that the impact of AOP on simulation time and file executable size is not
significant.

• Finally, we proved that using SystemC and AOP for ASCON security verification in
ESL enables a speedier design process and simulation execution in comparison to
RTL.
This paper is organized as follows: Sections 2 and 3 discuss the background

knowledge and the related work, respectively. Section 4 discusses the proposed ASCON
security SystemC-AOP methodology, which will be evaluated in Section 5 through simu-
lation security analysis. Section 6 concludes the paper.

2. Backgrounds
This section provides a comprehensive review of the necessary background infor-

mation and definitions for the following paper.

2.1. Aspect-Oriented Programming
AOP is a new paradigm that enables modularity in object-oriented languages, allow-

ing crosscutting concerns to be encapsulated in a single aspect code module. This allows
for cleaner and more maintainable code by separating the core functionality of an object
from its crosscutting concerns, such as logging or security. Additionally, AOP promotes
code reusability and reduces code duplication by providing a centralized location for
managing these concerns across multiple objects or modules. This aspect code, inserted
during runtime or compile-time, helps to separate concerns from the system, reducing
system tangles and improving overall system flexibility. By encapsulating crosscutting
concerns in separate aspects, developers can easily modify or update these concerns with-
out impacting the core functionality of the objects. This separation also allows for easier
testing and debugging, as each aspect can be independently tested and maintained. Over-
all, AOP provides a powerful tool for managing complex systems and promoting code
organization and reusability. Figure 1 presents the combining aspect module with original
code.

Figure 1. Combining aspect module with original code.

An aspect-oriented language involves many important concepts, as follows: [5]
• Advice is used to define a specific behavior that should be executed at a specific join

point in the program, such as around, before or after a method is called.

Figure 1. Combining aspect module with original code.

An aspect-oriented language involves many important concepts, as follows: [5]

• Advice is used to define a specific behavior that should be executed at a specific join
point in the program, such as around, before or after a method is called.

• Aspect: A modular unit of cross-cutting concern that encapsulates advice and join
points. Aspects allow for the separation of concerns in a program, making it easier to
maintain and modify specific functionalities without affecting the entire codebase.

• Join point: A specific point in the execution of a program where an aspect can be
applied. This can include method invocations, field accesses, or even exception
handling. Aspects can target multiple join points within a program to address various
concerns simultaneously.

• Pointcut: A specification that defines which join points should be affected by a par-
ticular aspect. It allows developers to selectively apply aspects to specific parts of

Symmetry 2024, 16, 348 4 of 18

the codebase based on predefined conditions or patterns, enhancing flexibility and
modularity in aspect-oriented programming.

To weave in a new functionality as an aspect to a system, join points are used to
identify specific locations in the primary code where the functionality should be added.
Join points can include method invocations, field accesses, and object instantiations. The
aspect weaver weaves the new functionality into the system by inserting the aspect code at
these identified join points. This allows the aspect to modify or enhance the behavior of the
system without directly modifying its primary code.

2.2. ASCON Algorithm

The ASCON algorithm has been selected as the Lightweight Cryptography (LWC)
standard by the National Institute of Standards and Technology (NIST) [7]. It is a symmet-
ric key block cipher that provides high security with low computational requirements [8]
based on sponge construction. It uses a permutation-based design, which contributes to
its lightweight nature, and the algorithm also supports authenticated encryption, ensur-
ing both confidentiality and integrity of the transmitted data. The ASCON algorithm is
designed to be efficient and suitable for resource-constrained devices, such as IoT devices,
embedded systems, and lightweight applications. It offers strong resistance against various
cryptographic attacks while maintaining a small code size and low power consumption.
ASCON features a 128-bit key, nonce, and tag that can have 64 or 128 bits of message length.
It implements AEAD in a sponge duplex mode and employs two 320-bit permutations for
its internal state. These permutations are bit-sliced into five 64-bit register words, which
repeatedly apply a round transformation (ρ) based on substitution−permutation networks.
A complete ASCON permutation has twelve rounds. A non-linear 5-bit S-Box, which is
small and light for both Field Programmable Gate Arrays (FPGA) and Application-Specific
Integrated Circuit (ASIC) implementations, is used in the substitution layer. The S-Box uses
64 simultaneous applications to update the internal state.

2.3. Fault Attacks

Fault injection attacks are a type of security attack where intentional errors or faults
are injected into a system to compromise its integrity or availability. These attacks involve
deliberately introducing unexpected inputs, such as invalid data or malformed commands,
to exploit vulnerabilities in the system’s design or implementation. By simulating various
fault scenarios, attackers can gain unauthorized access, manipulate data, or disrupt the
normal functioning of the targeted system. It is crucial for organizations to implement
robust security measures and regularly test their systems against fault injection attacks to
mitigate potential risks and protect sensitive information [9–11].

3. Related Work
3.1. AOP Software Application

AOP is being increasingly recognized as an indispensable paradigm in the realm
of system application testing [12,13], with Java programs using AspectJ weavers [14]
and AspectC++, a C++ based AOP weaver, becoming increasingly utilized for software
validation [15]. Jain et al. utilized C++ aspects to detect vulnerabilities caused by memory
leakage, improper algorithm implementation, or thread interference [16]. For dynamic
software bug reporting, aspects are generated automatically and woven into C++ programs.
This approach allows for the detection of bugs at runtime, providing valuable information
for debugging and improving software quality. Additionally, the use of aspects in C++
programs can help identify performance bottlenecks and optimize system resources. This
study discusses the manual testing of embedded C++ programs in OS, focusing on memory
utilization, program robustness, coverage, and program performance in C++, similar to
previous research on OS testing [17]. Aspects are implemented in the context of kernel
testing. Interrupt synchronization for operating systems has been exhaustively described.
A real-time operating system underwent Ada Aspects modification in order to optimize its

Symmetry 2024, 16, 348 5 of 18

performance during time-sensitive operations and accommodate real-time constraints [18].
By using Ada Aspects, the real-time operating system was able to prioritize and schedule
tasks based on their deadlines, ensuring that time-sensitive operations were executed
in a timely manner. The limitations were determined, and strategies were provided for
adaptation. To rectify the deficiencies of the previous compiler/weaver architecture, a novel
design was proposed. AOP-based software security hardening is the subject of [19]. Secure
patterns that were developed in AOP have been implemented in secure applications via
memory code encryption. A comparable methodology is described in reference [20]. AOP
is a methodology that integrates fault tolerance into applications for distributed embedded
systems, thereby increasing configuration for product line development, as well as testing
and modernizing legacy systems.

Research on AOP-based software shows interest in functional testing, but few ap-
proaches emphasize AOP in fault-tolerant systems and security software encapsulation, de-
spite significant interest in certain aspects of program testing. This research gap highlights
the need for further exploration of AOP’s potential in fault-tolerant systems and security
software encapsulation. By incorporating AOP principles into these areas, researchers
can enhance the overall effectiveness and robustness of program testing methodologies,
ultimately leading to more reliable and secure software systems.

3.2. AOP for Security

The literature also employs AOP specialization to examine SoC architectures on hybrid
hardware/software platforms. Notably, [21] proposes the utilization of an Electronic Design
Automation (EDA) tool to generate an integrated description of software and hardware
components employing AspectC++ programming language. This approach allows for a
more comprehensive analysis of the system’s behavior and performance, enabling better
optimization and debugging capabilities. Additionally, [21] highlights the potential benefits
of using AOP specialization in improving the reusability and maintainability of hybrid
hardware/software systems, ultimately leading to more efficient development processes.
The intended hardware and software implementation is a hybrid architecture based on the
FPGA platform. Furthermore, SoC exploration was recommended in reference [22]. The
development of a novel language called LARA, as well as the associated infrastructure, for
the purpose of equipping application programs with monitoring, logging, and debugging
functionalities, is detailed in an article published in [23]. Components of C++ incorporate
hardware/software specializations, including non-functional and functional requirements,
to increase the modularity of the code. The utilization of the AOP layer in LARA aids
designers in the execution of optimized hardware and software applications based on
FPGA technology.

The study reveals that AOP is utilized to differentiate hardware and software con-
cerns in SoC architecture, but it is not considered for modeling or implementing extra
specialization of encrypted data.

3.3. SystemC Modeling Using AOP

The principal focus in hardware-only implementations is AOP functional verification.
The scope of AOP applications pertaining to the design or modeling of hardware compo-
nents has been constrained [6,24]. In these endeavors, explicit architectural concepts, such
as time and concurrency, are provided by Aspects; these concepts are then synthesized into
descriptions of an SoC. AOP methodologies extract SoC-related components, including
communication, cache, and performance metrics, via SystemC modeling [25]. As illustrated
in [26], as synthesizing SystemC models is difficult, these techniques are more suitable for
verification and simulation.

A perspective on organizing dependencies for model execution is presented in [27]
when AOP is utilized in conjunction with the SystemC synthesizable subset. This approach
allows for the separation of concerns in the design and the implementation of complex
models. By using AOP, different aspects of the model can be modularized and managed in-

Symmetry 2024, 16, 348 6 of 18

dependently, making it easier to understand and maintain the overall system. Additionally,
integrating AOP with SystemC synthesizable subset enables efficient hardware synthesis,
resulting in improved performance and resource utilization.

In summary, the related work proves that the limitations in these works are related to
the fact that security verification modules are introduced only on module interconnections.
No analysis has been carried out regarding the available internal security verification loca-
tion and the possibility of injecting faults inside a SystemC module. Moreover, the original
SystemC code that is modeling the system needs major modifications during security
verification. The merit of our approach is that there is no need to modify the functional
blocks in order to inject the security verification process into modules and interconnections.
This allows for a more seamless integration of security verification processes within the
SystemC modules without disrupting the original code. Our approach also addresses
the potential vulnerabilities that may arise from internal security verification locations
within the modules. By implementing security verification without code modifications, our
method streamlines the process and enhances the overall security of the system.

4. ASCON SystemC-AOP Environment
4.1. Proposed Methodology

We utilized AspectC++ as an AOP programming language and SystemC as a modeling
language at the ESL for ASCON hardware design. By integrating SystemC and AspectC++
at the system level, we have developed an ASCON AOP environment for the purpose of
evaluating the fault attack detection capability and robustness of hardware designs. This
environment allows us to easily apply aspect-oriented programming techniques to enhance
the security of our hardware designs and analyze their resilience against fault attacks.
Additionally, the integration of AspectC++ and SystemC provides a seamless workflow for
designers, enabling them to efficiently implement and evaluate security measures in their
hardware designs. In designing our proposed ASCON SystemC-AOP environment, we
aimed to accomplish the subsequent goals:

1. Evaluate the effectiveness of fault attack detection techniques: Our proposed ASCON
SystemC-AOP environment allows us to thoroughly assess the fault attack detection
capability of hardware designs. By simulating various fault injection scenarios, we
can identify vulnerabilities and improve the robustness of our designs.

2. Enhance hardware security through aspect-oriented programming: By leveraging
aspect-oriented programming techniques, we can easily incorporate security measures
into our hardware designs. This approach enables us to modularly add security
aspects such as encryption, authentication, and access control, thereby enhancing the
overall security of the system.

3. Analyzing robustness against fault attacks: Another goal of our ASCON SystemC-AOP
environment is to analyze the robustness of hardware designs against fault attacks.
By simulating various attack scenarios, we can assess the effectiveness of security
measures and identify any vulnerabilities that need to be addressed.

4. Overall, our aim is to provide designers with a comprehensive toolset that not only
enhances the security of their hardware designs but also simplifies the implementation
process and ensures their resilience against fault attacks.

In Figure 2, a comprehensive overview of our methodology for assessing the fault
attack robustness of the ASCON model is illustrated. The flow of the ASCON SystemC-AOP
comprises four primary phases, as illustrated in Figure 2. During the ASCON Modeling
phase, the ASCON SystemC and aspect modules are implemented. ASCON Analysis
Aspect (AAA), ASCON Injector Aspect (AIA), and ASCON Controller Aspect (ACA)
are the three components that comprise the aspect module. The AIA injects errors at
the precise location and time. The ACA state controller is then employed to regulate
the synchronization among the ASCON SystemC/AOP modules. A fault attack report
is produced by the AAA, which encompasses details pertaining to fault classification,
identification, injected faults, and the resulting impacts on functional designs.

Symmetry 2024, 16, 348 7 of 18

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 19

3. Analyzing robustness against fault attacks: Another goal of our ASCON SystemC-
AOP environment is to analyze the robustness of hardware designs against fault at-
tacks. By simulating various attack scenarios, we can assess the effectiveness of secu-
rity measures and identify any vulnerabilities that need to be addressed.

4. Overall, our aim is to provide designers with a comprehensive toolset that not only
enhances the security of their hardware designs but also simplifies the implementa-
tion process and ensures their resilience against fault attacks.
In Figure 2, a comprehensive overview of our methodology for assessing the fault

attack robustness of the ASCON model is illustrated. The flow of the ASCON SystemC-
AOP comprises four primary phases, as illustrated in Figure 2. During the ASCON Mod-
eling phase, the ASCON SystemC and aspect modules are implemented. ASCON Analysis
Aspect (AAA), ASCON Injector Aspect (AIA), and ASCON Controller Aspect (ACA) are
the three components that comprise the aspect module. The AIA injects errors at the pre-
cise location and time. The ACA state controller is then employed to regulate the synchro-
nization among the ASCON SystemC/AOP modules. A fault attack report is produced by
the AAA, which encompasses details pertaining to fault classification, identification, in-
jected faults, and the resulting impacts on functional designs.

Figure 2. General view of proposed security analysis environment.

Model compilation and aspect weaving are the two discrete segments that compose
the second phase, ASCON weaving. The incorporation of the three aspect codes that were

Figure 2. General view of proposed security analysis environment.

Model compilation and aspect weaving are the two discrete segments that compose
the second phase, ASCON weaving. The incorporation of the three aspect codes that
were previously introduced into the ASCON SystemC design does not necessitate any
adjustments to the SystemC code, given that these codes are defined in AspectC++. The
compiled source code and the generation of an executable file occur simultaneously with
the weaving operation.

Aspect simulation constitutes the third stage of the ASCON SystemC-AOP environ-
ment. The system consists of two distinct modules, namely the reference ASCON model
and the executable file system. The ASCON SystemC architecture incorporates the output
of the aspect modules into the executable file system. The reference ASCON model is
written in SystemC, and it presents the correct functionalities of the ASCON model without
injecting faults. This allows for thorough testing and verification of the cryptographic
model’s performance and security features before implementation in a real-world appli-
cation. Additionally, using SystemC for the reference model ensures compatibility with
various hardware platforms and facilitates easier integration into existing systems. The
outputs of the two modules are examined, as illustrated in Figure 2, to identify any errors
that may have occurred in the executable file system.

The final environment phase of the ASCON SystemC-AOP is the ASCON analysis
report, which details the impact of the fault on the ASCON design. The aspect report
provides a comprehensive analysis of the fault classifications and their implications for the
ASCON design, helping identify any potential vulnerabilities or weaknesses in the system
and allowing for targeted improvements and optimizations to enhance its overall reliability
and performance. The aspect report phase also provides recommendations for improving
fault detection and minimizing false positives.

According to the outputs of the ASCON executable file system, the proposed environ-
ment is able to partition the simulation results into the following four classes:

• Silent fault: the ASCON result consists of the expected data and no errors are discovered.

Symmetry 2024, 16, 348 8 of 18

• False positive: The ASCON result represents the expected data, although an error has
been identified at an unspecified location.

• Undetected error: The ASCON output data does not correspond to the expected value,
and no problem is identified.

• Detected error: The ASCON output values do not match the intended value, and an
error has been found.

4.2. ASCON Injection/Detection via AOP
4.2.1. ASCON Controller Aspect

By means of an interface between the ACA, AIA, and AAA modules, all injection and
detection duties are determined. The ACA process utilizes a Finite State Machine (FSM)
to guarantee fault controllability during injection and detection while causing minimal
disruption to the designated system. Figure 3 depicts the FSM proposal for ACA. The ACA
controller includes various states and transitions that facilitate the seamless integration
of injection and detection duties. It ensures that the process is efficient and effective in
controlling defects while minimizing any potential impact on the target system.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 19

Figure 3. ACA controller.

The pseudocode for the aspect utilized by the KFC module is detailed in Listing 1.
The Ascon_command, Ascon_attack, and Ascon_detection pointcuts are described in lines
2, 3, and 4, respectively. In the ASCON class, each executable process is designated task_1,
task_2, and task_3. Line 11 of the code contains the declaration advice (execution
(Ascon_attack ())): after (). This indicates that the code contained in this advice is executed
after the code specified by the Ascon_attack() function in the SystemC module when the
Ascon_attack() function is invoked. Line 12 of the code declaration is the attack_on tran-
sition, the default value of which is zero. This transition is set after the execution of advice
(Ascon_attack ()).

A
tta

ck
_O

FF

At
tac

k_
O

FF

Start

Start

Figure 3. ACA controller.

An FSM description of the various ACA phases is provided, establishing the Attack_on
transition triggers ASCON fault attack states. The subsequent state, which differs from the

Symmetry 2024, 16, 348 9 of 18

fault type selected, is then transmitted from the ACA module to the AIA module, Transient
or Permanent. In that case, four states are produced (stuck at faults, random faults, and
transient multiple bit and transient single bit, when the permanent and transient fault
attack state is executed, respectively). The ACA module furnishes the AAA module with
the necessary data to produce the ASCON analysis report, irrespective of the executed
state. Configuring the Start_ASCON_detection transition triggers the ASCON fault de-
tection state. Fault detection information is subsequently incorporated into the ASCON
analysis report.

The pseudocode for the aspect utilized by the KFC module is detailed in Listing 1.
The Ascon_command, Ascon_attack, and Ascon_detection pointcuts are described in
lines 2, 3, and 4, respectively. In the ASCON class, each executable process is designated
task_1, task_2, and task_3. Line 11 of the code contains the declaration advice (execution
(Ascon_attack ())): after (). This indicates that the code contained in this advice is executed
after the code specified by the Ascon_attack() function in the SystemC module when
the Ascon_attack() function is invoked. Line 12 of the code declaration is the attack_on
transition, the default value of which is zero. This transition is set after the execution of
advice (Ascon_attack ()).

Listing 1. Pseudo code of aspect ascon_controller_aspect.

1 Aspect Ascon_Controller_Aspect {
2 pointcut Ascon_command() = “%Ascon::task_1(...)”;
3 pointcut Ascon_attack() = “%Ascon::task_2(...)”;
4 pointcut Ascon_detection() = “%Ascon::task_3(...)”;
5
6 advice (execution(Ascon_command())): after () {
7 if start
8 read_command();
9 ...
10 }
11 advice (execution(Ascon_attack())): after () {
12 if attack_on{
13 ascon_fault_attack ();
14 if permanent
15 permanent_fault_attacks();
16 if stuck_bit
17 stuck_at_fault();
18 else if random
19 random faults();
20 else if transient
21 transient_fault_attacks
22 if single_bit
23 transient_single_bit();
24 else if multiple_bit
25 transient_multiple_bit();
26 ascon_attack_report();
27 }
28 ...
25 }
29 advice (execution(Ascon_detection())): after () {
30 if start_ascon_detection {
31 ascon_fault_detection ();
32 ascon_analysis_report ();
33 }
34 ...
35 }
36 ...
37 }

Symmetry 2024, 16, 348 10 of 18

The SystemC special characters in Listing 1 mean the following:

• “::” is used to access a member of a module.
• “%” is interpreted as a wildcard for names or parts of a signature.
• “. . .” matches any number of parameters in a function signature or any number of

scopes in a qualified name.

4.2.2. ASCON Injector Aspect

The second module that establishes an interface with the ACA module is the AIA
module, which injects database faults. Four distinct categories of faults are generated:
transient single faults, transient multiple faults and permanent fault (stuck-at-0-fault and
stuck-at-1-fault), as well as single faults and random faults. These faults are injected into
simulate various real-world scenarios and test the robustness of the ASCON modules.
The AIA module carefully generates these faults to ensure that they accurately mimic
the types of faults that may occur in a production environment. The AIA module offers
interfaces through which the values of each variable in the possible locations can be read
and modified. By providing the ability to read and modify the values of each variable in
the possible locations, the AIA module allows for thorough testing and analysis of the
ASCON modules’ robustness. This capability ensures that the faults generated accurately
reflect potential faults that may occur in a real-world production environment, enabling
developers to identify and address any vulnerabilities or weaknesses in the system. The
quantity of terminals and modified variables is contingent upon the specific application.

The flowchart in Figure 4 illustrates the functionality principle of the AIA.

Symmetry 2024, 16, x FOR PEER REVIEW 11 of 19

of faults that may occur in a production environment. The AIA module offers interfaces
through which the values of each variable in the possible locations can be read and mod-
ified. By providing the ability to read and modify the values of each variable in the possi-
ble locations, the AIA module allows for thorough testing and analysis of the ASCON
modules’ robustness. This capability ensures that the faults generated accurately reflect
potential faults that may occur in a real-world production environment, enabling devel-
opers to identify and address any vulnerabilities or weaknesses in the system. The quan-
tity of terminals and modified variables is contingent upon the specific application.

The flowchart in Figure 4 illustrates the functionality principle of the AIA.

Figure 4. Flowchart of ASCON injector aspect.

As seen in Figure 5, the AIA module uses ports to modify variables at possible fault
times and locations, using the ASCON cryptographic model to assess the vulnerability
detection and injection methodology of SystemC-AOP. The possible injection locations
are Fault Ascon Interconnections (FAI), Fault Ascon Registers (FAR) and Fault Ascon Bus
(FAB).

The standard configuration of the cryptographic model consists of the following five
modules:
• Input and output buffer data.
• ASCON module for processing input messages.
• Control module for synchronization.
• ASCON bus for communication between modules.

Figure 5 shows faults can be introduced into peripherals, memories, registers, and
functional modules, allowing for the modeling of all possible security attack faults. Fault
injection includes transition elements like data buses and is performed using the AOP
technique, eliminating the need for modification in the ASCON SystemC code. The FAB
is integrated into the data FIFO, decoder, and data bus design in order to inject faults.
Faults will be applied to the data that is being transmitted on the bus within the FAB. In

Figure 4. Flowchart of ASCON injector aspect.

As seen in Figure 5, the AIA module uses ports to modify variables at possible fault
times and locations, using the ASCON cryptographic model to assess the vulnerability
detection and injection methodology of SystemC-AOP. The possible injection locations
are Fault Ascon Interconnections (FAI), Fault Ascon Registers (FAR) and Fault Ascon
Bus (FAB).

Symmetry 2024, 16, 348 11 of 18

Symmetry 2024, 16, x FOR PEER REVIEW 12 of 19

order to introduce faults into operational modules, an FAI is inserted, which modifies data
processing to inject faults, employing a saboteur to conceal the transmitted data subse-
quent to the activation of the fault.

Figure 5. ASCON AOP fault location.

The pseudocode for the aspect utilized by the FAI is detailed in Listing 2.

Listing 2. Pseudo code of aspect ascon_saboteur.

1 Aspect ASCON_Saboteur {
2 pointcut FAI() = “%ASCON_AIA::Ascon(...)”;
3
4 advice (execution (FAI())): after () {
5 if attack_on {
6 faulty_ascon_output = apply_mask(ascon_in.read());
7 ascon_out.write(ascon_output);
8 }
9 else
10 ascon_out.write(ascon_in.read());
11 ...
12 }
13 ...
14 }

The FAI is described in Line 2: in the ASCON_AIA class, with an executable process
designated Ascon. Line 4 of the code contains the declaration advise advice (execution
(FAI())): after (). This indicates that the code contained in this advice is executed after the
code specified by the FAI() function in the SystemC module. The return value of execution
(FAI ()) is ascon_out. This value depends on the attack_on transition value. If this transi-
tion is true, the ascon_out is equal to the faulty_ascon_output, modified by the ap-
ply_mask function; otherwise, ascon_out is equal to ascon_in.

The FAR can be used to generate faults in functional registers without altering the
design of functional blocks, allowing for modification of signal values and variable value
accessibility. The FAB, FAI, and FAR are linked to the fault injection environment, regu-
lating the types, locations, and injection times of faults in the ASCON SystemC model.

A
sc

on
 In

je
ct

or
 A

sp
ec

t
(A

O
P

 in
je

ct
io

n
Fa

ul
ts

)

Figure 5. ASCON AOP fault location.

The standard configuration of the cryptographic model consists of the following
five modules:

• Input and output buffer data.
• ASCON module for processing input messages.
• Control module for synchronization.
• ASCON bus for communication between modules.

Figure 5 shows faults can be introduced into peripherals, memories, registers, and
functional modules, allowing for the modeling of all possible security attack faults. Fault
injection includes transition elements like data buses and is performed using the AOP
technique, eliminating the need for modification in the ASCON SystemC code. The FAB
is integrated into the data FIFO, decoder, and data bus design in order to inject faults.
Faults will be applied to the data that is being transmitted on the bus within the FAB. In
order to introduce faults into operational modules, an FAI is inserted, which modifies data
processing to inject faults, employing a saboteur to conceal the transmitted data subsequent
to the activation of the fault.

The pseudocode for the aspect utilized by the FAI is detailed in Listing 2.

Listing 2. Pseudo code of aspect ascon_saboteur.

1 Aspect ASCON_Saboteur {
2 pointcut FAI() = “%ASCON_AIA::Ascon(...)”;
3
4 advice (execution (FAI())): after () {
5 if attack_on {
6 faulty_ascon_output = apply_mask(ascon_in.read());
7 ascon_out.write(ascon_output);
8 }
9 else
10 ascon_out.write(ascon_in.read());
11 ...
12 }
13 ...
14 }

Symmetry 2024, 16, 348 12 of 18

The FAI is described in Line 2: in the ASCON_AIA class, with an executable process
designated Ascon. Line 4 of the code contains the declaration advise advice (execution
(FAI())): after (). This indicates that the code contained in this advice is executed after the
code specified by the FAI() function in the SystemC module. The return value of execution
(FAI ()) is ascon_out. This value depends on the attack_on transition value. If this transition
is true, the ascon_out is equal to the faulty_ascon_output, modified by the apply_mask
function; otherwise, ascon_out is equal to ascon_in.

The FAR can be used to generate faults in functional registers without altering the
design of functional blocks, allowing for modification of signal values and variable value
accessibility. The FAB, FAI, and FAR are linked to the fault injection environment, regulating
the types, locations, and injection times of faults in the ASCON SystemC model.

The fault injection environment provides control over the fault injection process,
allowing for precise manipulation of the faults introduced into the cryptographic model.
This level of control ensures that specific aspects of the system can be targeted for testing
and evaluation, improving the overall reliability and security of the system.

4.2.3. ASCON Analysis Aspect

The AAA module, based on fault detection schemes, guarantees that functional de-
signs will continue to operate correctly in the presence of errors. The AAA module’s
aspect flowchart is shown in Figure 6. The presented environment utilizes fault detection
approaches to safeguard the ASCON cryptographic algorithm against hostile attackers
who may introduce faults in order to uncover secret keys. The fault analysis procedure
is initiated when start_ascon_detection is set to true. The SystemC model is checked and
compared using data from correct and faulty models. Once the fault detection process
is complete, an analysis ASCON report is generated, detailing the impact of faults on
operational designs. The report also includes details on the fault detection schemes utilized,
highlighting any vulnerabilities that were successfully detected and mitigated. Addi-
tionally, the analysis report provides insights into the performance of the cryptographic
algorithm under different fault injection scenarios. This information is crucial to identifying
potential weaknesses and enhancing the overall security of the system.

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 19

The fault injection environment provides control over the fault injection process, al-
lowing for precise manipulation of the faults introduced into the cryptographic model.
This level of control ensures that specific aspects of the system can be targeted for testing
and evaluation, improving the overall reliability and security of the system.

4.2.3. ASCON Analysis Aspect
The AAA module, based on fault detection schemes, guarantees that functional de-

signs will continue to operate correctly in the presence of errors. The AAA module’s as-
pect flowchart is shown in Figure 6. The presented environment utilizes fault detection
approaches to safeguard the ASCON cryptographic algorithm against hostile attackers
who may introduce faults in order to uncover secret keys. The fault analysis procedure is
initiated when start_ascon_detection is set to true. The SystemC model is checked and
compared using data from correct and faulty models. Once the fault detection process is
complete, an analysis ASCON report is generated, detailing the impact of faults on oper-
ational designs. The report also includes details on the fault detection schemes utilized,
highlighting any vulnerabilities that were successfully detected and mitigated. Addition-
ally, the analysis report provides insights into the performance of the cryptographic algo-
rithm under different fault injection scenarios. This information is crucial to identifying
potential weaknesses and enhancing the overall security of the system.

Figure 6. Flowchart of ASCON analysis aspect.

The pseudocode for the aspect utilized by the AAA module is detailed in Listing 3.

Listing 3. Pseudo code of aspect ascon_analysis_aspect.

1 Aspect ASCON_Analysis_Aspect {
2 pointcut AAA() = “%ASCON_AAA::Ascon(...)”;
3 advice (execution(AAA())): after () {
4 if start_ascon_detection {
5 result= ASCON_fault_detection(ascon_in.read());
6 Ascon_Analysis_report(analysis.read());
7 }
8 ...
9 }
10 ...
11 }

Figure 6. Flowchart of ASCON analysis aspect.

Symmetry 2024, 16, 348 13 of 18

The pseudocode for the aspect utilized by the AAA module is detailed in Listing 3.

Listing 3. Pseudo code of aspect ascon_analysis_aspect.

1 Aspect ASCON_Analysis_Aspect {
2 pointcut AAA() = “%ASCON_AAA::Ascon(...)”;
3 advice (execution(AAA())): after () {
4 if start_ascon_detection {
5 result= ASCON_fault_detection(ascon_in.read());
6 Ascon_Analysis_report(analysis.read());
7 }
8 ...
9 }
10 ...
11 }

5. ASCON Methodology Validation

This section evaluates the SystemC-AOP cryptographic verification security method-
ology by utilizing the ASCON model for fault injection/detection in the cryptographic
verification process. We conducted a series of fault injection simulations to evaluate the
fault detection capabilities of the SystemC-AOP verification environment. Next, we ana-
lyzed the impact of the AOP on both executable file size and simulation time. In part 3, we
looked at how the AOP impacts ASCON design development. All designs were explained
in terms of AspectC++ 2.3 and SystemC 2.3.4. All simulations were performed using
gcc version 10.3 and an Intel Core I5-3470 3.2 GHz CPU with 8 GB of RAM.

5.1. AOP Impact on Fault Analysis

In order to assess the effectiveness of the ASCON SystemC-AOP environment in
assessing the ASCON system’s ability to withstand fault attacks, we conduct fault attacks
using the suggested environment to evaluate the ASCON SystemC-AOP’s detection capa-
bilities. Two scenarios, namely pure SystemC and SystemC-AOP, are used to assess the
fault detection capabilities. Additionally, fault detection methodologies are utilized for this
evaluation [8]. In order to achieve this, we use the AspectC++ and SystemC simulation
kernels to evaluate and contrast the outcomes of the ASCON SystemC-AOP environment.

The SystemC scenario employs SystemC as a language for modeling at the system
level, necessitating modifications for the purpose of incorporating fault attacks and de-
tection into the ASCON process. The SystemC-AOP scenario combines AspectC++ with
SystemC without the need for any modifications to the model’s ASCON SystemC code.
The SystemC-AOP scenario allows for the integration of AspectC++ and SystemC, enabling
the implementation of fault attacks and detection in the ASCON process without any
alterations to the existing SystemC ASCON code. This approach provides a seamless and
efficient way to enhance the security of the system-level modeling language.

5.1.1. AOP Impact on Transient Fault Analysis

We started by analyzing the fault detection capabilities of the ASCON cryptographic
model, specifically searching for transient errors that affect single and multiple bits. We
conducted various experiments to inject faults into the ASCON cryptographic model
and observed its ability to detect and mitigate these faults. The ASCON SystemC model’s
detection capabilities for transient multiple-bit affecting at least two bits were tested through
eight tests with varying fault multiplicity. Our analysis focused on the model’s robustness
against transient faults and its effectiveness in maintaining data integrity. The simulation
security uses 1,500,000 faults, ensuring meticulous insertion of transient faults into every
message, operation, and ASCON round.

The simulation results, seen in Table 1, show that both SystemC-AOP and SystemC
ASCON models have equivalent fault detection capabilities in terms of undetected faults,
indicating the validity of our SystemC-AOP technique, as both scenarios identified all

Symmetry 2024, 16, 348 14 of 18

inserted random and transient faults. These findings suggest that integrating AOP into the
SystemC framework does not compromise the ASCON detection capabilities of the design
models. Furthermore, the successful identification of all inserted transient faults highlights
the effectiveness and reliability of our SystemC-AOP technique in ensuring robustness
against potential security vulnerabilities.

Table 1. SystemC-AOP/SystemC detection capability.

Fault Types Fault Multiplicity
Secured ASCON Model a Secured ASCON Model b Secured ASCON Model c

SystemC-AOP SystemC SystemC-AOP SystemC SystemC-AOP SystemC

Transient
faults

Single-bit 0.004 0.004 0.0044 0.0044 0.0046 0.0046

Multiple-bit

2-bit 0.00327 0.00327 0.00367 0.00367 0.00387 0.00387

3-bit 0.0022 0.0022 0.0028 0.0028 0.00293 0.00293

4-bit 0.00167 0.00167 0.002 0.002 0.00233 0.00233

5-bit 0.00113 0.00113 0.00167 0.00167 0.0018 0.0018

6-bit 0.0008 0.0008 0.00107 0.00107 0.00147 0.00147

7-bit 0.0006 0.0006 0.00087 0.00087 0.0012 0.0012

Random 0.00127 0.00127 0.0016 0.0016 0.00187 0.00187

Permanent
faults

Single-bit 0.0036 0.0036 0.0036 0.0036 0.00433 0.00433

Random 0.00107 0.00107 0.0014 0.0014 0.0016 0.0016

a 1st fault detection scheme in [8]. b 2nd fault detection scheme in [8]. c 3rd fault detection scheme in [8].

5.1.2. AOP Impact on Permanent Fault Analysis

The second experiment focused on evaluating the detection capabilities of the ASCON
SystemC model for both permanent single-bit and random faults. The permanent faults
stuck-at-0 and stuck-at-1 have been considered in this evaluation. The ASCON model has
been thoroughly tested with 1,500,000 permanent faults being meticulously inserted into
every round, operation, and byte.

Table 1 displays the proportion of undetected permanent single-bit and random faults
in the protected cryptographic model using two scenarios. In both scenarios, the fault
detection functionalities of the ASCON SystemC model demonstrate consistent equiva-
lence with regard to permanent faults, indicating the effectiveness of our SystemC-AOP
technique. This finding suggests that our SystemC-AOP technique is reliable and robust
in detecting permanent faults in the ASCON cryptographic model. These results fur-
ther validate the potential of our approach for enhancing the security and reliability of
cryptographic systems.

5.2. Simulation AOP Impact

An evaluation of the effect that AOP has on simulation time was carried out by
injecting a total of 1500 random faults into the cryptographic model’s possible fault locations
and then determining the average amount of time required for simulation.

It is essential to note, prior to discussing the results, that the number of join point data
inserted by the advice code into the ASCON SystemC code determines the effect of the
AOP approach on simulation time.

Table 2 displays the results of simulation time, including user time (uTime) and kernel
time (kTime), for both scenarios. Note that the difference is less than the Linux command
time measurement tool’s expected error.

The study concludes that the AOP’s impact on simulation time is not significant
and should not hinder its use in cryptographic verification security. Additionally, the
study found that the AOP approach did not introduce any noticeable overhead in terms
of simulation time. This suggests that incorporating AOP techniques into cryptographic
verification security can be undertaken without compromising performance. Therefore, it

Symmetry 2024, 16, 348 15 of 18

is recommended to utilize AOP in this context for its potential benefits without concerns
about its impact on simulation time.

Table 2. SystemC-AOP/SystemC simulation time.

ASCON Model

Scenarios

SystemC-AOP SystemC

uTime (s) kTime (s) uTime (s) kTime (s)

Secured ASCON Model a 1.762 0.031 1.763 0.030

Secured ASCON Model b 1.769 0.037 1.767 0.038

Secured ASCON Model c 1.779 0.050 1.777 0.049
a 1st fault detection scheme in [8]. b 2nd fault detection scheme in [8]. c 3rd fault detection scheme in [8].

Additionally, the research examined the size of SystemC and SystemC-AOP executable
files produced by the SystemC kernel and AspectC++. As seen in Table 3, it was found
that AOP does not significantly affect the size of the executable file. This indicates that
incorporating AOP techniques into cryptographic verification security does not result
in larger executable files. Hence, developers can confidently utilize AOP in this context
without worrying about the impact on the size of the generated executable file.

Table 3. SystemC-AOP/SystemC file executable size.

ASCON Model
Scenarios

SystemC-AOP SystemC

Secured ASCON Model a 1.124 MB 1.132 MB

Secured ASCON Model b 1.131 MB 1.140 MB

Secured ASCON Model c 1.156 MB 1.163 MB
a 1st fault detection scheme in [8]. b 2nd fault detection scheme in [8]. c 3rd fault detection scheme in [8].

5.3. ASCON Design Process: ESL Impact

We conducted a series of experiments to evaluate the impact of the ESL on the design
process. The ESL modeling level uses TLM Programmer View Timed (TLMPVT) and
SystemC as the modeling languages, whereas VHDL is used to describe the identical
cryptographic model at RTL, with both being simulated under the same setting conditions.
The purpose of this experimentation was to compare the impact of ESL on the simulation
time and ASCON design process in comparison to RTL. By implementing the ESL modeling
level TLMPVT and the modeling language SystemC, we were able to accurately assess the
effects. Additionally, by describing the cryptographic model in VHDL at the RTL level, we
were able to directly compare the simulation results between SystemC and VHDL.

The study revealed that the RTL ASCON code is five times more than the ESL ASCON
code, as per the counted lines in both description levels. Additionally, the development life
cycle was evaluated in weeks. While 18 weeks were dedicated to RTL coding, only 3 weeks
were enough for ESL modeling. This significantly reduces the amount of time devoted to
the design procedure by 83.34%. This reduction in time allows for faster iterations and
more efficient design improvements. Additionally, the study found that the ESL code was
more easily readable and maintainable compared to the RTL code, leading to increased
productivity and reduced debugging time. Additionally, we compared the simulation
times of security attacks in both scenarios involving the injection of 1,500,000 random
faults in various locations. In both instances, 99.99% of the potential injection sites were
covered. The ESL enhances the speed of security attack simulations and decreases the
simulation time by 40%, according to the simulation results. Additionally, we found that
the ESL approach also improves the accuracy of the security attack simulation, with a
higher percentage of faults being detected compared to RTL coding. This suggests that

Symmetry 2024, 16, 348 16 of 18

adopting ESL modeling can not only save time in the ASCON design process but can also
enhance system security.

It is less complicated and simpler to implement the proposed ASCON ESL envi-
ronment compared to RTL due to its ability to abstract required RTL design details and
provide templates for almost all HW/SW coding styles through ESL libraries. These APIs
allow developers to quickly and efficiently integrate cryptographic algorithms into their
designs without having to worry about low-level implementation details. Additionally, the
ESL environment provides a higher level of abstraction, making it easier for designers to
understand and modify the code as needed.

The AOP combination with ESL prevents modifications of the ASCON original code,
focusing on security concerns in regard to the injection/detection aspects. After simulation,
all security concerns are disconnected, including the detection aspect, injection faults aspect,
and ASCON ESL model. This separation ensures that the original code remains intact and
unaffected by security concerns. The injection faults and detection modules are designed to
operate independently, allowing for easy customization and modification without altering
the core functionality of the original ESL model.

The ESL literature predicts a reduction in simulation speed, but the novelty lies in
speeding up security attack simulations with the same effectiveness in injection location
reporting. The distinction between modeling levels is in the electrical intricacies rather
than the cryptographic techniques. The ESL level provides a faster environment for esti-
mating the resistance of cryptographic algorithms despite the fact that it performs the same
operations at both levels. At the ESL level, the simulation speed reduction is achieved by
abstracting away the electronic details and focusing solely on the behavior of the crypto-
graphic algorithm. This allows for faster execution of the simulation while still maintaining
an equal degree of coverage with regard to the locations of injections. Therefore, despite
the difference in modeling levels, the underlying security attack simulation at ESL remains
efficient and effective in evaluating the robustness of the ASCON cryptographic model.

6. Conclusions

This work introduces a mechanism for injecting and detecting faults at the ESL
level to simulate the security fault attacks of ASCON cryptographic systems. It pro-
vides an overview of fault injection attacks on cryptographic systems and introduces the
SystemC-AOP methodology for evaluating the ASCON cryptographic designs’ robustness
against these attacks. The AOP methodology is also presented for injecting faults at the
ESL in SystemC designs. The fault injection/detection methodology we proposed involves
injecting faults at the ESL using the AOP methodology in SystemC designs. Our approach
allows for the evaluation of the fault injection resistance of cryptographic designs, provid-
ing valuable insights into their security vulnerabilities. Additionally, our methodology can
be used to simulate and detect security fault attacks in a controlled environment, aiding in
the development of more secure cryptographic systems.

The suggested methods for injecting and detecting faults have been demonstrated to be
feasible and effective in evaluating cryptographic designs’ robustness in resistance to fault
attacks. A negligible effect of the AOP is observed in the simulation time, making it useful
in testing security domains by reducing efforts and errors. Additionally, the AOP approach
allows for easy customization and modification of the fault injection/detection methodol-
ogy to suit specific cryptographic systems. This flexibility ensures that the methodology
can be applied to a wide range of security scenarios, further enhancing its usefulness in
evaluating the robustness of cryptographic designs.

Author Contributions: Conceptualization, designing, writing—original draft preparation, H.M. and
I.B.; experimentation, simulation, and analysis, H.M., I.B. and M.B.; investigation and resources, H.M.
and I.B.; writing review and editing, H.M. and M.M.; supervision, H.M.; project administration, H.M.
and I.B. All authors have read and agreed to the published version of the manuscript.

Symmetry 2024, 16, 348 17 of 18

Funding: This research work was funded by Prince Sattam bin Abdulaziz University under project
number (PSAU/2023/01/26665).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors extend their appreciation to Prince Sattam bin Abdulaziz University
for funding this research work through the project number (PSAU/2023/01/26665).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pomante, L.; Muttillo, V.; Santic, M.; Serri, P. SystemC-based electronic system-level design space exploration environment for

dedicated heterogeneous multi-processor systems. Microprocess. Microsyst. 2020, 72, 102898. [CrossRef]
2. Lohmann, D.; Huf, A.; Lettnin, D.; Siqueira, F.; Güntzel, J.L. A Domain-specific Language for Automated Fault Injection in

SystemC Models. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux,
France, 9–12 December 2018. [CrossRef]

3. Roux, J.; Beroulle, V.; Morin-Allory, K.; Leveugle, R.; Bossuet, L.; Cézilly, F.; Berthoz, F.; Genévrier, G.; Cerisier, F. High-level fault
injection to assess FMEA on critical systems. Microelectron. Reliab. 2021, 122, 114135. [CrossRef]

4. Mestiri, H.; Lahbib, L.; Machhout, M.; Tourki, R. An AOP-Based Fault Injection Environment for Cryptographic SystemC Designs.
J. Circuits Syst. Comput. 2015, 24, 1550008. [CrossRef]

5. Mestiri, H.; Barraj, I.; Machhout, M. An AOP-Based Security Verification Environment for KECCAK Hash Algorithm. Comput.
Mater. Contin. 2022, 73, 4051–4066. [CrossRef]

6. Mestiri, H.; Barraj, I.; Machhout, M. AES High-Level SystemC Modeling using Aspect Oriented Programming Approach. Eng.
Technol. Appl. Sci. Res. 2021, 11, 6719–6723. [CrossRef]

7. Turan, M.S.; McKay, K.; Chang, D.; Bassham, L.E.; Kang, J.; Waller, N.D.; Kelsey, J.M.; Hong, D. Status Report on the Final Round of
the NIST Lightweight Cryptography Standardization Process; NIST.IR.8454. Available online: https://nvlpubs.nist.gov/nistpubs/ir/
2023/NIST.IR.8454.pdf (accessed on 16 June 2023).

8. Kaur, J.; Kermani, M.M.; Azarderakhsh, A. Hardware Constructions for Error Detection in Lightweight Authenticated Cipher
ASCON Benchmarked on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2276–2280. [CrossRef]

9. Mestiri, H.; Barraj, I. High-Speed Hardware Architecture Based on Error Detection for KECCAK. Micromachines 2023, 14, 1129.
[CrossRef] [PubMed]

10. Salam, I.; Yau, W.C.; Phan, R.C.W.; Pieprzyk, J. Differential fault attacks on the lightweight authenticated encryption algorithm
CLX-128. J. Cryptogr. Eng. 2023, 13, 265–281. [CrossRef]

11. Rajkumar, S.; Sheeba, S.L.; Sivakami, R.; Prabu, S.; Selvarani, A. An IoT-Based Deep Learning Approach for Online Fault Detection
Against Cyber-Attacks. SN Comput. Sci. 2023, 4, 393. [CrossRef]

12. Patel, S.; Katiyar, S.K.; Sharma, N. Metric Analysis for AOP and OOP Programming Paradigm. J. Inst. Eng. (India) B 2023, 104,
215–220. [CrossRef]

13. Mohite, S.; Sarda, A.; Joshi, S.D. Analysis of System Requirements by Aspects-J Methodology. In Proceedings of the IEEE
International Conference on Computing, Communication and Green Engineering (CCGE), Pune, India, 23–25 September 2021.
[CrossRef]

14. Bentrad, S.; Neslati, D. PAN4AJ: A Programming AssistaNt for Introductory AspectJ Programming. Turk. J. Comput. Math. Educ.
2022, 13, 565–578. [CrossRef]

15. Ramalingam, M.; Saranya, D.; ShankarRam, R.; Chinnasamy, P.; Ramprathap, K.; Kalaiarasi, K. An Automated Framework
Dynamic Web Information Retrieval Using Deep Learning. In Proceedings of the IEEE International Conference on Computer
Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022. [CrossRef]

16. Jain, R.; Agrawal, R.; Gupta, R.; Jain, R.K.; Kapil, N.K.; Saxena, A. Detection of Memory Leaks in C/C++. In Proceedings
of the IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India,
22–23 February 2020. [CrossRef]

17. Tanigawa, I.; Hisazumi, K.; Ogura, N.; Sugaya, M.; Watanabe, H.; Fukuda, A. RTCOP: Context-Oriented Programming Framework
based on C++ for Application in Embedded Software. In Proceedings of the 2nd International Conference on Information Science
and Systems, Tokyo, Japan, 16–19 March 2019. [CrossRef]

18. Gabsi, W.; Zalila, B.; Jmaiel, M. Extension and adaptation of an aspect oriented programming language for real-time systems. Int.
J. Bus. Syst. Res. 2020, 14, 139–161. [CrossRef]

19. AlSobeh, A.M.R.; Magableh, A.A. BlockASP: A Framework for AOP-Based Model Checking Blockchain System. IEEE Access 2023,
11, 115062–115075. [CrossRef]

20. Gabor, U.T.; Egidy, C.C.; Spinczyk, O. Interface Injection with AspectC++ in Embedded Systems. In Proceedings of the IEEE 19th
International Symposium on High Assurance Systems Engineering (HASE), Hangzhou, China, 3–5 January 2019. [CrossRef]

21. Yoshiya, E.; Nakanishi, T.; Isshiki, T. RTL Design Framework for Embedded Processor by using C++ Description. In Proceedings of
the IEEE Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021. [CrossRef]

https://doi.org/10.1016/j.micpro.2019.102898
https://doi.org/10.1109/ICECS.2018.8617838
https://doi.org/10.1016/j.microrel.2021.114135
https://doi.org/10.1142/S0218126615500085
https://doi.org/10.32604/cmc.2022.029794
https://doi.org/10.48084/etasr.3971
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2023/NIST.IR.8454.pdf
https://doi.org/10.1109/TCSII.2021.3136463
https://doi.org/10.3390/mi14061129
https://www.ncbi.nlm.nih.gov/pubmed/37374714
https://doi.org/10.1007/s13389-023-00326-0
https://doi.org/10.1007/s42979-023-01808-y
https://doi.org/10.1007/s40031-022-00842-3
https://doi.org/10.1109/CCGE50943.2021.9776384
https://doi.org/10.17762/turcomat.v13i03.13057
https://doi.org/10.1109/ICCCI54379.2022.9741044
https://doi.org/10.1109/SCEECS48394.2020.32
https://doi.org/10.1145/3322645.3322689
https://doi.org/10.1504/IJBSR.2020.106274
https://doi.org/10.1109/ACCESS.2023.3325060
https://doi.org/10.1109/HASE.2019.00028
https://doi.org/10.23919/DATE51398.2021.9473942

Symmetry 2024, 16, 348 18 of 18

22. Elhariti, Z.; Alali, A.; Sadik, M.; Aamali, K. Cosimulation of Power and Temperature Models at the SystemC/TLM for a Soft-Core
Processor. Adv. Mater. Sci. Eng. 2020, 2020, 2567915. [CrossRef]

23. Pinto, P.; Carvalho, T.; Bispo, J.; Cardoso, J. LARA as a language-independent aspect-oriented programming approach. In
Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 3–4 April 2017. [CrossRef]

24. Silva, C.V.; Villarroel, R.; Johnson, F.; Madariaga, E.; Urz, A.; Carter, L.; Campos-Vald, C. Aspect-Combining Functions for
Modular MapReduce Solutions. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 565–574. [CrossRef]

25. Lin, B.; Xie, F. A Systematic Investigation of State-of-the-Art SystemC Verification. J. Circuits Syst. Comput. 2020, 29, 2030013.
[CrossRef]

26. Biagetti, G.; Falaschetti, L.; Crippa, P.; Alessandrini, M.; Turchetti, C. Open-Source HW/SW Co-Simulation Using QEMU and
GHDL for VHDL-Based SoC Design. Electronics 2023, 12, 3986. [CrossRef]

27. Pieper, P.; Herdt, V.; Drechsler, R. Advanced Embedded System Modeling and Simulation in an Open Source RISC-V Virtual
Prototype. J. Low Power Electron. Appl. 2022, 12, 52. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2020/2567915
https://doi.org/10.1145/3019612.3019749
https://doi.org/10.14569/IJACSA.2018.090871
https://doi.org/10.1142/S0218126620300135
https://doi.org/10.3390/electronics12183986
https://doi.org/10.3390/jlpea12040052

	Introduction
	Backgrounds
	Aspect-Oriented Programming
	ASCON Algorithm
	Fault Attacks

	Related Work
	AOP Software Application
	AOP for Security
	SystemC Modeling Using AOP

	ASCON SystemC-AOP Environment
	Proposed Methodology
	ASCON Injection/Detection via AOP
	ASCON Controller Aspect
	ASCON Injector Aspect
	ASCON Analysis Aspect

	ASCON Methodology Validation
	AOP Impact on Fault Analysis
	AOP Impact on Transient Fault Analysis
	AOP Impact on Permanent Fault Analysis

	Simulation AOP Impact
	ASCON Design Process: ESL Impact

	Conclusions
	References

