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Abstract: Based on the idea of adiabatic symmetry, we present a novel basis set expansion method—
the kinetic energy partition (KEP) method—for solving quantum eigenvalue problems. Broken
symmetry is responsible for quantum entanglement in many-body systems via parametric non-
adiabatic corrections. Starting from simple one-particle-in-one-dimension problems, we gradually
increase the complexity in the number of particles and the interaction patterns. Our goal in the
mini-review is to advocate for the utility of the KEP method in front-line research, in particular for
research beginners in quantum many-body problems.

Keywords: kinetic energy partition; quantum many-body system; moshinsky atoms; ultracold
quantum physics

1. Introduction

Many physical properties of materials, which are modeled as quantum many-body
systems, can, at least in principle, be obtained by solving the corresponding Schrödinger
equations. Since the discovery of such equations, several solution schemes have been
devised for this specific purpose. However, a single universal solution method, which
can effectively overcome the “exponential wall” problem associated with the inherent
complexity of fully solving the many-body Schrödinger equations, has yet to be established.
Among the various solution schemes available, the basis set expansion method remains one
of the standard approaches for implementing the solution algorithms, such as those used
in the perturbation theory or the variational theory. In elementary quantum mechanics,
it is well known that the first step in utilizing a basis set to expand the wave function is
to establish its physical significance and assess its quality, aiming to minimize the search
effort by reducing the number of basis functions to a manageable level. This task, however,
is not straightforward, as it requires comprehensive knowledge of the system’s dynamic
behavior under the interactions governed by the potential energy functions. Experience
has shown that a deeper understanding of a system’s symmetry properties facilitates the
construction of an appropriate basis set [1–5]. In many ways, the choice of a “good” basis
set greatly influences the success of subsequent calculations. Therefore, a significant focus
in solving quantum eigenvalue problems lies in streamlining the process of constructing a
suitable basis set.

If there is no prior knowledge about the system under study, the perturbation theory
has traditionally been employed to guide the selection of a basis set [6]. The procedure
typically involves considering the full-potential energy functions, often expressed as a sum
of two terms [7]. One of these terms is used to construct the zeroth-order Hamiltonian,
also known as the unperturbed system, which is usually chosen to be Hermitian to ensure
a real energy spectrum. The other potential term is referred to as the perturbing term. If
the Schrödinger equation corresponding to the unperturbed Hamiltonian can be solved
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analytically, yielding solutions, which are well represented by analytical functions, and if
the perturbing potential is relatively small in magnitude, the basis set associated with the
unperturbed Hamiltonian is considered to be “good”. In some cases, where the perturbation
parameter can be determined beforehand and remains constant during the dynamical
evolution, one can estimate the effectiveness of such basis set.

Unfortunately, in most practical cases of significance, the system tends to evolve
into a “strong-coupling” condition, where the initially designated “small” perturbing
potential becomes dominant over the unperturbed Hamiltonian. This situation is reflected
in slow convergence or even divergence of numerical calculations for physical quantities,
such as the system energies. Moreover, things become even more challenging when
the magnitudes or types of the two potentials are comparable, making it fundamentally
impossible to determine which one dominates over the other. At this stage, specialized
techniques, such as the large-order perturbation theory [6], strong perturbation theory [8],
or re-summation techniques are typically employed. However, while these methods may
improve certain results, they often introduce additional problems. Furthermore, the original
physical interpretation based on the perturbation theory is frequently obscured by these
modified calculations. Given the lack of a straightforward solution, researchers often resort
to brute-force numerical calculations performed by computers.

Recently, we introduced a novel perspective on the traditional perturbation theory.
Instead of dividing the potential energy into two terms, we took a different approach by
partitioning kinetic energy through adjustment of the associated mass factor. This new
method, dubbed the kinetic energy partition (KEP) method, aims to reframe the system’s
Hamiltonian as a simple sum of subsystem Hamiltonians, each representing an effective
one-particle system. Importantly, the coupling is automatically incorporated into each
subsystem without bias toward any particular interaction potential. As a result, the basis
set formed by combining the subsystem wave functions is inherently meaningful in a
physical sense.

In the practical implementation of the KEP method, the additional computational
cost is largely offset by the relatively small number of basis functions required to achieve
precise solutions compared to traditional perturbation-based approaches. Remarkably, our
previous work demonstrated that by employing only a few (fewer than ten) basis functions,
the KEP method consistently yields energies with an error of only 5% compared to exact
solutions [9]. This remarkable outcome suggests the high potential of the KEP method as
an alternative approach to tackling the crucial challenge of solving many-body Schrödinger
equations.

In this review article, we aim to review the ideas [10–12] and implementations of the
KEP method for general many-body systems. We begin by examining simple quantum
systems with basic interaction potentials to demonstrate the solution procedure. Subse-
quently, we apply the KEP method to a model N-body problem [13], enabling readers
to become familiar with complex systems. The purpose of this mini-review is to inspire
research novices to explore this challenging field.

The remainder of this paper is organized as follows. Section 2 outlines the devel-
opment of the kinetic energy partitioning (KEP) method for single-body systems with
multiple interactions, establishing the essential notations for our analysis. In Section 3,
we extend the application of KEP to N-body problems, demonstrating its adaptability to
more complex systems. Section 4 is devoted to examining the efficacy of the KEP method
across various case studies. Specifically, Sections 4.1 and 4.2 delve into the one-dimensional
problems with double and triple zero-range interactions, respectively. Section 4.3 assesses
the performance of KEP in scenarios involving numerous harmonic oscillators within
one dimension. Furthermore, Section 4.4 applies KEP to the analysis of one-dimensional
Moshinsky atoms with two or more interacting bodies. Conclusively, Section 5 summarizes
our findings and offers insights into the implications and potential future applications of
our research.
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2. Theory of One-Body Problem Interacting with N Force Centers

We first consider a single particle interacting with N force centers described by the
corresponding potential energy function Vi, i = 1, 2, 3,. . . N. Using the KEP method, the
kinetic energy T is divided into N terms with the corresponding effective mass mi, i = 1, 2,
3,. . .N. The idea is to distribute each kinetic term to a corresponding potential term by using
the effective mass factor. With this partition, the system Hamiltonian can be separated into
N sub-Hamiltonians and can be represented as

Ĥ = T̂ + ∑ N
i=1Vi = ∑ N

i=1Ĥi (1)

where each sub-Hamiltonian is composed of the partitioned kinetic energy and the corre-
sponding potential energy, respectively.

Ĥi =
p̂2

2mi
+ Vi (2)

Suppose
Ĥiψ

i
ni
= Ei

ni
ψi

ni
(3)

where ni is the quantum number for subsystem i. To solve the Schrödinger equation

ĤΨ = EΨ (4)

let the system wave function be a linear combination of the subsystems’ wave functions

Ψ =
N

∑
i=1

Ni

∑
ni=1

Ci
ni

ψi
ni

(5)

where Ni represents the truncation point in the wave function expansion series for the i-th
subsystem, and Ci

ni
is the linear expansion coefficient of the wave function. Substituting

Equation (5) into Equation (4), we obtain

N

∑
i=1

Ni

∑
ni=1

Ci
ni

N

∑
j=1

Ĥjψ
i
ni
= E

N

∑
i=1

Ni

∑
ni=1

Ci
ni

ψi
ni

(6)

Multiplying
〈

ψk
nk

∣∣∣·, we obtain

N

∑
i=1

Ni

∑
ni=1

Ci
ni

〈
ψk

nk

∣∣∣ N

∑
j=1

Ĥj

∣∣∣ψi
ni

〉
= E

N

∑
i=1

Ni

∑
ni=1

Ci
ni

〈
ψk

nk

∣∣∣ψi
ni

〉
(7)

Notice that

Ĥj =

(
mi
mj

)
Ĥi + Vj −

(
mi
mj

)
Vi (8)

We obtain

Ck
nk

[(
1 +

N
∑

j ̸=k

mk
mj

)
Ek

nk
− E

]
+

N
∑
i ̸=j

N
∑

j ̸=k

Ni
∑
ni

Ci
ni

〈
ψk

nk

∣∣∣Vj − mi
mj

Vi

∣∣∣ψi
ni

〉
+

N
∑

i ̸=k

Ni
∑
ni

Ci
ni

[
Ek

nk
+

N
∑

j ̸=k

(
mi
mj

)
Ei

ni
− E

]〈
ψk

nk

∣∣∣ψi
ni

〉
= 0

(9)

The overlap coupling matrices are represented by short-hand notations〈
ψk

nk

∣∣∣∣∣Vj −
mi
mj

Vi

∣∣∣∣∣ψi
ni

〉
≡ ξ

kji
nkni (10)
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〈
ψk

nk

∣∣∣ψi
ni

〉
≡ ηki

nkni
(11)

Let us study the KEP solution scheme. First, consider the case of an all-equal-mass
partition, mi = m/N for all i = 1, 2, · · · , N. Let us discuss the ground state solutions, where
ni = 0 for all i. Additionally, the overlap matrices can be set as ξ

kji
nkni = ξ for all (k, j, i) and

ηki
nkni

= η for all (k, i). The notation E will be substituted to W, and Ei
0 can be written as ε.

The secular matrix equation could be obtained via expansion of Equation (9), and we obtain∣∣∣∣∣∣∣∣∣
A Q Q · · · Q
Q A Q · · · Q
...

Q Q Q · · · A

∣∣∣∣∣∣∣∣∣ = 0 (12)

where
A = (Nε − W) + (N − 1)ξ, (13)

Q = η(Nε − W) + (N − 2)ξ, (14)

We thus obtain
(A − Q)N−1[A + (N − 1)Q] = 0 (15)

and

W = Nε +
(N − 1)2ξ

1 + (N − 1)η
≈ Nε + (N − 1)2ξ (16)

As an example, for harmonic potentials

ε ≈ 1√
N

ω

2
(17)

where ω is the frequency. The overlap matrices can be represented as

ξ ≈ Nξ1, (18)

where ξ1 ≈ kd2

η ≈ e−
√

Nd2
, (19)

where d is the displacement. For large N, we have

W ≈ 1
2

√
Nω + N3ξ1, (20)

which is consistent with the exact solution [14], where for large N, the N3 dependence
appears.

3. Theory of N-Body KEP

In this section, we review the general KEP formulation for many-body problems, such
as those in atomic physics, which contains two-electron and three-electron problems as
examples. The non-relativistic fixed-nucleus Hamiltonian of N-electron atom is

Ĥ =
N

∑
i=1

T̂i +
N

∑
i=1

Ui +
1
2

N

∑
i=1

N

∑
j ̸=i

Vij (21)

where T̂i is the kinetic energy operator; Ui is the Coulomb interaction between the nucleus
and the i-th electron; and Vij is the Coulomb interaction between electrons. Based on the
KEP method, the mass factor can be decomposed to
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1
m

=
1

mi
+

N

∑
j ̸=i

1
mi,j

(22)

where mi and mi,j are the effective mass factors distributed to potentials Ui and Vi,j,
respectively. To be more general, the kinetic energy term is separated by using the mass
parameters {si, si,j} to allocate the effective mass factor in the form of

T̂i = − ℏ2

2m
∇2

i = − ℏ2

2(m/si)
∇2

i +
N

∑
j ̸=i

− ℏ2

2
(

m/si,j
)∇2

i (23)

where m is the electron mass, the parameters si,j are set to negative one in the second part
of the partition, and then si is equal to N. Therefore, the Hamiltonian can be rewritten as

Ĥ =
N
∑

i=1

[
− ℏ2

2(m/si)
∇2

i + Ui

]
+

N
∑

i=1

N
∑
j ̸=i

[
− ℏ2

2( m/si,j)
∇2

i +
1
2 Vij

]
=

N
∑

i=1

(
Ĥi +

N
∑
j ̸=i

Ĥi,j

)
=

N
∑

i=1
K̂i

(24)

Note that the Ĥi,j term is related to “negative mass”; therefore, we can handle the repul-
sive interaction in the same way, as it is an attractive one. The i-th subsystem Hamiltonian
K̂i is defined as

K̂i =
N

∑
j=1

Ĥi,j (25)

where
Ĥi,i ≡ Ĥi (26)

The total Hamiltonian can be divided into N subsystems, and the Schrödinger equa-
tions for the partitioned Hamiltonian are{

Ĥiψi = Eiψi
Ĥi,jψi,j = Ei,jψi,j

(27)

Notice that here, i indicates the particle index containing the quantum numbers as
well for specifying the eigenstates. The i-th subsystem K̂i Schrödinger equation with the
collective coordinate {r} can be represented as

K̂iϕi
(
ri,
{

r′i
})

= εiϕi
(
ri,
{

r′i
})

(28)

Here, we use {r} ≡ {r1, r2, . . . , ri, . . . , rN}, and the complement set
{

r′i
}

can be shown
as {

r′i
}
= {r}/{ri} = {r1, r2, . . . , ri−1, ri+1, . . . , rN} (29)

At this point in time, we would like to mention an important classical idea called
adiabatic invariance or adiabatic symmetry. This idea is very useful in the following
to simplify the calculation procedure. For a specific coordinate ri, the dependence of
the subsystem wave function on its complementary set

{
r′i
}

is not explicitly seen in the
subsystem equation. If we treat this set as adiabatic with respect to the specific coordinate,
each subsystem is approximately energy conserved. Therefore, adiabatically, the total
system is fully separable and bears a kind of symmetry called adiabatic symmetry. This
solution scheme using the adiabatic symmetry idea is called adiabatic approximation in
the following discussion.
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To solve Equation (37), we assume that the wave function of the i-th subsystem is a
linear combination of the partitioned wave functions

ϕi
(
ri,
{

r′i
})

= Ciψi(ri) +
N

∑
j ̸=i

Ci,jψi,j
(
ri, rj

)
=

N

∑
j=1

Ci,jψi,j
(
ri, rj

)
(30)

This is the main supposition of the KEP method, namely that ψi,j are physically
motivated bases because they are the exact solutions of the partitioned wave functions. Note
that Ci,j is the expansion coefficient decided by the boundary conditions and normalization,
where

ψi,i(ri, ri) ≡ ψi(ri) (31)

Ci,i ≡ Ci (32)

Substitute Equation (34) and Equation (39) into Equation (37), and we obtain(
N

∑
j=1

Ĥi,j

)(
N

∑
k=1

Ci,kψi,k

)
= εi

(
N

∑
k=1

Ci,kψi,k

)
(33)

Multiplying Equation (42) with
∫

dτψ∗
i,l and integrating it over the infinitesimal vol-

ume of the configuration space dτ =
N
∏
i=1

dri, we obtain

Ci,l(Ei,l − εi) +
N

∑
k=1

N

∑
j ̸=l

Ci,k
〈
ψi,l
∣∣Ĥi,j

∣∣ψi,k
〉
+

N

∑
k ̸=l

Ci,k(Ei,l − εi)
〈
ψi,l
∣∣ψi,k

〉
= 0 (34)

where Ĥi,j can be replaced by the relation

Ĥi,j =

(
mi,k

mi,j

)
Ĥi,k + Vi,j −

(
mi,k

mi,j

)
Vi,k =

( si,j

si,k

)
Ĥi,k + Vi,j −

( si,j

si,k

)
Vi,k (35)

Hence, Equation (43) can be rewritten as

Ci,l(Ei,l − εi) +
N
∑

k=1

N
∑
j ̸=l

Ci,k

[( si,j
si,k

)
Ei,k
〈
ψi,l
∣∣ψi,k

〉
+
〈

ψi,l

∣∣∣Vi,j −
( si,j

si,k

)
Vi,k

∣∣∣ψi,k

〉]
+

N
∑

k ̸=l
Ci,k(Ei,l − εi)

〈
ψi,l
∣∣ψi,k

〉
= 0

(36)

where 〈
ψi,l

∣∣∣∣Vi,j −
( si,j

si,k

)
Vi,k

∣∣∣∣ψi,k

〉
≡ ξ i

l jk (37)

〈
ψi,l
∣∣ψi,k

〉
≡ ηi

lk (38)

Hence, we simplify Equation (45) to

Ci,l

{[
1 +

N
∑
j ̸=l

( si,j
si,l

)]
Ei,l − εi

}
+

N
∑

k=1

N
∑
j ̸=l

Ci,kξ i
l jk +

N
∑

k ̸=l
Ci,k

[
N
∑
j ̸=l

( si,j
si,k

)
Ei,k + Ei,l − εi

]
ηi

lk = 0 (39)

Since the coefficients cannot all be zero, solving the secular equation of Equation (48)
yields the KEP eigenvalue of the i-th subsystem energy. To solve the full Schrödinger
equation (

N

∑
i=1

K̂i

)
Ψ = EΨ (40)
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The total wave function is assumed to take the form of a Slater determinant

Ψ(r1, r2, . . . , ri, . . . , rN) = A
N

∏
i=1

ϕi
(
riσi,

{
r′iσ

′
i
})

(41)

where A is the anti-symmetrization operator, which also implies the normalization condi-
tion. Notice that {σi} is the spin set. If we discuss the ground state, the coordinate part of
the wave function is symmetric in a Hartree-like product form, with the spin part being
anti-symmetric [12,15]. For a general closed-shell atom (oxygen being an exception), this is
because the atomic Hamiltonian without external interactions commutes with the electron
spins; therefore, the wave function can be written as a product of the coordinate part and
the spin part. The accurate KEP energy is

EKEP =
∫

dr1dr2 . . . drNΨ∗
(

N
∑

i=1
K̂i

)
Ψ =

∫
dr1dr2 . . . drNϕ∗

1 ϕ∗
2 . . . ϕ∗

N

(
N
∑

i=1
K̂i

)
ϕ1ϕ2 . . . ϕN

= N
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
NK̂1ϕ1ϕ2 . . . ϕN

(42)
where, in the last equation, we considered the particle exchange symmetry, so that we can
reduce the N-term integrals to only a one-electron term. The integral in Equation (51) can
be expanded as

∫
dr1dr2 . . . drNϕ∗

1 ϕ∗
2 . . . ϕ∗

NK̂1ϕ1ϕ2 . . . ϕN =
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
N

(
p̂2

1
2m + U1 +

1
2

N
∑

j=2
V1j

)
ϕ1ϕ2 . . . ϕN

+
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
Nϕ1

p̂2
1

2m (ϕ2 . . . ϕN) +
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
Nϕ1

p̂1ϕ1
m [ p̂1(ϕ2 . . . ϕN)]

=
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
Nε1ϕ1ϕ2 . . . ϕN +

∫
dr1dr2 . . . drNϕ∗

1 ϕ∗
2 . . . ϕ∗

Nϕ1
p̂2

1
2m (ϕ2 . . . ϕN)

+
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
Nϕ1

p̂1ϕ1
m [ p̂1(ϕ2 . . . ϕN)]

(43)

If the adiabatic conditions are used, the last two terms in Equation (43) are small for
our purpose. This is because the last two terms involve derivatives with respect to r1, and
using the adiabatic assumption, the dependence on the complementary set {r2, r3, r4,. . .,rN}
is weak. Therefore, we can simplify the above KEP calculation process. Here, we refer to
this approach as adiabatic approximation by ignoring the last two terms, and the result
thus obtained is called the AKEP energy:

EAKEP = N
∫

dr1dr2 . . . drNϕ∗
1 ϕ∗

2 . . . ϕ∗
Nε1(r2, . . . , rN)ϕ1ϕ2 . . . ϕN (44)

4. One-Dimensional Model Potentials

In this section, we showcase the application of the KEP method through simple
systems, drawing inspiration from the dynamics of one-dimensional ultracold systems as
referenced in Ref [16]. We illustrate that the numerical results can attain very high accuracy
using only a limited number of basis functions for each subsystem.

4.1. Double Zero-Range Potentials in One-Dimensional System

The Hamiltonian for the double zero-range potentials could be written as

Ĥ = − ℏ2

2m
∂2

∂x2 − λ1δ(x + a)− λ2δ(x − a). (45)

If λ1 = λ2 = λ > 0, this system is symmetric with respect to the origin. By using the
KEP method, Equation (45) can be rewritten as

Ĥ = Ĥ1 + Ĥ2 =

[
− ℏ2

2m1

∂2

∂x2 − λ1δ(x1 + a)
]
+

[
− ℏ2

2m2

∂2

∂x2 − λ2δ(x2 − a)
]

, (46)
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where the partitioning mass is m1 = m2 = 2m. The Schrödinger equation for each subsys-
tem is Ĥiψi(x) = Eiψi(x) and Ei = −(2m)λ2/

(
2ℏ2). The wave functions of subsystems Ĥ1

and Ĥ2 are

ψ1(x) =

{ √
kexp [k(x − a)], x < a√

kexp [−k(x − a)], x > a
,

ψ2(x) =

{ √
kexp [k(x + a)], x < −a√

kexp [−k(x + a)], x > −a
, (47)

where the wave number k is

k =
(2m)λ

ℏ2 =

√
−2(2m)E1

ℏ2 (48)

According to Equation (16), the KEP energy EKEP and KEP wave number kKEP could
be written as

EKEP = 2E1 +
ξ

1 + η
= −

ℏ2k2
KEP

2m
(49)

where the overlap coupling matrices ξ and η are

ξ = λ k [1 − exp(−4ka)]

η = exp(−2ka)(2ka + 1) (50)

Figure 1 presents a comparative analysis of the exact wave numbers and those ob-
tained via the kinetic energy partition (KEP) method against the strength of a zero-range
potential, denoted by λ. This comparison elucidates the correlation between precise quan-
tum mechanical calculations and the KEP approach on the one hand and the perturbation
method on the other as λ varies. Based on the description and the visual representation
provided in Figure 1, it can be observed that when the strength of the zero-range poten-
tial, λ, is small, the wave numbers calculated using the kinetic energy partitioning (KEP)
method align closely with those derived from exact quantum mechanical solutions. This
indicates a high degree of accuracy of the KEP method in the regime of weak potentials.
The data points, represented by blue dots, are nearly indistinguishable from the exact
solution, signifying strong agreement. The results of using the first-order perturbation
method, by treating one delta potential as perturbation, are represented by green squares.
The first-order perturbation method shows reasonable agreement with the exact solutions
at lower values of λ; yet, as λ increases, the perturbation approximations begin to diverge,
suggesting its limitations in the context of stronger potentials. However, as λ increases, the
potential becomes stronger, and while the general trend of the KEP method continues to
follow the exact solutions, there is a slight divergence noted, which might be indicative
of the limits of KEP approximation under the conditions of strong interactions. The KEP
method significantly deviates from the exact solution, emphasizing the need for careful
application of the KEP method at certain ranges of λ. The overall linear trend suggests
a proportional relationship between the wave numbers and the strength of the potential
across a wide range of λ values. Figure 2 shows the wave function profiles obtained with
the kinetic energy partitioning (KEP) method and exact calculations within the domain
x ∈ [−3, 3] (a.u.). The graph features a dual-peak structure (that is, the discontinuity in
the first derivatives of the wave function), which reflects the divergent behavior of the
zero-range potential. The KEP method demonstrates high accuracy in the wave function
form, as evidenced by its close approximation to the exact wave function.
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atomic unit, and here, a = 1.
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4.2. Triple Zero-Range Potentials in One-Dimensional System

In this subsection, the KEP method is tested by extending the double zero-range
potential to the triple zero-range potential. The Hamiltonian with the triple zero-range
interaction can be represented as

Ĥ = − ℏ2

2m
∂2

∂x2 − λ1δ(x + a)− λ2δ(x)− λ3δ(x − a). (51)

Here, we consider a case where the interactions are of equal strengths and are all
attractive, namely λ1 = λ2 = λ3 = λ > 0. Based on the KEP method, the sub-Hamiltonian
can be separated with the equal mass partition, mi = 3m (i = 1, 2, 3),

Ĥ = Ĥ1 + Ĥ2 + Ĥ3 (52)

where the respective subsystem’s Hamiltonian is

Ĥ1 = − ℏ2

2m1
∂2

∂x2 − λ1δ(x + a)Ĥ2 = − ℏ2

2m2
∂2

∂x2 − λ2δ(x)Ĥ3 = − ℏ2

2m3
∂2

∂x2 − λ3δ(x − a) (53)

The KEP energies can be obtained by solving the determinant of Equation (9) involving
the overlap coupling matrix ξ and η.

Figures 3 and 4 collectively offer a comprehensive insight into the behavior of wave
numbers and wave function amplitudes in a system characterized by a triple zero-range
potential. In Figure 3, a meticulous comparison between the exact wave numbers and
those obtained through the kinetic energy partition (KEP) method is depicted, with varying
λ values symbolizing the strength of interaction. The exact wave numbers are indicated by
blue circles, while the KEP-derived wave numbers are represented by orange triangles. As
the λ value, measured in the atomic unit, escalates, both the exact and KEP wave numbers
maintain a linear correlation, suggesting a proportional relationship between the wave
number k, also in the atomic unit, and the interaction strength. The close proximity of the
KEP points to the exact values at lower λ indicates a high precision of the KEP method in
this regime. With increasing λ, slight deviations become apparent, signaling the nuanced
complexity captured by the KEP method under stronger interactions.
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Figure 3. Comparison of the exact and KEP wave numbers versus the λ values for the triple zero-
range potential, where the strengths of interaction are the same. The (blue) circle and (orange) triangle
represent the exact and KEP wave numbers, respectively. The horizontal axis is the λ value in the
atomic unit, and the vertical axis is the wave number k in the atomic unit, and here, a = 1.
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Figure 4 shows the probability amplitude |ψ|2 within the spatial domain of x ∈ [−3, 3]
in the atomic units, showcasing the wave function profiles generated by both the KEP
method and exact calculations. The solid blue line traces the KEP probability amplitude,
while the dashed orange line delineates the exact solution. The triple peaks observed in the
graph correspond to the divergent nature of the triple zero-range potential. The remarkable
agreement between the two methods demonstrates KEP’s adeptness at accurately capturing
the wave function’s intricate structure.

4.3. N Harmonic Oscillator Interactions in One-Dimensional Schrödinger Equation

The system of a particle interacting with many harmonic oscillator interactions [13,16–19]
in a one-dimensional space serves as a good example for modeling the local dynamics of
a defect in solid-state materials [20,21]. Here, the KEP method is used to study this model
system. The Hamiltonian for a quantum system with many harmonic interactions can be
represented as

Ĥ =
p̂2

2m
+

1
2

N

∑
i=1

ki(x − di)
2, (54)

where ki and di are the spring constants and equilibrium distances for the subsystem.
According to the KEP scheme, kinetic energy can be equally separated into N terms, and
the Hamiltonian can be rewritten as

Ĥ =
N

∑
i=1

Ĥi =
N

∑
i=1

[
p̂2

2mi
+

1
2

ki(x − di)
2
]

, (55)

where the mass is
N

∑
i=1

1
mi

=
1
m

. (56)

The Schrödinger equation corresponding to Equation (54) is Ĥψ = Eψ. The eigenvalue
of Equation (55) could be calculated by using Equation (9) for N harmonic interaction in a
one-dimensional particle. Plugging the desired eigenvalue into Equation (9), the coefficient
set of {C1, C2, . . . , CN} can be found. Finally, the KEP eigenfunction can be written as

ψKEP = C1ψ1 + C2ψ2 + . . . + CNψN . (57)
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The exact solutions for the eigenvalue and eigenfunction of Equation (54) are known

En =

(
n +

1
2

)
ℏ
√

k
m

+
k
2
(∆d)2, n = 0, 1, 2, . . .ψn(x) = φn

(
x − d

)
, (58)

where φn(x) is the wave function of a simple harmonic oscillator
(

p̂2/2m + kx2/2
)

φn(x) =
en φn(x). d and ∆d can be represented as

d =
1
k

N

∑
i=1

kidi(∆d)2 =
1
k

N

∑
i=1

kid2
i −

(
1
k

N

∑
i=1

kidi

)2

(59)

d2i+1 = −(i + 1)d and d2i = i × d are represented as N ∈ odd and N ∈ even, re-
spectively. We appreciate Dr. Francisco M. Fernaández [14] for pointing out several
simplifications in our previous studies [4], giving many useful suggestions and indicating
the exact solutions of Equation (58). Table 1 shows the high accuracy of using the KEP
method in a system with many quantum harmonic oscillator interactions. The numerical
results with five-digit decimals are compared with the exact eigenvalues. The KEP method
yields an excellent agreement with the exact energies in Equation (58). Figure 5 plots the
KEP wave function square with different N values in Equation (57) as compared to the
exact probability density. This illustrates that the KEP eigenfunctions are close to the exact
eigenfunction in the case of many quantum harmonic interactions.

Table 1. Comparison of the KEP and exact eigenvalues (in the atomic units) from N = 1 to N = 10.
The parameters are set as di = 0.1 ∗ (N − 1), k = 0.1 and m = ℏ = e = 1.

N KEP (a.u.) Exact (a.u.) Error (%)

1 0.15811 0.15811 0
2 0.22386 0.22386 0
3 0.27486 0.27486 0
4 0.31873 0.31873 0
5 0.35848 0.35855 0.0195
6 0.39419 0.39605 0.4696
7 0.43236 0.43233 0.0069
8 0.46822 0.46821 0.0021
9 0.50433 0.50434 0
10 0.54154 0.54125 0.0535
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Figure 5. Illustration of the KEP and exact wave functions with the double and quadruple harmonic
interactions, respectively. The parameters are set as di = 0.1 ∗ (N − 1), k = 0.1 and m = ℏ = e = 1.

4.4. Three-Body Problem and Many Interactions of One-Dimensional Moshinsky Atoms

In this subsection, we apply the KEP method to a popular atom model—the Moshinsky
atom—where harmonic interactions serve as a substitute for the Coulomb interactions
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among electrons and nuclei. This ideal could help reduce the difficult integrals for the
system energy. Recently, the theoretical and experimental progress in our understanding
of quasi-one-dimensional cold-atom systems has served as a motivation to study these
models [22–26]. The total Hamiltonian of the Moshinsky atom with two electrons is

Ĥ =
p̂2

1
2m

+
1
2

kx2
1 +

p̂2
2

2m
+

1
2

kx2
2 −

1
2

K(x1 − x2)
2 (60)

where K and k are the spring constants for the electron–electron and electron–nucleus
interactions, respectively. According to the KEP method [9], we can separate the mass
of the kinetic energy terms in Equation (60), and the electron–electron interaction term is
divided into two equal parts. The total Hamiltonian can be written as

Ĥ = − ℏ2

2
(

m
s1

) ∂2

∂x2
1
− 1

2

(
K
2

)
(x1 − x2)

2 − ℏ2

2
(

m
1−s1

) ∂2

∂x2
1
+

1
2

kx2
1

− ℏ2

2
(

m
s2

) ∂2

∂x2
2
− 1

2

(
K
2

)
(x1 − x2)

2 − ℏ2

2
(

m
1−s1

) ∂2

∂x2
1
+

1
2

kx2
1

=
(

Ĥ1,2 + Ĥ1
)
+
(

Ĥ2,1 + Ĥ2
)

(61)

Notice that Equation (61) contains repulsion interactions; therefore, the adjustable
parameters s1 and s2 are set to negative one, which uses the concept of negative mass. The
parameters s1 and s2 provide a generalized approach to modulating the mass parameter,
thereby introducing additional degrees of freedom to address the complexity inherent in
many-body systems. The Schrödinger equations for the four Hamiltonian systems are

Ĥ1ψ1 = E1ψ1
Ĥ1,2ψ1,2 = E1,2ψ1,2

Ĥ2ψ2 = E2ψ2
Ĥ2,1ψ2,1 = E2,1ψ2,1

(62)

The Ĥ1 and Ĥ2 partial systems are simply mass-modified ( m → m1 = m/(1 − s1) and
m → m2 = m/(1 − s2) ) harmonic oscillator potential problems; therefore, the ground state
energies and wave functions are both known as

E1 = 1
2 (2n1 + 1)ℏω1, n1 = 0, 1, 2, . . .ψ1(x1) =

1√
2n1 n1!

(
2b1
π

)1/4
exp

(
−b1x2

1
)

Hn1

(√
2b1x1

)
(63)

E2 = 1
2 (2n2 + 1)ℏω2, n1 = 0, 1, 2, . . .ψ2(x2) =

1√
2n2 n2!

(
2b2
π

)1/4
exp

(
−b2x2

2
)

Hn2

(√
2b2x2

)
(64)

where ω1 =
√

k/m1, ω =
√

k/m2, Hn(x) are the n-th order Hermite polynomials, and b1,
b2 is defined as

b1 =
m1ω1

2ℏ ; b2 =
m2ω2

2ℏ (65)

Then, we solve the Ĥ1,2 partial system, for which the Schrödinger equation is− ℏ2

2
(

m
s1

) ∂2

∂x2
1
− 1

2

(
K
2

)
(x1 − x2)

2

ψ1,2 = E1,2ψ1,2 (66)

Through the momentum translation invariance, let ρ ≡ |x1 − x2| to perform the vari-
able transformation. Notice that because the interaction potential is an inverse (repulsive)
harmonic oscillator, the system is unstable. However, if we choose to use a negative mass,
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namely s1 < 0, it also becomes an effective (attractive) harmonic oscillator problem due to
the negative mass.− ℏ2

2
(

m
|s1|

) ∂2

∂ρ2
1
+

1
2

(
K
2

)
ρ2

1

ψ1,2(ρ1) = −E1,2ψ1,2(ρ1) (67)

This is the reason why we can avoid using the continuous-energy basis sets associated
with the original repulsion interaction. We obtain the ground state energy and wave
function by shifting the origin to x2:

E1,2 = −1
2
(2n1,2 + 1)ℏω1,2 n1,2 = 0, 1, 2, . . . (68)

ψ1,2(ρ1) =
1√

2n1,2 n1,2!

(
2b1,2

π

) 1
4
exp

(
−b1,2ρ2

1

)
Hn1,2

(√
2b1,2ρ1

)
(69)

Notice that m1,2 = m/|s1|, and Hn(x) is the n-th order Hermite polynomial. Addition-
ally, b1,2 and ω1,2 are defined as

b1,2 =
m1,2ω1,2

2ℏ , ω1,2 =
√

K/2m1,2 (70)

The energy and wave function of the partial system Ĥ2,1 can be obtained with the same
method described above by simply exchanging the indices. Next, we solve the Schrödinger
equation with the subsystem Hamiltonian K̂1:

K̂1ϕ1 = ε1ϕ1 (71)

where
K̂1 = Ĥ1,2 + Ĥ1 (72)

Now, we assume that the wave function of the subsystem for electron one is a linear
combination of ψ1,2(ρ1) and ψ1(x1):

ϕ1(x1; x2) = C1,2ψ1,2(ρ1) + C1ψ1(x1) (73)

Substituting Equation (73) into Equation (72), we acquire{
C1(E1 + ξ1,2 − ε1) + C1,2(E1 + E1,2 − ε1)η1 = 0
C1(E1 + E1,2 − ε1)η1 + C1,2(E1 + ξ1,2 − ε1) = 0

(74)

The energy of the subsystem K̂1 is obtained by the vanishing determinant of the
coefficient matrix:

ε±1 (x2) =

[(
1 − 2η2

1
)
E1 +

(
1 − η2

1
)
E1,2 + ξ1 + ξ1,2

]
±
√

D1

2
(
1 − η2

1
) (75)

where

D1 =
[(

1 − 2η2
1
)
E1 +

(
1 − η2

1
)
E1,2 + ξ1 + ξ1,2

]2 − 4
(
1 − η2

1
)[
(E1 + ξ1,2)(E1,2 + ξ1)− η2

1(E1 + E1,2)
2
]

(76)

The symbols η1, ξ1 and ξ1,2 in Equation (75) are defined and calculated as

η1 = ⟨ψ1,2|ψ1⟩ =
[

4b1b1,2

(b1 + b1,2)
2

]1/4

exp

(
−

b1b1,2x2
2

b1 + b1,2

)
(77)
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ξ1 =
〈
ψ1,2

∣∣Ĥ1
∣∣ψ1,2

〉
= −2E1,2 −

K − k
(
1 + 4b1,2x2

2
)

8b1,2
(78)

ξ1,2 =
〈
ψ1
∣∣Ĥ1,2

∣∣ψ1
〉
= −1

2
E1 +

k − K
(
1 + 4b1x2

2
)

16b1
(79)

All of the above symbols are functions of x2. Here, ε−1 (x2) conforms to the ground
state energy; therefore, we will ignore its superscript for simplicity. The normalized wave
function is

ϕ1(x1; x2) =

√
1

∆2
1 + 2η1∆1 + 1

[ψ1(x1) + ∆1ψ1,2(ρ1)] (80)

where

∆1 = − (E1 + ξ1,2 − ε1)

(E1 + E1,2 − ε1)η1
(81)

Note that the coefficients depending on x2 are obtained by Equation (77) and the
normalization condition. The same method can be used to calculate the energy and
wave function for electron two by simply swapping the indices 1 ↔ 2 . To solve the full
Schrödinger equation

ĤΨ = EΨ (82)

where
Ĥ = K̂1 + K̂2 (83)

we assume that the total wave function is a Hartree-like product function

Ψ = ϕ1(x1; x2)ϕ(x2; x1)

Substituting the above equation into Equation (82), we obtain the KEP energy

EKEP =
s

ϕ∗
1 (x1; x2)ϕ

∗
2 (x2; x1)

(
K̂1 + K̂2

)
ϕ1(x1; x2)ϕ2(x2; x1)dx1dx2

= 2
s

ϕ∗
1 (x1; x2)ϕ

∗
2 (x2; x1)K̂1ϕ1(x1; x2)ϕ2(x2; x1)dx1dx2

(84)

Here, we considered the electron exchange symmetry. The last integral can be written
explicitly as

s
ϕ∗

1 (x1; x2)ϕ
∗
2 (x2; x1)K̂1ϕ1(x1; x2)ϕ2(x2; x1)dx1dx2 =

s
dx1dx2ϕ∗

1 ϕ∗
2

(
p̂2

1
2m + V1 + V1,2

)
ϕ1ϕ2

=
s

dx1dx2ϕ∗
1 ϕ∗

2

(
p̂2

1
2m ϕ1

)
ϕ2 +

s
dx1dx2ϕ∗

1 ϕ∗
2

(
p̂2

1
2m ϕ2

)
ϕ1 +

s
dx1dx2ϕ∗

1 ϕ∗
2

(
p̂1ϕ1 p̂1ϕ2

m

)
+
s

dx1dx2ϕ∗
1 ϕ∗

2 (V1 + V1,2)ϕ1ϕ2

=
s

dx1dx2ϕ∗
1 ϕ∗

2 ε1(x2)ϕ1(x1; x2)ϕ2(x2; x1) +
s

dx1dx2ϕ∗
1 ϕ∗

2

(
p̂2

1
2m ϕ2

)
ϕ1 +

s
dx1dx2ϕ∗

1 ϕ∗
2

(
p̂1ϕ1 p̂1ϕ2

m

)
(85)

To simplify Equation (84), we adopt the adiabatic approximation
x

dx1dx2ϕ∗
1 (x1; x2)ϕ

∗
2 (x2; x1)K̂1ϕ1(x1; x2)ϕ2(x2; x1)≈

x
ϕ∗

1 ϕ∗
2 ε1(x2)ϕ1ϕ2dx1dx2 (86)

These integrals can be calculated by using the known analytic functions. In Table 2,
we compare the exact energy, the adiabatic KEP (AKEP) energy and the KEP energy for a
range of the ratio of k/K. The analytic exact energy is taken from Ref [27].

Eexact =
1
2

√
k − 2K

m
+

1
2

√
k
m

=
1
2

√
k
m

(√
1 − 2K

k
+ 1

)
(87)

In Equation (84), we can see that the ratio of 2 is a critical point of the exact solution,
where the repulsive potential is equivalent to the attractive potential, and the system starts
to become unstable. We see that both the KEP and the AKEP results exhibit quite large
errors near the critical point, with others being less than 3%. In Figure 6, we plot the exact,



Symmetry 2024, 16, 290 16 of 18

KEP and AKEP energies with different k/K ratios. Clearly, the KEP method can be used
for a very wide range of k/K ratios. The exact wave function is compared with the KEP
solution, as shown in Figure 7. We see an overall agreement in the contour plots, thus
demonstrating the feasibility of using the KEP method in modeling the wave functions.

Table 2. Comparison of the exact energy solutions, the KEP and AKEP solutions for the ratio of the
spring constants. Here, we utilize the atomic units m = ℏ = e = 1 and K = 0.01.

k/K KEP AKEP Exact Error for
KEP (%)

Error for
AKEP (%)

2.0 0.101 0.098 0.071 42.5 39.13

2.1 0.106 0.103 0.088 19.6 17.1

2.5 0.123 0.121 0.114 7.6 6.1

3.0 0.142 0.141 0.137 4.2 3.2

3.5 0.160 0.158 0.155 3.1 2.3

4.0 0.175 0.174 0.171 2.6 2.0

4.5 0.190 0.189 0.185 2.4 1.9

5.0 0.203 0.202 0.198 2.4 1.9

5.5 0.216 0.215 0.211 2.4 2.0

6.0 0.228 0.227 0.223 2.4 2.1

6.5 0.239 0.239 0.234 2.5 2.2

8.0 0.271 0.270 0.264 2.7 2.4

10.0 0.308 0.308 0.300 2.9 2.8Symmetry 2024, 16, x FOR PEER REVIEW 18 of 20 
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5. Conclusions

In this paper, we review the general methodology of using the recently proposed
KEP method for solving quantum eigenvalue problems. The KEP scheme is successfully
applied in several illustrative quantum mechanical systems with a wide range of interaction
patterns. Using the KEP solution scheme, the symmetry or anti-symmetry of interaction
within the particles can be considered. The problems of the symmetric double and triple
zero-range potentials are solved with the KEP method, and the KEP energies and wave
functions are very close to the exact solutions. The system with N harmonic oscillator
interactions is well tested from N = 1 to N = 10, where the KEP method renders an excellent
agreement with the exact solutions. Finally, the KEP method is applied to the Moshinsky
atom, which is a three-body scenario, and achieves high-accuracy results. Therefore, we
demonstrate the high potential of using the KEP method to calculate both the eigenvalues
and wave functions for general quantum mechanical problems.
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