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Abstract: A Lagrangian method is introduced to analyze the tip leakage vortex (TLV) behavior in a
low-speed axial compressor rotor. The finite-time Lyapunov exponent (FTLE) fields are calculated
based on the delayed detached-eddy simulation (DDES) results and identifying the FTLE ridges
as Lagrangian coherent structures (LCSs). The computational method of the FTLE field in three-
dimensional unsteady flow fields is discussed and then applied to the instantaneous flow fields at
both the design and near-stall conditions. Results show that the accuracy of the particle trajectory
and the density of the initial grid of the particle trajectory greatly affect the results of the FTLE
field and, thus, the LCSs. Compared to the Eulerian Q method, which is calculated based on the
symmetric and anti-symmetric components of the local velocity gradient tensor, the Lagrangian
method has great potential in unraveling the mechanism of complex vortex structures. The LCSs
show a transport barrier between the TLV and the secondary TLV, indicating two separate vortices.
The aLCSs show the bubble-like and bar-like structure in the isosurfaces corresponding to the bubble
and spiral breakdown patterns.

Keywords: delayed detached-eddy simulation; Lagrangian coherence structure; tip leakage vortex;
compressor rotor

1. Introduction

The tip leakage flow (TLF), which is driven by the pressure difference between the
pressure side and the suction side of the blade, and which passes through the gap in
turbomachinery [1–3], is characterized by large-scale vortices, such as the tip leakage
vortex (TLV). The TLF has a significant impact on the compressor’s pressure rise, efficiency,
aerodynamic noise, and stall margin, and it is influenced by many factors [4–6]. Although
researchers have made many efforts to mitigate the undesirable adverse effects of the TLF
over several decades, the complexity of its mechanism still limits the understanding and
makes it a major concern in the design of modern axial compressors [7–9]. Therefore, a better
understanding of these complexities and the details of fluid transport should be made and
will undoubtedly help to improve the design of turbomachinery in engineering practice.

The analysis of the flow structures in the blade tip region is mainly based on con-
ventional Eulerian methods, by which the flow structures are identified from the spatial
structure of quantities derived from the velocity field, pressure field, or their gradients [10].
Helmholtz proposed the vorticity or the curl of velocity, which is the anti-symmetric com-
ponent of the velocity gradient, to identify the vortex structures in the flow field [11].
Indeed, most vortex identifications are based on the symmetric and anti-symmetric com-
ponents of the local velocity gradient. Taking the Galilean invariance into consideration,
vortex identifications such as the Q criterion, ∆ criterion, λ2 criterion, and λci criterion are
proposed [12–15]. New Eulerian vortex identification methods continue to be proposed
in modern academia, and the Liutex criterion was proposed with the aim of solving the
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problem in threshold determination and vortex behavior near the wall [16], subsequently
being used to analyze complex flows in turbomachinery [17,18]. These Eulerian methods
have been widely applied in the studies of TLF.

A trajectory-based method from a Lagrangian perspective was first proposed by Haller
and has then developed by many researchers in recent years [19]. Compared with the
Eulerian methods, the Lagrangian methods are objective (not only Galilean-invariant but
also frame-independent). The flow can be regarded as a dynamic system of fluid particles
rather than a continuum, and the Lagrangian coherence structures (LCSs) are used to
divide dynamic characteristic regions and understand fluid transport by extracting the
stable and unstable manifold. These manifolds represent the exact vortex boundaries of
the time-dependent separation and reattachment profiles. For steady flow, the streamline
coincides with the pathline. For any point in space, only one streamline passes through that
point; therefore, by observing the Eulerian velocity field, we can understand the transport
structure. However, for the unsteady flow, the streamline changes with time, and the
division of transport structure and dynamic characteristic area is no longer as intuitive as
the steady flow, and so the advantages of the Lagrangian methods emerge.

The Lagrangian method has been applied to a variety of flows, such as geophysical
flows [20–22], meteorological flows [23], and biological flows [24,25]. For the engineering
flows, most of the analyses focus on the two-dimensional (2D) flows and quasi-three-
dimensional (Q3D) flows based on experiment data or numerical simulation results. The
LCSs in the boundary layer are identified to study its mechanism, such as the transportation
properties and transition process of the boundary layer [26–28]. The flow over a cylinder
is another typical flow field studied by the LCSs to reveal the formation and shedding
mechanism of the vortex in the cylindrical wake [29–32]. In the external flow, the LCSs
are analyzed to reveal the mechanism of flow separation, cavitation, and flow control in
delta wings and airfoils [33–38]. LCS theory has great potential for unraveling the transport
mechanism in engineering flows, and introducing it to the analysis of the TLF in axial
compressors should enable a deeper understanding of the flow.

In this study, considering the great potential of LCS in unraveling the hidden transport
phenomena in engineering flows, the Lagrangian method is introduced to a low-speed com-
pressor rotor, and the application of LCSs identified by FTLE fields in three-dimensional
(3D) unsteady flow fields is preliminarily explored based on delayed detached-eddy simula-
tion (DDES) results. In Sections 2.1 and 2.2, the Lagrangian method and the Eulerian method
of Q criterion, calculated based on the symmetric and anti-symmetric components of the
local velocity gradient tensor, are introduced, respectively. Then, the numerical setups of
the low-speed rotor are illustrated in Section 2.3. In Sections 3.1.1–3.1.3, three main factors
of the computational method of the FTLE field are discussed. In Section 3.2, the evolution
of the TLV is analyzed by the LCSs and compared with the vortex structures identified by
the Q criterion, emphasizing the breakdown pattern of the TLV.

2. Methodology
2.1. Lagrangian Method

The local extremum of the finite-time Lyapunov exponent (FTLE) field is proposed to
characterize LCSs [39]. Shadden proposed the precise definition of the FTLE ridge as the
LCS and, based on some assumptions, derived the expression of the flow mass through
the LCS, thus proving the nature of the LCS as a transport boundary [40]. The study of
Haller et al. showed that the trough of the FTLE field at a certain moment marks the
attracting LCS at that moment [41]. To a certain extent, this has stimulated the development
of more reliable mathematical methods that can enable LCSs to identify the surface of a
parameterized material surface accurately.

The essence of the FTLE method is to quantify the maximum possible distance between
two particles at an infinitely small distance near the same space point at the initial time
after moving with the flow for a period of time [42,43]. It is more convenient to use the
Lagrangian description. The core of the Lagrangian description of fluid motion is the flow
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mapping Φt
t0

:x0 → x(t0,t:x0) on the phase space P and the time interval L = [t0,t1]. This
mapping maps the initial position x0 ∈ P to its position at any time t ∈ L. If we hypothesize
that two particles near a point in space are separated by a distance of εξ(t0), where 0 < ε ≪ 1,
and ξ(t0) represents an arbitrary unit vector on Rn, for the flow field, n is 2 or 3 according to
the dimension of the flow field. At time t0 + T, the relative position of these two particles is

∆Φt
t0
(t0 + T, x0) = Φt0+T

t0
(x0 + εξ(t0)) − Φt0+T

t0
(x0) = JΦt0+T

t0
(x0)εξ(t0) +O(ε2) (1)

Here JΦt0+T
t0

(x0) represents the Jacobian of Φt0+T
t0

(x0). Landau notation is also used in
the equation, and for a constant positive function, g(x), f (x) = O(g(x)) means that for all
x ∈ R, g(x)/f (x) is always bounded. The maximum distance between two particles is
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where Ct0+T
t0

(x0) = [JΦt0+T
t0

(x0)]T[JΦt0+T
t0

(x0)] means Cauchy–Green strain tensor, ⟨•, •⟩
represents the Euclidean inner product. Since this maximum distance tends to increase
rapidly, it is more convenient to use its growth exponent (log(∆t0+T

t0
(x0)))/|T|, which is

the finite-time Lyapunov exponent:

σt0+T
t0

(x0) =
1

2|T| log(∆t0+T
t0

(x0)) (3)

The FTLE is divided into a forward-time FTLE and a backward-time FTLE. The
difference between the two is that the former uses forward integration time (T > 0) to
produce repelling LCS (rLCS), while the latter uses reverse integration time (T < 0) to
produce attracting LCS (aLCS). To facilitate the comparison of LCS structures with different
integration times, the FTLE is nondimensionalized by the maximum value of the whole
FTLE field, and this non-dimensional value is denoted as FTLErel.

FTLErel = σt0+T
t0

(x0)/max[σt0+T
t0

(x0)] (4)

In this study, the FTLE field is computed from discrete flow fields, not directly from the
fluid equations. This is applied in most practical applications, and it is particularly useful
when the velocity field is obtained from observations and simulations. In the following
sections, we employ linear interpolation in time and space.

2.2. Eulerian Q Criterion Method

Among all the Eulerian vortex identification methods typically formulated regarding
the invariants of the velocity gradient tensor G =∇u, if we hypothesize that the P, Q, R
are the first, second and third invariant of the velocity gradient G, then the characteristic
equation for the eigenvalues of ∇u reads:

λ3 − Pλ2 + Qλ − R = 0 (5)

The Q criterion, proposed by Hunt et al. [12] identifies the vortices using positive
Q for incompressible fluid (especially the large-scale vortex in turbulent flow). Q can be
expressed by the following equation for incompressible flow:

Q =
1
2
[tr(∇u)]2 − tr[(∇u)2] =

1
2

tr[(∇u)2] =
1
2
(∥Ω∥2 − ∥S∥2) > 0 (6)
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where the strain rate tensor S and the rotation tensor Ω are the symmetric and anti-
symmetric components of G, defined as S = 1

2 (G + GT) and Ω = 1
2 (G − GT), so that Q > 0 is

the region in which the vorticity magnitude prevails over the strain-rate magnitude.

2.3. Numerical Setups
2.3.1. Experimental Configurations

Du et al. [44] conducted experimental research in the low-speed, large-scale axial
compressor test rig at Beihang University. This compressor features a 1.5-stage layout that
includes an inlet guide vane, a rotor, and a stator. Calculations of the Reynolds number,
which were based on the length of the rotor’s tip chord (C), yielded a value of 750,000.
The specific parameters of the compressor are detailed in Table 1. Velocity measurements
in great detail were obtained at cross-sections that were almost perpendicular to the
direction of the rotor’s tip chordwise, utilizing intervals of either 5% or 10% of the chord
length through the stereoscopic particle image velocimetry (SPIV) technique. For further
information on the experiment, refer to ref. [44].

Table 1. Design parameters of the test facility.

Parameter Parameter Value

Outer diameter 1.0 m
Hub-to-tip ratio 0.6

Design Speed 1200 r/min
Configuration Inlet guide vane + Rotor + Stator

Number of rotor blades 17
Mid-span blade chord 152 mm

Mid-span Blade camber angle 40.8◦

Mid-span Blade stagger angle 36.5◦

Solidity (mid-span) 1.03
Aspect ratio (mid-span) 1.32

Rotor tip gap 3.5 mm
Rotor tip gap/blade height 1.75%

2.3.2. Computational Domain and Numerical Method

With the rapid development of computer resources, the computational fluid dynamics
(CFD) technique was rapidly developed and has been widely used to study aerodynamic
and aeroelastic problems [45,46]. The choice of the turbulence model plays a pivotal role
in the Reynolds-averaged Navier–Stokes equations (RANS) method within engineering
fields [47], and it represents a notable challenge in the aerodynamics of compressors [48],
particularly concerning the analysis of tip leakage flows [49]. Hence, to explore the evo-
lution of tip leakage flow in the rotor, the DDES method, a hybrid approach combining
large eddy simulation (LES) and RANS, is utilized in this study to reduce the need for an
extensive computational grid that an LES commonly requires. Compared to the RANS
method, the DDES method performs significantly better in predicting the TLF [50]. This
study employs the DDES method based on the shear stress transport (SST) k-ω model [51],
a turbulent model that is frequently used in turbomachinery simulations [52].

For the simulation focusing on tip leakage flow, the study opted for an O4H-type mesh
configuration to maintain high grid quality, as illustrated in Figure 1. The y+ is set to around
0.8 of the solid walls. The simulation’s inlet was positioned at 1.0 chord length ahead of
the blade’s leading edge, with the entire computational domain extending approximately
4.0 chord lengths in the axial direction downstream. Within the TLV region, at a spanwise
height exceeding 80% of the blade, refined meshes were utilized. The mesh has an aspect
ratio below 2 and an expansion ratio under 1.05 to enhance the resolution of the TLV
structure. The grid spacings in the spanwise, pitchwise, and streamwise dimensions
relative to the blade tip’s chord length are capped at ∆x+ ≤ 110, ∆y+ ≤ 1, and ∆z+ ≤ 120,
respectively. This grid quality aligns with that of prior studies conducted under comparable
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flow conditions that also employed the DDES method [53,54]. The total number of grid
points used in the simulation is around 6.2 million.
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The simulations were performed in Fluent with a pressure-based implicit solver. The
SIMPLE algorithm, an algorithm for coupling pressure and velocity, was applied in the
simulations. The spatial aspect of the simulation utilized a bounded central differencing
scheme for integration, while temporal discretization was achieved through second-order
implicit time integration. To capture the steady total pressure distribution of the inlet flow
between the inlet guide vane and the rotor, five-hole probes were strategically placed in the
center of the blade passage, and the results of pressure measurements at various radii were
applied to the inlet boundary condition.

In the DDES calculations, approximately 1000 time steps (∆t) cover the duration it
takes for a rotor blade to pass one pitch. This time step size is selected to adequately
capture the dynamics of the unsteady tip leakage flow, ensuring compliance with the
Courant–Friedrichs–Lewy condition for numerical stability. The chosen time step is nondi-
mensional, normalized by both the rotor-tip chord length and the speed of the inlet’s
main flow, set at 5 × 10−4. During each time step, 30 inner iterations are executed to
ensure accuracy and convergence. To comprehensively document the flow’s behavior over
time, 3000 instantaneous results are recorded throughout the simulation, with a saving
interval of every 10 physical time steps, providing a detailed temporal resolution of the
flow characteristics.

2.3.3. Validation of the Numerical Method

The simulation results of time-averaged streamwise vorticity of the representative
cross-sections at design (DE) and near-stall (NS) conditions are compared with an experi-
mental measurement in Figure 2. To better capture the TLV, the s-y-p coordinate system
is set up by rotating the x-axis and z-axis about the y-axis to the position that the x-axis is
parallel to the blade tip chord and perpendicular to the cross-sections in the SPIV measure-
ments, as shown in Figure 1. The rotated x-axis direction is termed streamwise, and the
rotated z-axis direction is termed pitchwise in the following sections. The flow coefficient
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has been checked to guarantee that the operating point is compatible with the experiment.
The flow coefficients in the simulations are 0.58 with the DE condition and 0.51 with the
NS condition, respectively, showing that the agreement between them is quite good. The
DDES captures the location and track of TLV at different working conditions. The sim-
ulation results capture the location of TLV and show qualitatively good agreement with
experimental results.
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3. Results and Discussion
3.1. Effect of Parameters on the LCS Structure in the Low-Speed Rotor

As understood from the calculation process of the FTLE, there are several parameters
which affect the results of the LCSs. Three of them are considered to be the main factors,
namely the initial grid of the particle trajectory, the trajectory integration method, and the
integration time T. In this section, these three factors are discussed separately.

3.1.1. The Initial Grid of the Particle Trajectory

Two regular grids are compared, and the calculation parameters of the FTLE field are
shown in Table 2. The initial grids are located at the cross-section of s/C = 0.5 and cover the
TLV in the time-averaged flow field at DE condition. In the streamwise cross-section plane,
the grid is uniform, and two layers of the grid are set in the streamwise direction to compute
the derivative along this direction. The grid cells are nearly cubic. The grid of particle
trajectory is advected in time as the flow field is steady. The total number of grid points in
grid-2 is 6.25 times greater than that in grid-1, attributed to a 2.5-fold increase in the grid
point number of grid-1 in each spatial direction. Calculations for both negative and positive
integration times are performed, which correspond to aLCSs and rLCSs, respectively. The
results are shown in Figure 3.

Table 2. Calculation parameters of FTLE field with different regular grids.

Grid No. Grid Size Integration Time Step Integration Time Time Integration Method

1 300(p) × 180(r) 2.5 ∆t ±2000 ∆t Fourth-order Runge-Kutta
2 750(p) × 450(r) 2.5 ∆t ±2000 ∆t Fourth-order Runge-Kutta
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refined inside the TLV core, as shown in Table 3. Then, these seeding points are triangu-
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the grid numbers of the adaptive grids reduce to 27.5% and 82.7% of the grid-2 for the 
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Figure 3. Sketch of initial grids and contours of an FTLE field with different regular grids. Contours
of aLCS and isolines of Q = 0 s−2 with (a) grid-1 and (b) grid-2; contours of rLCS and isolines of
Q = 0 s−2 with (c) grid-1 and (d) grid-2.

The general LCSs are similar in both grids, while the ridges are more evident in the
higher-density grid. The LCSs are defined as the ‘ridges’ of the FTLE field represented
by the position of local maximum values, and the exact values are not that important in
illustrating the structures. For the aLCSs of the TLV core region, where the curvature
of the ridge is much larger and more complicated in a small region, the differences are
more significant between the two grids. For the FTLE field of forward time, the ridges are
more complicated, and the lower-density initial grid mashes the ridges close to each other,
forming into one.

The increasing initial grid points result in more distinct LCSs and higher computation
costs simultaneously. Adaptive meshes are generated based on the FTLE fields from grid-1
to balance the calculation accuracy and costs. Regular grid points of four different densities
are used to seed at different regions with various FTLE ranges and are particularly refined
inside the TLV core, as shown in Table 3. Then, these seeding points are triangulated into
the unstructured grid. As the grid density near the ridges stays nondecreasing, the grid
numbers of the adaptive grids reduce to 27.5% and 82.7% of the grid-2 for the FTLE field
of negative and positive integration time, respectively. The sketch of the adaptive grids
and contours of the FTLE fields are shown in Figure 4. With the adaptive grids, the ridges
are further clarified, while the general LCSs stay the same. In the core region of the TLV,
where the radius of curvature of the ridges is small, the detailed aLCSs are captured with
the higher-density grid. For the rLCSs, the decrement of the total grid points of the initial
grid is not significant, as the structures are complicated.
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Table 3. Grid densities for different FTLE ranges.

Grid Density Level Grid Size FTLE Range

1 150(p) × 90(r) (−∞, 0.27]
2 300(p) × 180(r) (0.27, 0.56)
3 750(p) × 450(r) [0.56, +∞)
4 1500(p) × 900(r) [0.56, +∞) (partial)
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For the calculation of the three-dimensional FTLE field, the cost increases sharply. To
capture the LCS as that at the 2D plane, the grid number of the initial particle trajectory grid
would be greatly larger than the mesh of the numerical simulation. To save computation
resources, the initial grid of particle trajectory is limited to the region inside the blade row
within a 25% span near the shroud. The sketch of the initial grid is shown in Figure 5,
and the grid is referred to as grid-3D in this study. The total grid number of grid-3D is
approximately 4.34 million.
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A regular grid, termed grid-3Duni, is generated and shown in Figure 7a. The total 
number of grid points is approximately 8.80 million, and the distributions of the grid 
points in each direction are uniform. The spanwise range of the grid is narrowed down to 
a 7.5% span to capture the TLV core and save the computational resources. The grid den-
sity at the cross-section plane s/C = 0.5 is nearly half of grid-1.  

This grid gets clearer ridge structures of the FTLE field than the other 3D grid, espe-
cially with the high curvature. However, compared with the results from grid-1, the de-
tailed LCSs cannot be distinguished, while the computational costs are far beyond that of 
grid-1. Limited by computational resources and efficiency, the identification of LCSs in 

Figure 5. Sketch of the initial grid grid-3D.

Figure 6 shows the FTLE field and vorticity field of the time-averaged flow field with
the DE condition. The Eulerian Q criterion is applied as well, and the isolines of Q = 0 s−2

are shown in Figure 6c, along with the vorticity field. Compared to the LCSs calculated
from grid-1, the outlines of the general structures at the cross-section plane s/C = 0.5 are
similar, while the ridges of grid-3d are rougher due to the lower density of the initial grid
of the particle trajectory.
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A regular grid, termed grid-3Duni, is generated and shown in Figure 7a. The total
number of grid points is approximately 8.80 million, and the distributions of the grid points
in each direction are uniform. The spanwise range of the grid is narrowed down to a 7.5%
span to capture the TLV core and save the computational resources. The grid density at the
cross-section plane s/C = 0.5 is nearly half of grid-1.

This grid gets clearer ridge structures of the FTLE field than the other 3D grid, es-
pecially with the high curvature. However, compared with the results from grid-1, the
detailed LCSs cannot be distinguished, while the computational costs are far beyond that
of grid-1. Limited by computational resources and efficiency, the identification of LCSs in
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3D presents the overall LCSs in the whole flow field, and detailed LCSs are more suitable
for identification in 2D.
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3.1.2. The Time Integration Method

The time integrations of all the particle trajectories results above are carried out by the
fourth-order Runge–Kutta method. To test the effect of the time integration method, the
time integrations are performed via the fourth-order Runge–Kutta method, with a longer
integration time step, and the linear integration method with two integration time steps;
the FTLE fields are shown in Figure 8. The impact of the time integration method falls
primarily in the aLCSs, while the rLCSs are almost unaffected. Compared to the aLCSs
in Figure 3c, the ridges of the TLV become rougher with the longer time step, while the
general shape and scale of the ridges stay the same. The ridges of the induced vortex stand
out when using the low-order time integration method. The ridges of both the TLV and the
induced vortex shrink towards the core, and the scales of these LCSs are all reduced. The
results are more sensitive to the integration time step length when using the linear method.
When increasing the integration time step length from 2.5 ∆t to the longer integration time
step of 20 ∆t, the LCSs are significantly different from the other results.

Figure 9 shows the final streamwise position of the particle with different time integra-
tion methods. When applying the time integration in a negative time direction, the ridges
of the TLV and IV are related to two regions of large particle separations, respectively,
with one being near the shear layer at the blade tip, while the other is near the shear layer
at the shroud. For an axial rotor, the blade is relatively thin, and the clearance is small.
However, the flow inside the gap is complex, featuring vortex structures and jet flows.
When particles advect to the gap, a large time interval may lead them to pass the gap within
a few integration steps, and thus, it is difficult to capture the flow features inside the gap.
The RK4 method performs better than the linear method in tracking the particles inside the
gap and thus gives a more stable structure of the LCSs.
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sitions of the particles between the two methods mainly exist in the particles that have 
passed the blade gap. For the linear method, a great part of the particles is finally located 
near the shroud. The particles near the shroud tend to be trapped in the shear layer at low 
speed or hit the shroud and stop. With a longer time step length, the particle trajectories 
further deviate with time-advecting, and the general LCSs are altered. 

Figure 8. The FTLE field of different time integration methods. (a) Contours of aLCS of RK4 method
with integration time step of 20 ∆t; (b) contours of rLCS of RK4 method with an integration time step
of 20 ∆t; (c) contours of aLCS of linear integration method with an integration time step of 2.5 ∆t;
(d) contours of rLCS of linear integration method with an integration time step of 2.5 ∆t; (e) contours
of aLCS of linear integration method with an integration time step of 20 ∆t; (f) contours of rLCS of
linear integration method with an integration time step of 20 ∆t.

Figure 10 shows the 3D view of the final position of the particles with different time
integration methods with an integration time step of 20 ∆t. The differences in the final
positions of the particles between the two methods mainly exist in the particles that have
passed the blade gap. For the linear method, a great part of the particles is finally located
near the shroud. The particles near the shroud tend to be trapped in the shear layer at low
speed or hit the shroud and stop. With a longer time step length, the particle trajectories
further deviate with time-advecting, and the general LCSs are altered.
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Figure 9. Final streamwise position of the particles with different time integration methods. (a) RK4
method with an integration time step of 2.5 ∆t; (b) linear method with an integration time step of 2.5
∆t; (c) RK4 method with an integration time step of 20 ∆t; (d) linear method with an integration time
step of 20 ∆t.
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3.1.3. The Integration Time

The integration time (T) is another critical factor for the LCSs, as it determines the
final position of the particle. The LCSs of a series of integration times for both negative
and positive time directions are shown in Figure 11, and the corresponding final particle
positions are shown in Figure 12. For the negative time direction, the particles transport
ahead of the blade row where the flow is relatively undisturbed, and the general structures
of the aLCSs are similar. In the positive time integration direction, the particles are trans-
ported downstream and entrained into different vortex structures, or even into the gap of
the adjacent blade. Thus, more rLCSs emerge with the increase in the integration time. In
this rotor, the period of a rotor blade passing through one pitch is about 1000 ∆t, and the
period of a particle passing through the blade row is about 1500 ∆t. As the integration time
length exceeds 1000 ∆t, the primary LCSs tend toward stability.
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Figure 12. Final particle positions of a series of integration times. (a) Negative time direction for 
aLCS; (b) positive time direction for rLCS. 

Figure 11. The LCSs of a series of integration times, both negative and positive, and the time direction
of the time-averaged flow field at the DE condition. (a) Integration time of T = −500 ∆t; (b) integration
time of T = −1000 ∆t; (c) integration time of T = −1500 ∆t; (d) integration time of T = −2000 ∆t;
(e) integration time of T = +500 ∆t; (f) integration time of T = +1000 ∆t; (g) integration time of
T = +1500 ∆t; (h) integration time of T = +2000 ∆t.
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3.2. LCSs of TLF in the Low-Speed Rotor

The FTLE and vorticity fields of the time-averaged flow fields in the DE and NS
conditions are shown in Figures 6 and 13, respectively. The Eulerian Q criterion is applied,
and the isolines of Q = 0 s−2 are shown in Figures 6c and 13c, along with the vorticity field.
For the time-averaged flow field, the aLCSs are similar to the TLV structure identified by the
Q criterion, while the correlativity between the rLCS and the vortex structures seems weak.
The region enclosed by the aLCS and the rLCS covers the TLV. In our previous study [55,56],
the evolution of the TLV was divided into three phases, namely the generation phase, the
development phase, and the dissipation phase. In the first two phases, the LCSs are clear,
while, as the flow travels downstream, the TLV steps into the dissipation phase. In the
first stage of the dissipation phase, the TLF jet shears across the passage flow and rolls up
together as the secondary TLV (STLV). This structure can be confirmed by the aLCS, as clear
ridges between the TLV and the STLV indicate two separate vortex structures. Then, the
TLV breaks down. For the Eulerian Q criterion, the vortex structures it identified become
unrecognizable. Meanwhile, for the LCSs, the aLCS gives the boundary of the passage
flow entrainment.
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Figure 14 shows the LCSs at the cross-section s/C = 0.5 of two instantaneous flow 
fields at the DE and NS conditions. The FTLE field is calculated using the grid-2, same as 
that in Figure 3b,d, employing the RK4 method for time integration with a step length of 
2.5Δt and a total integration period of 1000Δt. The figure also depicts isolines for Q = 0 s−2 
and 107s−2. Affected by the unsteadiness, the rLCS with the DE condition in the instanta-
neous flow field demonstrate a higher number of ridges than that in the steady flow field, 
which indicates the unstableness of the flow. With the NS condition, the TLV evolves more 
rapidly with higher unsteadiness, and the rLCSs exhibit increased complexity. The gen-
eral structures of the aLCSs maintain consistency at the DE and NS conditions. In the DE 
condition, the vortex region, as identified by the Q criterion, covers the helical ridges of 
the TLV and induced vortex, while, with the NS condition, the vortex region identified by 
the Q criterion only covers the helical ridges of the TLV, especially for the higher-value 
regions. Part of the region at the shear layer of the TLF and passage flow is recognized as 
the vortex. The transport of the induced vortex is delineated by the aLCS, which is not 
captured by the Eulerian method. 

Figure 13. TLV structure in the time-averaged flow field at the NS condition. (a) contours of aLCS;
(b) contours of rLCS; (c) contours of streamwise vorticity with isonlines of Q = 0 s−2.

Figure 14 shows the LCSs at the cross-section s/C = 0.5 of two instantaneous flow
fields at the DE and NS conditions. The FTLE field is calculated using the grid-2, same
as that in Figure 3b,d, employing the RK4 method for time integration with a step length
of 2.5 ∆t and a total integration period of 1000 ∆t. The figure also depicts isolines for
Q = 0 s−2 and 107s−2. Affected by the unsteadiness, the rLCS with the DE condition in the
instantaneous flow field demonstrate a higher number of ridges than that in the steady flow
field, which indicates the unstableness of the flow. With the NS condition, the TLV evolves
more rapidly with higher unsteadiness, and the rLCSs exhibit increased complexity. The
general structures of the aLCSs maintain consistency at the DE and NS conditions. In the
DE condition, the vortex region, as identified by the Q criterion, covers the helical ridges
of the TLV and induced vortex, while, with the NS condition, the vortex region identified
by the Q criterion only covers the helical ridges of the TLV, especially for the higher-value
regions. Part of the region at the shear layer of the TLF and passage flow is recognized
as the vortex. The transport of the induced vortex is delineated by the aLCS, which is not
captured by the Eulerian method.
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The 3D LCSs of two instantaneous flow fields with the DE and NS conditions are
shown in Figures 15 and 16, respectively. The aLCSs at different streamwise cross-sections
are shown in (a), the aLCS isosurfaces of FTLErel are shown in (b), the isosurfaces of Q
are shown in (c), and the snapshots of the streaklines releasing along the TLV core are
shown in (d) for both working conditions. A streakline is formed by continuously releasing
fluid particles at a fixed point and observing the trajectories that the fluid particles reach
over time. In this study, the streaklines are constructed by releasing particles along the
TLV core at continuous time intervals of 10 ∆t. The particle release begins from the initial
sampled flow field, with particles advecting downstream with an integration time step
of 10 ∆t using the RK4 time integration method. The integration method is consistent
with the LCS calculations. Compared to the aLCS in the time-averaged flow field, the
differences are caused by the unsteadiness of the flow. The breakdown of the TLV features a
characteristic unsteady flow structure in this rotor, and the breakdown patterns are different
in the DE and NS conditions. Only the spiral breakdown pattern of the TLV exits at the DE
condition, while the spiral and bubble breakdown patterns of the TLV appear alternately at
the NS condition.

As shown in Figures 15c and 16c, it is hard to assess the breakdown pattern by the
isosurfaces of Q. From the snapshots of the streaklines, the breakdown patterns of these
two flow fields could be distinguished: a spiral breakdown pattern for the DE condition
and a bubble breakdown pattern for the NS condition. This method is commonly used to
determine the breakdown pattern of vortices in the flow of pipes or delta wings. In the flow
field of a rotor where the secondary flow is strong, the structure of the vortex breakdown
alters, and the performance of this method relies on the judgment of the researchers. An
accurate depiction of the breakdown pattern is contingent upon the strategic placement
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of the initial seeding points. When reducing the number of seeding points along the core,
or displacing the seeding points away from the TLV core, it is hard for the streaklines to
construct a bubble, and the breakdown pattern becomes ambiguous. Moreover, due to the
complexity of the vortex structures, streaklines are inadequate for illustrating the features
of the entire flow field, resulting in particles dispersing throughout. The isosurfaces of the
aLCSs show different structures in vortex breakdown patterns. For the TLV of the bubble
breakdown pattern, the surface of the TLV core ends, and a bubble-like surface appears
downstream. For the TLV of the spiral breakdown pattern, the surface of the TLV core
ends, and a bar-like surface appears downstream. The FTLE fields of other instantaneous
flow fields have been checked for both working conditions. The aLCS patterns of each
breakdown pattern correspond with the above descriptions and so are not shown here.
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4. Conclusions

A Lagrangian analysis is introduced to study the LCSs of the TLF in a low-speed axial
compressor rotor based on DDESs. The calculation method of the FTLE field in a 3D flow
field is discussed, emphasizing three primary factors. Then, the Lagrangian method is
compared with the Eulerian Q method in analyzing the vortex structures of the TLF. The
main findings are summarized as follows:

(1) The accuracy of calculating the particle advecting trajectory affects the results of the
FTLE field the most. A shorter integration step or higher-order integration method
would improve this accuracy.

(2) The clarity of the ridges depends on the density of the initial grid near them. With the
complex flow field as the low-speed axial compressor rotor, it is suggested that the
general LCSs be detected on the coarse 3D initial grid while a two-layer mesh is then
used to capture detailed LCSs.

(3) The LCSs have advantages in identifying the relationships and interactions between
vortex structures. The LCSs show a transport barrier between the TLV and the
secondary TLV, indicating two separate vortices.
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(4) The breakdown patterns of the vortices in the whole flow field can be recognized
clearly by the LCSs, which is not true with the Q criterion method, while the streaklines
rely on subjective judgment. The aLCSs show the bubble-like and bar-like structure
in the isosurfaces corresponding to the bubble and spiral breakdown patterns. The
Lagrangian method has great potential in regard to unraveling the mechanism of
complex vortex structures and is worth applying more in turbomachinery.
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Nomenclature

∆t Physical time step of simulation
t Time of instantaneous flow field
s,p Streamwise and pitchwise coordinate
C Blade tip chord length
Q Second invariant of the velocity gradient tensor
T Integration time
u Velocity
ω Vorticity
σt0+T

t0
(x0) Finite-time Lyapunov exponent

FTLErel Relative finite-time Lyapunov exponent
TLV Tip leakage vortex
TLF Tip leakage flow
FTLE Finite-time Lyapunov exponent
aLCS Attracting Lagrangian coherent structure
rLCS Repelling Lagrangian coherent structure
DDES Delayed detached-eddy simulation
DE Design condition
NS Near-stall condition
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