
Citation: Su, L. Growth of a

Sub-Centimeter-Sized CsPbBr3 Bulk

Single Crystal Using an Anti-Solvent

Precipitation Method. Symmetry 2024,

16, 332. https://doi.org/10.3390/

sym16030332

Academic Editors: Dmitri Donetski

and Hao Xiong

Received: 29 December 2023

Revised: 26 February 2024

Accepted: 5 March 2024

Published: 9 March 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Growth of a Sub-Centimeter-Sized CsPbBr3 Bulk Single Crystal
Using an Anti-Solvent Precipitation Method
Longxing Su

International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China;
sulongxing@dgut.edu.cn or sulx@fudan.edu.cn

Abstract: A facile and low-cost strategy to fabricate CsPbBr3 single crystals is essential for developing
perovskite optoelectronic devices. Herein, we have presented a room temperature anti-solvent pre-
cipitate method for growing sub-centimeter-sized CsPbBr3 single crystals. The as-prepared CsPbBr3

single crystal has an orthorhombic structure, and phase transition occurs as the measured temperature
increases. The as-grown CsPbBr3 single crystal also shows abundant surface morphologies including
footsteps, precipitated crystals, cracks, and pits. Subsequently, a metal–semiconductor–metal (MSM)-
structured photodetector was fabricated based on the CsPbBr3 single crystal. Under 525 nm green
light illumination, the photodetector exhibits an obvious response and the photocurrent linearly
increases with the increase in the light intensity. The rise time of the photodetector increases from
0.82 s to 2.19 s as the light intensity is enhanced from 15 mW/cm2 to 160 mW/cm2, indicating that
more time is required to reach to a stable photocurrent. However, the decay time is as fast as ~0.82 ms,
irrelevant of the light intensity. The photocurrent, under continuous light illumination, was further
studied and this indicates that a stronger light intensity can accelerate the attenuation of the device.

Keywords: anti-solvent; perovskite single crystal; photodetector; stability

1. Introduction

Recently, hybrid organic–inorganic perovskite has attracted great interest as a promis-
ing candidate for constructing optoelectronic devices including light emitting diodes
(LEDs), solar cells, and photodetectors [1–5]. Among them, a photodetector is a de-
vice which can convert incident light into an electrical signal, with applications in op-
tical communication and imaging. For instance, Chang et al. report a high-performance
(FASnI3)0.1(MAPbI3)0.9-based self-powered near-infrared photodetector with a broad lin-
ear dynamic range of 163.5 dB, which is a potential candidate for low-cost near-infrared
photodetection [6]. Nevertheless, owing to the instability in light, heat, and moisture
conditions, the practical applications of hybrid perovskites are still to be determined [7,8].
All inorganic perovskites, such as bismuth halide perovskite (Cs3Bi2X9, (X = I, Br, Cl)) and
Pb-based perovskite (CsPbX3, (X = I, Br, Cl)), have been well regarded because of their
high environmental stability [9–12]. The all-inorganic CsPbX3 reveals a large absorption
co-efficiency of ~2 × 105 cm−1 and a high carrier mobility of ~1000 cm2 V−1 S−1 [13,14]. As
a member of the all-inorganic cesium lead halides family, CsPbBr3 has a direct bandgap of
2.2 eV~2.35 eV, which shows its great potential as a visible band photodetector. Currently,
numerous studies regarding CsPbBr3-based photodetectors have been reported, while the
stability of these devices under strong light illumination is still rarely considered.

Up to now, different kinds of CsPbBr3, including low-dimensional structures (nano
crystals, nanowires, nano rings) [15–17] and large-sized bulk single crystals [18–20], have
been fabricated. Though these low-dimensional structures present interesting and novel
physical characteristics owing to their size confinement effects, the bulk single crystal
group may show many more advantages in their practical applications. Two methods,
including the Bridgman method [18–20] and the anti-solvent precipitated method [21,22],
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are normally employed to fabricate large-scale CsPbBr3 single crystals. The former one
normally grows crystals at high temperature (>500 ◦C) and under vacuum conditions,
which requires an expensive growth facility. For example, He et al. [18] used a two-zone
vertical furnace for CsPbBr3 single crystal growth; the growth temperature was as high
as 590 ◦C and the initial pressure was less than 10−4 Torr. As a contrast, the anti-solvent
precipitate method usually grows crystals at a low temperature and has a low cost. With the
assistance of a good solvent and poor solvent, the CsPbBr3 in the solution is supersaturated
and crystals are precipitated [23]. Rakita et al. prepared millimeter-sized CsPbBr3 crystals
at 50~80 ◦C; the size and shape of the samples can be modulated through controlling the
anti-solvent (acetonitrile or methanol) and UV illumination [24]. Ding et al. used methyl
alcohol and ethanol as anti-solvents; orthogonal phase CsPbBr3 crystals with a (101) facet
were grown in a saturated DMSO solution at 40 ◦C [25]. Therefore, the anti-solvent vapor-
assisted crystallization method provides an economic and facile strategy for fabricating
CsPbBr3 single crystals. Furthermore, it would be highly useful if the growth temperature
could be lowered to room temperature. In this case, no heating facilities would be required
and the growth processes would be simpler. Zhang et al. have successfully obtained
CsPbBr3 single crystals with a length up to 42 mm using an improved anti-solvent method
at room temperature [26], while their longest growth time lasted for 14 days. Furthermore,
though the all-inorganic CsPbBr3 is much more stable than the organic–inorganic hybrid
one, it is less stable than inorganic semiconductors like diamond [27] and ZnO [28]. In
addition, the stability of CsPbBr3 photodetectors under continuous illumination with
different light intensities is rarely considered.

Herein, we have fabricated sub-centimeter-sized CsPbBr3 bulk single crystals through
a simple anti-solvent precipitate method. The growth temperature is room temperature,
and only two glass beakers and one glass plate are needed during the growth processes. A
temperature-dependent XRD measurement reveals the phase transitions of the CsPbBr3
single crystal at different temperatures. Surface morphology studies show abundant
surface defects, indicating a different growth mechanism at room temperature. An MSM-
structured photodetector is prepared based on the as-grown CsPbBr3 single crystal, in
which Ohmic contact is realized by using a low-work-function InGa alloy as electrodes. The
light-intensity-dependent photoresponse is studied and the rise time of the photodetector
increases as the light intensity increases. Furthermore, the photocurrent continuously
attenuates as the light intensity increases, which indicates the deterioration of the CsPbBr3
single crystal with the assistance of light illumination in an air atmosphere.

2. Materials and Methods
2.1. Materials

The reagents in this work were purchased from commercial corporations without
any purification. Cesium bromide (CsBr, 99.9%) and lead bromide (PbBr2, 99.9%) were
purchased from Alfa Aesar (China) Co., Ltd, Shanghai, China. Dimethyl sulfoxide (DMSO),
methanol, and ethanol solvents were purchased from Sinopharm Chemical Reagent Co.,
Ltd, Beijing, China.

2.2. Growth of CsPbBr3 Single Crystal

The CsPbBr3 single crystals were synthesized using an anti-solvent precipitation
method; the growth processes are schematically shown in Figure 1. Firstly, a CsBr:PbBr2
mixture, with mole ratio of 1:1, was completely dissolved into 8 mL of DMSO solvent via
continuous stirring for 1 h (Figure 1a,b). Then, the saturated solution was loaded into a
beaker (Figure 1b,c) loaded with methanol solvent, and the beaker was sealed with a glass
mat. As such, the methanol gradually evaporated into the saturated solution, and thus the
CsPbBr3 single crystals precipitated onto the bottom of the container. The single crystals
were synthesized at room temperature for 72 h. After that, the CsPbBr3 single crystals were
washed with anhydrous ethanol and then dried by nitrogen gun. The processing (washing
and drying) time was 1 h. The total growth procedure took 74 h.
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Figure 1. The schematic growth processes of the CsPbBr3 single crystals.

2.3. Characterization

The crystal structure of the CsPbBr3 single crystal was estimated through a temperature-
dependent X-ray diffraction (XRD) measurement with a Cu K-line (1.54 Å) as the light
source. The optical characteristics of the CsPbBr3 single crystal were studied using four
characterization methods including photoluminescence (PL), a PL decay trace, transmit-
tance, and absorption spectra. The phonon vibration property of the CsPbBr3 single crystal
was measured by its room temperature Raman spectra, with 532 nm and 785 nm lasers
as excitation. Elemental analysis was employed using an energy-dispersive spectrometer
(EDS). The surface morphology of the CsPbBr3 single crystal was observed by scanning
electron microscope (SEM).

2.4. Device Fabrication and Measurement

A pair of symmetric InGa electrodes were bladed and coated onto the CsPbBr3 single
crystal. The photoresponse of the photodetector was evaluated using a green-light LED
(525 nm) as a light source and an electrochemical workstation as the electric signal collector.
The light intensity of the LED can be modulated by adjusting the driven current. The
stability of the photocurrent was also studied through a long-term current–time (I-T)
measurement under the conditions of room temperature (~25 ◦C) and a relative humidity
of 65%.

3. Results and Discussion

The crystal structure of the as-grown CsPbBr3 single crystal was studied by XRD
measurements at different temperatures. As presented in Figure 2a, the room temperature
XRD patterns reveal four diffraction peaks located at 15.07◦, 15.23◦, 30.36◦, and 30.68◦,
which can be indexed as the XRD signals from the (002), (110), (004), and (220) facets [29,30].
A picture of the CsPbBr3 single crystals is presented in Figure S1 (Supplementary Materials);
the length of the as-grown crystal ranges from ~0.2 cm to ~0.55 cm. Obviously, the shapes
of the as-grown single crystals are not very regular. Thus, during the XRD measurement,
both the (002) and (110) facets were exposed to the X-ray. According to previous reports,
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the crystal structure of CsPbBr3 growth at room temperature has been determined to be an
orthorhombic structure [29,30]. The temperature-dependent XRD measurements were also
performed in order to study the phase evolution of the CsPbBr3 single crystal. As presented
in Figure 2b, considerable variations can be clearly observed as the tested temperature
increases. As the tested temperature increases to 50 ◦C, the (004) and (220) XRD peaks
slightly shift to a smaller angle, indicating the expansion of the lattice constant. In addition,
the XRD intensity also decreases and the peak shape broadens. As the tested temperature
increases to 100 ◦C, only one XRD peak can be observed, which is ascribed to the phase
transition from orthorhombic to tetragonal. The XRD peaks tested at 200 ◦C and 300 ◦C are
rather weak, and the CsPbBr3 further undergoes a phase transition from tetragonal to cubic.
As the tested temperature increases to 400 ◦C, no XRD signals can be detected, indicating
the amorphous nature of the material. The temperature-dependent phase evolution of
CsPbBr3 is very interesting and is also verified by differential scanning calorimetry (DSC)
measurements [31–33].
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Figure 2. (a) The room temperature XRD pattern of the CsPbBr3 single crystal; (b) the temperature-
dependent XRD patterns of the CsPbBr3 single crystal.

The PL spectrum of the CsPbBr3 single crystal is shown in Figure 3a, in which the
wavelength of the excited light is 360 nm (one-photon excitation). A strong emission
centered at 527 nm was detected, which is consistent with the bandgap of the CsPbBr3
single crystal [34,35] and a little longer than that of CsPbBr3 nanowires (519 nm) [36] and
nanocrystals (511 nm) [37]. The time-resolved PL decay trace of the CsPbBr3 single crystal is
presented in Figure 3b; its PL lifetime is determined to be as short as 1.86 ns, indicating the
fast surface recombination of the photogenerated carrier, assisted by its trap state [32]. This
PL lifetime is shorter than other reported values of CsPbBr3 single crystals [24,25,34,35].
The transmittance spectrum of the CsPbBr3 single crystal is revealed in Figure 3c, and it
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exhibits a transmittance of over 90% within the wavelengths longer than 560 nm. The
crystal’s absorption spectrum is provided in Figure 3d; a clear absorption edge located
at ~545 nm is determined, verifying the bandgap of 2.27 eV. Its Raman spectra is also
measured in order to study the phonon vibration of the lattice. As shown in Figure 3e,
five Raman peaks (A: 41.8 cm−1, B: 66.3 cm−1, C: 123.2 cm−1, D: 144.5 cm−1, E: 310 cm−1)
can be observed under 785 nm laser excitation and the back scattering measurement
configuration. This result agrees well with previous reports on CsPbBr3 quantum dots [38]
and microspheres [30], which can be indexed as the eigenmodes of orthorhombic phase
CsPbBr3. Its Raman spectrum under 532 nm green light excitation was also measured and
is presented in the inset of Figure 3e. Apparently, a strong and broad emission was detected,
which can be ascribed to the PL background of the CsPbBr3 single crystal. This is due to
the bandgap of CsPbBr3 being close to the excitation wavelength. The EDS spectrum of
the CsPbBr3 single crystal is presented in Figure 3f; the signals from the Cs, Pb, and Br can
be clearly detected, and their atomic ratio is determined to be 1:1:3. Here, the C signal is
inevitable during the EDS measurement and the Cu signal comes from the sample holder.
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Figure 3. The (a) PL spectrum and (b) time-resolved PL transient decay trace of the CsPbBr3 single
crystal; the (c) transmittance and (d) absorption spectra of the CsPbBr3 single crystal; (e) the room
temperature Raman spectrum of the CsPbBr3 single crystal excited by a 785 nm laser, and inset is
the Raman spectrum measured using a 532 nm green laser; (f) the EDS spectrum of the CsPbBr3

single crystal.

Detailed surface structures from different regions are observed by SEM, which is
presented in Figure 4. Figure 4a presents a two-dimensional (2D) footstep morphology,
which is controlled by a 2D nucleation mechanism and the motion of the derivative steps.
From a previous report, we know that the step is along the (101) facet of the CsPbBr3
single crystal [25]. Several precipitated CsPbBr3 crystals with sizes ranging from tens
of to two hundred nanometers can be found in Figure 4b. In addition, a large-sized
(~3 µm) and disk-shape implanted CsPbBr3 crystal can also be observed, which is quite
interesting and provides abundant morphology details of the surface. Figure 4c presents
the surface morphology of another region; it has a riverbed-like morphology flushed by
water. Undulating ravines and local cracking are clearly observed. Finally, rectangular and
circle-shaped pits are detected in some regions and exhibited in Figure 4d. The abundant
morphology of the as-prepared CsPbBr3 crystal grown at room temperature indicates
localized insufficient reactants and an anisotropic growth rate. The surface defects will
cause trap centers, which not only promote the decay of the PL lifetime, but also lead to
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a slow response of the CsPbBr3 photodetector (which will be discussed later). A specific
area with irregular pits is selected to perform the EDS mapping measurement on; the
elemental distributions on the regular surface and at the edges of the pits can be probed
and compared. As presented in Figure 5, the disperse signals of the Cs, Pb, and Br elements
are precisely mapped. Uniform distributions of the Cs, Pb, and Br elements are verified on
the surface and the pit edges, while the EDS signals from the pit are much weaker than
those from the surface, which could be due to the probed depth of the EDS detector.
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The I-V curve of the CsPbBr3 MSM photodetector under dark is revealed in Figure 6a,
which shows its linear characteristic. This could be owing to the Ohmic contact property
between the InGa electrode and CsPbBr3; the dark current at the 5 V bias voltage is ~7 nA.
As the photodetector is illuminated by the 525 nm green light (as shown in Figure 6b)
the photocurrent boosts significantly, and the light to dark ratio is also enhanced as the
light intensity increases from 15 mW/cm2 to 160 mW/cm2. Figure 6c summarizes the
photocurrent of the photodetector, driven by a specific voltage, as a function of the light
intensity. Apparently, the photocurrent linearly increases with the increase in the light
intensity. This indicates that the photocurrent of the device is still beyond its saturated
value even under a light intensity of 160 mW/cm2. The I-T curves of the CsPbBr3 MSM
photodetector under an on–off switched illumination of 525 nm LED light with different
light intensities is shown in Figure 6d, from which we can observe the repeatable and
stable photoresponse behavior of the device. When the illumination is in its on state, the
photocurrent sharply increases and then slowly reaches its saturated value under persistent
light excitation. Once the illumination is in its off state, the photocurrent sharply decays to
its initial value. Single-cycled I-T curves excited by different light intensities are extracted
from Figure 6d and presented in Figure 6e. The rise time and decay time of the CsPbBr3
MSM photodetector under different light intensities are determined and summarized in
Figure 6f. The decay times (from 90% to 10% of the maximum current) under different light
intensities are all steadied at ~82 ms, indicating the fast recovery of the device. However,
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the rise time of the photodetector increases from 0.82 s to 2.19 s as the light intensity
increases, meaning that a longer time is required to reach a saturated photocurrent as the
light intensity increases.
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95% and 90% of its initial value are 610 s and 1175 s. However, a weaker light intensity (36 
mW/cm2 and 98 mW/cm2) contributes to a slower attenuation of the photocurrent. Under 
the light intensities of 98 mW/cm2 and 36 mW/cm2, the times for the initial photocurrent to 
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Figure 6. (a) The I-V curve of the CsPbBr3 MSM photodetector under dark conditions; (b) the I-V
curve of the CsPbBr3 MSM photodetector under dark conditions and illuminated under a 525 nm
LED with different light intensities; (c) the bias voltage-dependent photocurrents of the CsPbBr3 MSM
photodetector as a function of the light intensity; (d) the I-T curves of the CsPbBr3 MSM photodetector
under the on–off switched illumination of 525 nm LED light with different light intensities; (e) the
normalized single-cycled I-T curves of the CsPbBr3 MSM photodetector under the on–off switched
illumination of 525 nm LED light with different light intensities; (f) the rise time and decay time as a
function of the light intensity.
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As mentioned above, the all-inorganic perovskite CsPbBr3 is much more stable than
its organic–inorganic counterparts like MAPbI3 or FAPbBr3. However, compared with all-
inorganic semiconductors like GaN, SnO2, or ZnO, the stability of CsPbBr3 should be further
improved [39,40]. Figure 7 shows the stability of the CsPbBr3 MSM photodetector under
continuous illumination from a 525 nm green light with different light intensities. The tested
temperature is ~25 ◦C (room temperature) and the relative humidity is 65%. Obviously,
a stronger light intensity can accelerate the attenuation of the photocurrent. Under the
light intensity of 160 mW/cm2, the times for the initial photocurrent to reach 95% and 90%
of its initial value are 610 s and 1175 s. However, a weaker light intensity (36 mW/cm2

and 98 mW/cm2) contributes to a slower attenuation of the photocurrent. Under the light
intensities of 98 mW/cm2 and 36 mW/cm2, the times for the initial photocurrent to reach
95% of its initial value are 2000 s and over 2300 s. Under light illumination, degradation
of the photoresponse performance is inevitable. So, encapsulation in a waterproof layer
is normally employed as an effective strategy for improving the stability of the CsPbBr3
device [41–43].
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In conclusion, a facile anti-solvent solution method is introduced to grow sub-centimeter-
sized CsPbBr3 bulk single crystals at room temperature. The crystal phase of the CsPbBr3
single crystal is systematically studied at different temperatures, which indicates a phase
transition of orthorhombic → tetragonal → cubic → amorphous. The SEM images reveal
that the as-grown CsPbBr3 single crystal has abundant surface morphologies including
footsteps, precipitated crystals, cracks, and pits. Subsequently, an MSM-structured CsPbBr3
single crystal photodetector is fabricated using InGa as a pair of Ohmic electrodes. The
photodetector shows a distinct response to 525 nm green light, and its photocurrent is
linearly related to the light intensity. The decay time of the photodetector is as fast as 82 ms
and independent of the light intensity, while the rise time of the photodetector is related to
the light intensity and reaches 0.82 s to 2.19 s. The stability of the device is further studied
and shows a significant attenuation of the photocurrent under stronger light illumination.
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