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Abstract: In the present article, we derive optimal spatially varying control fields, which maximize
the four-wave mixing efficiency in a four-subband semiconductor asymmetric double quantum well,
following analogous works in atomic systems. The control fields coherently prepare the medium,
where a weak probe pulse is propagated and eventually converted to a signal pulse at the output.
The optimal fields, which maximize the conversion efficiency for a given propagation length, are
obtained by applying optimal control theory to a simplified form of propagation equations but
are tested with numerical simulations using the full set of Maxwell–Schrödinger equations, which
accurately describe the propagation of light pulses in the medium. For short propagation distances,
the proposed optimal scheme outperforms a simpler spatially changing control protocol that we
recently studied, while for larger distances, the efficiency of both protocols approaches unity. The
present work is expected to find application in frequency conversion between light beams, conversion
between light beams carrying orbital angular momentum, and nonlinear optical amplification.

Keywords: four-wave mixing; asymmetric double quantum well; shortcuts to adiabaticity;
intersubband transitions

1. Introduction

During the last decades, quantum interference related to Electromagnetically Induced
Transparency (EIT) has become a major field of research in contemporary quantum op-
tics [1–3], with exciting applications, for example, the “stopping” of light [4]. Another
important application is four-wave mixing (FWM), which has attracted considerable at-
tention because it is exploited in a vast spectrum of research areas, for example, quantum
information processing and storage [5], frequency and orbital angular momentum conver-
sion between light beams [6,7], nonlinear optical amplification [8], etc.

EIT has been also achieved in semiconductor systems, taking advantage of the resem-
blance between the electronic levels of these systems and atomic systems [9–16]. In this
framework, four-wave mixing arising from quantum interference between the intersub-
band transitions in semiconductor quantum wells has been explored. Many of these works
study a system configuration involving four subbands [17–20]. To improve the rather
low mixing efficiency, a few studies make use of an additional (fifth) level [21–23], while
others [24] exploit coupling of the semiconductor energy levels to the continuum energy
spectrum [25–27]. Another article utilizes an additional coupling among subbands [28].
The conversion between light beams which carry orbital angular momentum while they
propagate in semiconductor system like the one under investigation has been put forward
in the excellent studies [29,30]. The common feature of the previously cited papers is the
usage of control fields which do not depend on the propagation length. Note that FWM in
semiconductor systems is not restricted in the above context but has also been considered
in other structures, for example, in quantum dot semiconductor optical amplifiers [31].
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To improve mixing efficiency in systems composed of semiconductor quantum wells,
we proposed in our recent work [32] the utilization of control fields with spatial variation,
which alter along propagation length, influenced by related investigations involving atomic
systems [6,7]. Using the typical four-subband configuration, we considered control fields
with a constant sum of intensities but with the mixing angle linearly changing as a function
of the propagation length. After deriving a simplified model describing propagation, we
showed analytically that mixing efficiency converging to one for long distances can be
accomplished by the proposed scheme. The analytical findings were numerically con-
firmed by performing simulations with the full model of Maxwell–Schrödinger equations
describing propagation. For large propagation distances the suggested scheme essentially
implemented an adiabatic evolution.

In this work, we consider the optimal control fields maximizing the FWM efficiency
for a given propagation distance, which were derived in the framework of atomic systems
in Ref. [7] using optimal control theory, and apply them to the typical four-subband
configuration of a semiconductor quantum-well system. We show analytically using the
simplified propagation model, and confirm numerically using the full model, that the
optimal protocol attains larger efficiency values than the protocol considered in Ref. [32] for
short propagation distances, while for longer distances, both protocols give similar results.
The optimal protocol essentially implements a shortcut to adiabaticity [33].

This article is structured as follows. In Section 2, we describe the system, and in
Section 3, we describe the simplified model which is used for the derivation of the optimal
control fields. In Section 4, we present and discuss simulation results obtained using the
full model, while Section 5 summarizes the outcomes of the present work.

2. System Description

The system under study is displayed in Figure 1 and is an asymmetric semiconductor
double-quantum well having four subbands, |1⟩, |2⟩, |3⟩, |4⟩, which can be implemented in
a GaAs/AlxGa1−xAs heterosctructure [24]. For the composition described in Ref. [24], the
corresponding energies of the levels are E1 = 51.53 meV, E2 = 97.78 meV, E3 = 191.3 meV,
and E4 = 233.23 meV. Transitions |3⟩ → |2⟩ and |3⟩ → |1⟩ are driven by two control
fields with center frequencies ωc1, ωc2 and wavevectors kc1, kc2. These are strong continuous-
wave (CW) fields which prepare the corresponding states of the medium in a coherent way.
Transition |2⟩ → |4⟩ is driven by a weak probe pulse of center frequency ωp and wavevector
kp that propagates along the coherent medium, while transition |4⟩ → |1⟩ generates the weak
four-wave mixing (FWM) pulse of center frequency ωm and wavevector km.

c2

c1

m

p

|1

|2

|4

|3

z

Figure 1. Schematic representation of the system.
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The system is described by the following Hamiltonian, under rotating-wave and
electric-dipole approximations,

H/h̄ = ∆2|2⟩⟨2|+ ∆3|3⟩⟨3|+ ∆4|4⟩⟨4|

−
(

Ωc2eikc2·r|3⟩⟨1|+ Ωc1eikc1·r|3⟩⟨2|

+ Ωpeikp ·r|4⟩⟨2|+ Ωmeikm ·r|4⟩⟨1|+ H.c.
)

, (1)

with detunings ∆3 = (E3 − E1)− ωc2, ∆2 = (E2 − E1)− (ωc2 − ωc1), ∆4 = (E4 − E1)−
(ωc2 −ωc1 +ωp) and Rabi frequencies Ωp = µ42Ep/2h̄, Ωc1 = µ32Ec1/2h̄, Ωc2 = µ31Ec2/2h̄,
Ωm = µ41Em/2h̄, where the latter are given using the electric field envelopes and dipole
moments of the transitions. The system’s state is written as

|ψ(t)⟩ = C1|1⟩+ C2(t)ei(kc2−kc1)·r|2⟩+ C3eikc2·r|3⟩+ C4ei(kp−kc1+kc2)·r|4⟩, (2)

with Ci being the probability amplitude corresponding to subband |i⟩, i = 1, 2, 3, 4. Note
that these amplitudes change with time, and if we plug Equation (2) into the Schrödinger
equation ih̄∂|ψ⟩/∂t = H|ψ⟩, we obtain a set of coupled differential equations,

i
∂C1

∂t
= −Ω∗

c2C3 − Ω∗
meiδk·rC4, (3)

i
∂C2

∂t
= ∆2C2 − iγ2C2 − Ω∗

c1C3 − Ω∗
pC4, (4)

i
∂C3

∂t
= ∆3C3 − iγ3C3 − Ωc2C1 − Ωc1C2, (5)

i
∂C4

∂t
= ∆4C4 − iγ4C4 − ΩpC2 − Ωme−iδk·rC1. (6)

To simplify the analysis, we fix the phase mismatch as δk = kp − kc1 + kc2 − km = 0.
For the phenomenologically introduced decay rates, we will use the values from Ref. [30],
γ2 = 2.36 × 10−6 µeV, γ3 = 1.32 meV, and γ4 = 1.3 meV. Observe that γ2 ≪ γ3, γ4 and
γ3 ≈ γ4, relations that we will exploit in the following section.

The propagation of the probe and FWM pulses Ωp, Ωm along the z-direction shown in
Figure 1, in the slowly varying envelope approximation, is described by the wave equations

∂Ωp

∂z
+

1
c

∂Ωp

∂t
= iκpC4C∗

2 , (7)

∂Ωm

∂z
+

1
c

∂Ωm

∂t
= iκmC4C∗

1 , (8)

with propagation constants κp = Nωp|µ42|2/2h̄ε0c, κm = Nωm|µ41|2/2h̄ε0c and N the
electron concentration in the semiconductor quantum wells, which come from donors. The
typical common value κp = κm = κ = 9.6 meV/µm [30] will be used. Using the following
definition for a density matrix element

ρij = CiC∗
j , i, j = 1, 2, 3, 4, (9)

the wave Equations turn into

∂Ωp

∂z
+

1
c

∂Ωp

∂t
= iκρ42, (10)

∂Ωm

∂z
+

1
c

∂Ωm

∂t
= iκρ41. (11)
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3. Methodology

Here, we first obtain a simplified version of propagation equations, based on some
reasonable assumptions, and then use them to find the optimal spatial variation of the
control fields Ωc1, Ωc2, maximizing the conversion efficiency from Ωp to Ωm for a given
propagation distance. The optimal fields obtained through this simplified model are
evaluated in the following section by applying them to the complete set of original system
Equations (3)–(6) and (7)–(8). From Equations (3)–(6) with δk = 0, we obtain for ρ42, ρ41

∂ρ42

∂t
= −[γ2 + γ4 + i(∆4 − ∆2)]ρ42 + iΩpρ22 + iΩmρ12 − iΩc1ρ43 − iΩpρ44 (12)

∂ρ41

∂t
= −(γ4 + i∆4)ρ41 + iΩmρ11 + iΩpρ21 − iΩc2ρ43 − iΩmρ44 (13)

which, by setting ∆2 = ∆3 = ∆4 = 0 and γ2 = 0, γ3 = γ4 = γ = 1.3 meV (the latter
relations come from the observations concerning decay rate values in Section 2), take
the form

∂ρ42

∂t
= iΩpρ22 + iΩmρ12 − iΩc1ρ43 − iΩpρ44 − γρ42, (14)

∂ρ41

∂t
= iΩmρ11 + iΩpρ21 − iΩc2ρ43 − iΩmρ44 − γρ41. (15)

The probe and FWM pulses, Ωp, Ωm, are much weaker than CW control fields Ωc1, Ωc2.
These strong fields prepare the subsystem comprising states |1⟩, |2⟩, |3⟩ into the dark state

|ψd⟩ = sin θ|2⟩ − cos θ|1⟩, (16)

with θ(z) being the mixing angle of Ωc1, Ωc2

Ωc1(z) = Ω cos θ(z), Ωc2(z) = Ω sin θ(z), (17)

which depends on the propagation length, while the amplitude Ω is constant. Because
Ωp, Ωm ≪ Ω, as the probe pulse propagates and the FWM pulse is generated in the
coherently prepared medium, matrix elements ρ11, ρ22, ρ21 remain close to their dark state
values (16),

ρ11 ≈ cos2 θ, ρ22 ≈ sin2 θ, ρ21 ≈ − sin θ cos θ. (18)

On the other hand, states |3⟩, |4⟩ are slightly excited, and therefore, we may consider
in first order ρ43 ≈ 0, ρ44 ≈ 0. Under these assumptions, solving Equations (14)–(15) for the
steady-state values of ρ42, ρ41, we obtain in first order regarding Ωp, Ωm(

ρ42
ρ41

)
=

i
γ

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)(
Ωp
Ωm

)
. (19)

Note that Ωp, Ωm are functions of both the time and the propagation length z, while
the considered control fields Ωc1, Ωc2 and the corresponding mixing angle θ are functions of
z only, see Equation (17). In the rest of this section, we concentrate in the spatial dependence
of the variables and consider again the time dependence of the probe and FWM pulses
in the next section, where we test the control protocol obtained here using the full set of
Maxwell–Bloch Equations (3)–(6) and (7)–(8).

By plugging Equations (19) into Equations (10)–(11), we arrive at the following system
expressing the propagation of Ωp, Ωm along the semiconductor medium

∂

∂z

(
Ωp
Ωm

)
= − κ

γ

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)(
Ωp
Ωm

)
. (20)
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Using a normalized propagation length

ζ =
2κ

γ
z, (21)

the system takes the form

∂

∂ζ

(
Ωp
Ωm

)
= −1

2

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)(
Ωp
Ωm

)
. (22)

The propagation distance z = Z is equivalent to ζ = α with

α =
2κ

γ
Z. (23)

Since θ(ζ) is a function of propagation length, it is advantageous to exploit the adi-
abatic basis of the simplified system matrix (22), consisting of the following eigenstates
(with eigenvalues 0 and −1/2).

ψ0 =

(
cos θ
sin θ

)
, ψ−1/2 =

(
sin θ

− cos θ

)
. (24)

We can express the “state” vector (Ωp Ωm)T in terms of the adiabatic basis as(
Ωp
Ωm

)
= yψ0 + xψ−1/2 =

(
y cos θ + x sin θ
y sin θ − x cos θ

)
=

(
cos θ sin θ
sin θ − cos θ

)(
y
x

)
, (25)

where (y x)T are the components in the adiabatic basis. The inverse transformation between
the components in the original and adiabatic bases is(

y
x

)
=

(
cos θ sin θ
sin θ − cos θ

)(
Ωp
Ωm

)
, (26)

where we note that the transformation matrix is involutory. Combining the above equa-
tions, we obtain the following propagation equations for the state vector (y x)T in the
adiabatic basis (

ẏ
ẋ

)
=

(
0 −u
u − 1

2

)(
y
x

)
, (27)

where the spatially dependent function u(ζ) corresponds to

θ̇ = u. (28)

This system is obviously not PT-symmetric, while we emphasize that the derivatives
in Equations (27) and (28) are taken with respect to the normalized spatial coordinate ζ.

If initially Ωp(0) = Ω0, Ωm(0) = 0 and the boundary values of θ are fixed such that

θ(0) = 0, θ(α) =
π

2
, (29)

from Equation (26), we obtain

x(0) = 0, y(0) = Ωp(0) = Ω0 (30)

and
x(α) = Ωp(α), y(α) = Ωm(α). (31)

In our recent work [32], we considered a linear change in θ with propagation length
between the boundary values (29), inspired from corresponding studies in atomic sys-
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tems [6,7]. In this case and for large values of the propagation distance, it is u = θ̇ ≪ 1,
thus system (27) evolves adiabatically, and y(ζ) is kept nearly unchanged from its initial
value, in which case, Ωm(α) = y(α) ≈ y(0) = Ωp(0) = Ω0. The probe pulse is transformed
to the FWM pulse following eigenstate ψ0. For a constant rate of change u = θ̇ = π/(2α),
corresponding to normalized propagation distance ζ = α, the mixing efficiency is found
to be

|Ωm(α)|2
|Ω0|2

= e−ηα

[
cosh (ρα) +

η

2ρ
sinh (ρα)

]2
, (32)

η =
1
2

, ρ =

√(η

2

)2
− u2.

Figure 2a displays with a dashed green line the mixing efficiency (32) for distances
up to the value of Z = 100 µm, while Figure 2b shows the detail of the previous figure for
shorter distances, up to the value of Z = 3 µm. It is obvious that for larger distances, where
the transfer becomes more adiabatic, the efficiency converges to one, while for smaller
distances, a lower value is obtained.

0 50 100

Z ( m)

0

0.2

0.4

0.6

0.8

1

|
m

(Z
)|

2
/|

0
|2

(a)

0 1 2 3

Z ( m)

0

0.2

0.4

0.6

0.8

1

|
m

(Z
)|

2
/|

0
|2

(b)

Figure 2. (a) Mixing efficiency for distances up to Z = 100 µm. (b) Detail of the previous figure for
distances up to Z = 3 µm. The black solid line corresponds to the optimal scheme, while the green
dashed line corresponds to the protocol considered in Ref. [32].

In the present study and motivated also by our previous work on atomic systems [7],
we apply in the system at hand the optimal rate u(ζ), which maximizes the mixing efficiency
for a specified propagation distance, implementing thus a shortcut to adiabaticity. We will
not present the full details of the optimal solution here, which can be found in Refs. [7,34],
but rather give the main points of the derivation. With arguments from the theory of
optimal control, one can show that the optimal sequence of pulses has the so-called bang–
singular–bang form,

u(ζ) =


θ0δ(ζ), ζ = 0

us, 0 < ζ < α
θ0δ(ζ − α), ζ = α

, (33)

where two delta pulses of equal strength at the beginning and end increase the angle
instantaneously by an amount θ0, while a constant control us in between, called singular
in the optimal control terminology, increases θ linearly with the propagation length ζ.
Although at first glance the suggested control protocol appears to be highly irregular, it can
be implemented quite easily by linearly changing θ between the values θ0 and π/2 − θ0,
instead of 0 and π/2 of the protocol in Ref. [32]. As we shall see in the next section,
practically, this means that the boundary values Ωc2(0), Ωc1(α) are nonzero. The initial and
final jumps in θ do not affect the original probe and FWM fields, only the adiabatic variables.

We next explain how the optimal values of θ0 and us can be calculated for a spec-
ified propagation distance α. The initial delta pulse brings system (27) to (x(0+),
y(0+))T = (sin θ0, cos θ0)

T instantaneously, while increases the angle to θ(0+) = θ0. Op-
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timal control theory indicates that the ratio y/x should be kept constant during the in-
terval 0 < ζ < α and equal to the value y/x = y(0+)/x(0+) = 1/ tan θ0. By taking the
derivative d(y/x) = 0 and using Equation (27), we find that this is accomplished by the
constant control

us =
1
2

xy
x2 + y2 =

1
4

sin (2θ0). (34)

The value of θ0 is found from the terminal condition θ(α) = π/2 which, for the
pulse-sequence (33), is translated to 2θ0 + usα = π/2 and, using Equation (34), becomes
the following transcendental equation.

2θ0 +
α

4
sin (2θ0) =

π

2
(35)

From Equation (35), it can be inferred that 0 < θ0 < π/4, and in this range, there
is only one optimal value of θ0, which of course depends on the propagation distance α
appearing in the equation as a parameter. Finally, it is not hard to show that the control
sequence (33), when applied to system (27), leads to the efficiency

|Ωm(α)|2
|Ω0|2

= e− tan θ0(π−4θ0) cos2 (2θ0), (36)

where we note that Equation (34) has been used to express us in terms of the solution θ0 of
Equation (35), while the latter equation has been also exploited to simplify the expression.

Figure 2a,b show with solid black line the efficiency (36) of the optimal protocol (33)
for long and short propagation distances. Compared to the protocol where angle θ changes
linearly with the propagation distance without the initial and final jumps, the optimal
sequence gives a better efficiency for shorter distances, while for longer distances, the effi-
ciencies of the two protocols converge. Since the efficiency is determined by the normalized
propagation distance α given in Equation (23), the optimal method is particularly useful
in the cases where there are restrictions on the length of the device and the propagation
constant κ is small or the decay rate γ is large. From Figure 2a, we observe that the efficiency
is an increasing function of the propagation distance, thus any desired efficiency value can
be achieved for propagation distances beyond a minimum value determined from this plot.
In Section 4, the optimal protocol, derived from the simplified model of propagation (22), is
evaluated with simulations of the original propagation model.

4. Results and Analysis

Here, we numerically study the propagation of probe and mixing fields when applying
the optimal control fields in the Maxwell–Bloch pair of Equations (3)–(6) and (7)–(8).
The fields are taken on resonance, and consequently, ∆2 = ∆3 = ∆4 = 0, while the
rest of model parameters are γ2 = 2.36 × 10−6 µeV, γ3 = 1.32 meV, γ4 = 1.3 meV, and
κp = κm = 9.6 meV/µm, see Ref. [30]. The control fields (17) have constant amplitude
Ω = γ = 1.3 meV, while the mixing angle is varied along the propagation length according
to the optimal protocol (33). At the input z = 0 of the coherently prepared medium, only a
weak Gaussian probe pulse is inserted (the mixing pulse is zero there).

Ωp(z = 0, t) = Ω0e−
(t−t0)

2

2τ2 , (37)

Ωm(z = 0, t) = 0, (38)

with parameters Ω0 = 0.01Ω = 0.01γ, t0 = 25γ−1, and τ = 8γ−1.
Figures 3–5 display various propagation results for three distances, 1 µm, 10 µm, and

100 µm. They correspond to the star, circle, and square markers, respectively, shown in
Figure 2. We explain these results starting from Figure 3 corresponding to the smallest
distance Z = 1 µm. The optimal control fields are shown in Figure 3a. Since the initial and
final jumps in the mixing angle are found to be θ0 = 0.1699 rad, by solving Equation (35)
with α obtained from Equation (23) for Z = 1 µm, we observe that normalized Ωc1 does
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not start from one and end at zero, and, respectively, Ωc2 does not start from zero and
end at one. This distinctive behavior of the controls, compared to the protocol where
the mixing angle is just linearly varied between 0 and π/2, leads to the higher efficiency
achieved by the optimal protocol, demonstrated in Figure 2b for the simplified propagation
model and as we will immediately see for the full model also. As we explain in our
recent work [35], the nonzero Ωc2(0) leads to the quick buildup of nonzero populations
in the intermediate states, which facilitate the conversion from the probe to the pump
field for limited propagation distances, while the nonzero Ωc1(α) quickly eliminates these
intermediate populations when the desired transfer has been completed. Figure 3b displays
the normalized peak intensity at the middle t = t0 of the probe pulse (approximate
from simplified model solid yellow, numerical from full model dashed pink) and the
corresponding one for the mixing pulse (approximate from simplified model solid orange,
numerical from full model dashed blue), throughout the length of propagation. Notice the
extremely good agreement of the efficiencies achieved by the simplified and full models.
This means that the efficiency of the optimal protocol indicated by the star marker in
Figure 2 is indeed acquired by the realistic Maxwell–Bloch model. This efficiency is
larger than that obtained using the protocol of Ref. [32] where θ is changed linearly with
distance, see the green dashed line in Figure 2b. Figure 4a,b depict the evolution of
the normalized intensity corresponding to the full probe and FWM pulses along the
propagation length. The conversion efficiency at the exit Z = 1 µm is 0.5826. The results
for the larger distance Z = 10 µm are plotted in Figure 4. Note from Figure 4c that now
the nonzero Ωc2(0), Ωc1(α) are smaller than their values for the previous case of smaller
propagation distance. The jumps in the mixing angle, found from Equation (35) with
α obtained from Equation (23) for Z = 10 µm, are now θ0 = 0.0207 rad, much smaller
than before. Figure 4d exhibits that the eminent accordance of the results produced by
the simplified model, and the full models is also extended for the distance Z = 10 µm.
The efficiency achieved is increased to 0.9370 because of the longer available distance.
For the largest distance Z = 100 µm that we consider here, we see from Figure 5a that
now it is Ωc2(0) ≈ 0, Ωc1(α) ≈ 0, since the jumps in the angle are very small for that
distance, θ0 = 0.0021 rad. In this case, the optimal protocol practically coincides with
that of Ref. [32]. There is again an almost perfect agreement between the theoretical and
numerical efficiencies. The mixing efficiency at the exit length Z = 100 µm rises to the
value 0.9934, confirming thus the convergence to one for larger distances.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Control, probe, and FWM pulses for propagation distance Z = 1 µm: (a) continuous wave
control fields Ωc1 (magenta) and Ωc2 (cyan) as functions of the propagation length z. (b) Spatial
variation in the normalized intensity at the middle (t = t0) of the probe pulse (approximate solid
yellow, numerical dashed pink) and of the FWM pulse (approximate solid orange, numerical dashed
blue). (c,d) Spatial evolution of the probe and FWM pulses, respectively. The conversion efficiency at
the output is |Ωm(Z)|2/|Ω0|2 = 0.5826.

(a) (b)

(c) (d)

Figure 4. Same as Figure 3 but for propagation distance Z = 10 µm. The conversion efficiency at the
output has increased to |Ωm(Z)|2/|Ω0|2 = 0.9370.
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(a) (b)

(c) (d)

Figure 5. Same as Figure 3 but for propagation distance Z = 100 µm. The conversion efficiency at the
output has risen to |Ωm(Z)|2/|Ω0|2 = 0.9934.

5. Concluding Remarks

We obtained optimal spatially changing control fields, maximizing the four-wave
mixing efficiency in a four-subband semiconductor asymmetric double-quantum well
for a given propagation distance, according to similar studies in atomic systems. We
showed analytically using a simplified model of propagation and confirmed numerically
by performing simulations with the full model that for short propagation distances the
suggested optimal scheme outperforms another simple spatially varying control protocol
that we considered in the recent publication [32]. For larger distances, both protocols
achieve similar mixing efficiencies which tend to unity.
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